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Abstract. We prove existence, uniqueness, regularity and smooth depen-
dence of the weak solution on the initial data for a semilinear, first order,
dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic
systems have succesfully been used to model the dynamics of distributed feed-
back multisection semiconductor lasers. We show that in a function space
of continuous functions the weak solutions generate a smooth skew product
semiflow. Using slow fast structure and dissipativity we prove the existence
of smooth exponentially attracting invariant center manifolds for the nonau-
tonomous model.
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1. Introduction

This paper concerns a model for the dynamical behavior of distributed feed-
back multisection semiconductor lasers. The model consists of an initial boundary
value problem for a dissipative semilinear hyperbolic system of first order PDEs
(two coupled traveling wave equations describing the forward and backward prop-
agating complex amplitudes of the light) coupled to a spatially extended ordinary
differential equation (carrier rate equation). The model describes the longitudinal
dynamics of edge emitting lasers, so the dimension of the space variable is one.
The coefficients in the equations and the boundary conditions are allowed to be
discontinuous with respect to the space and time variables, but have to be smooth
with respect to the unknown functions. The spatial discontinuities appear in the
equations due to the significantly different electrical and optical properties of each
section in a multi-section laser. Discontinuities with respect to time occur in the
equations and/or boundary conditions when the laser is subject to step-like forc-
ings through electrical or optical injection. Models of this kind exhibit very rich
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dynamics, even in the autonomous case, and have received remarkable attention in
physics literature, see e.g. [5, 6, 20, 26].

The focus of our paper is to show existence, uniqueness of global weak solutions
as well as their smooth dependence on the initial data in a suitable function space
setting, and then apply the results to smooth invariant center manifold reduction.
We do this via an abstract variation of constants formula setting of the type

(1) u(t) = eAtu0 +

∫ t

0

eA(t−s)f(s, u(s)) ds,

where A is the generator of a C0 semigroup on Lp
(

]0, L[ ;
� 2 × �

)

×Lpη (]0,∞[ ;
�

)
for p ∈ [1,∞[ (Lpη is a weighted Lp space, see section 3). The operator A generates

also a semigroup on L∞
(

]0,∞[ ;
�

2 × �
)

×L∞ (]0,∞[ ;
�

), but this semigroup is not

measurable in the sense of Bochner1. On the other hand, the nonlinear Nemytskij
operator f maps Lp

(

]0, L[ ,
� 2 × �

)

×Lpη (]0,∞[ ,
�

) smoothly into itself for p = ∞2,
but not for p <∞.

We circumvent this technical difficulty by showing that (1) generates a smooth
equation in L∞

(

]0, T [× ]0, L[ ;
� 2 × �

)

×L∞ (]0,∞[ ;
�

) for any T > 0. After trun-
cation, this equation can be solved by means of Banachs fixed point theorem. Then
a priori estimates show that the solutions of the truncated equation solve also the
untruncated equation. And finally, applying the implicit function theorem, we show
that the solution depends smoothly in the sense of L∞

(

]0, T [× ]0, L[ ;
�

2 × �
)

×
L∞ (]0,∞[ ;

�
) on the initial data.

In Theorems 2.7 and 2.8 we state that in a function space of continuous functions
the weak solutions form a smooth semiflow in the autonomous case and that our
system can be viewed as a smooth process after a suitable boundary homogenization
in the nonautonomous case. Hence, if we restrict to continuous solutions, we have
both the C0 property, i.e. continuous evolution in time, and smooth dependence on
the initial data. Both properties are required for applying persistence theorems for
invariant manifolds [3, 4] to (1) which we will do in section 6. Theorems 2.4 and
2.6 state basic regularity results for the weak solutions, and Theorem 2.5 contains
a priori estimates. Remark that these results hold true locally in time for more
general hyperbolic systems with arbitrary nonlinearities appearing in many other
applications [12, 13]. In Theorem 6.2 we state the existence of smooth exponentially
attracting (with respect to the supremum norm) invariant center manifolds for the
nonautonomous laser model.

The semiconductor lasers, described by our models, exhibit very rich dynamics,
including bifurcations, selfpulsations, hystheresis, excitability, frequency synchro-
nization etc., and so do the models also. A lot of such behaviour is described numer-
ically, see e.g. [2, 5, 19, 22, 26], but only a few of these results are mathematically
rigorously founded [18, 21, 23, 24]. The reason is that for applying, for example,
abstract dynamical bifurcation theory, one needs a smooth dynamical system, exis-
tence and persistence of smooth invariant manifolds, that the linearized semigroup
has a spectrum determined exponential dichotomy or a spectral mapping property
etc., and within the class of models, we are dealing with, such properties are proved

1it can be shown that a C0 semigroup on L∞ has a bounded generator [15]
2for p = ∞ put Lp

η := L∞
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in some exceptional cases only. This has been resolved recently in [12, 13, 14] for a
general class of semilinear hyperbolic systems.

On the other hand, it turns out the following: If the coefficients are sufficiently
smooth with respect to time then all the interesting dynamics, which is observable
in numerical and real world experiments, can be rigorously described by our gen-
eral models. It occurs on exponentially attracting invariant manifolds of continuous
functions. Such solutions do not possess jumps in space due to discontinuities of
the inital data or to incompatible boundary data as discussed, e.g., in [17].

Let us shortly discuss some related results:
Jochmann/Recke [11] got existence and uniqueness of weak solutions under the

assumption that the coupled traveling wave equations are linear with respect to the
light amplitudes. They did not deal with smooth dependence of the solutions on
the initial data.

Peterhof/Sandstede [18] and Sieber [22, 23] also assumed the coupled traveling
wave equation to be linear, and, moreover, they considered a Galerkin projected ver-
sion of the carrier rate equation. In this setting the equations are linear with respect
to the infinite dimensional state parameter (the space dependent light amplitudes)
and really nonlinear only with respect to the remaining finite dimensional state
parameter (the carrier densities, which are piecewise constant in space). Hence,
the state space for the light amplitudes could be chosen as a “large” L2 space, and,
nevertheless, the authors rigorously got smooth semiflows and a rich bifurcation
behaviour. Remark that in this setting the spectrum determined exponential di-
chotomy of the linearized semiflow is known due to a result of Neves/Ribeiro/Lopes
[16].

Renardy [21] and Haken/Renardy [9] considered not edge emitting, but ring
lasers. Thus the spatial domain is not an interval, but a circle, and the Nemytskij
operators map the “small” space of continuously differentiable functions on the
circle into itself.

Similarly Illner/Reed [10] and Vanderbauwhede/Iooss [25, Section 4, Example 3]
considered semilinear hyperbolic initial boundary value problems (not related to
laser dynamics), where the nonlinearities are compatible with the boundary condi-
tions.

We have divided this work into five sections. First we state our assumptions
and results in Section 2. Then in Section 3 we establish the variation of constants
formula for the weak solutions defined in Section 2 and prove the results for the
problem with truncated nonlinearities. In Section 4 we show a priori estimates
which are independent of the truncation parameter. Thus all results hold for the
non-truncated problem. In Section 5 we present a concrete model and related
numerical results. Finally, in Section 6 we state the invariant manifold theorem.

2. Assumptions and Results

The system we consider is of the following form:

(2)
∂tψ(t, x) = (−∂xψ1(t, x), ∂xψ2(t, x)) +G (x, ψ(t, x), n(t, x))
∂tn(t, x) = I(t, x) +H (x, ψ(t, x), n(t, x))

+
∑m
k=1 bkχSk

(x)
(
∫

Sk
n(t, y) dy − n(t, x)

)






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with boundary conditions

(3)
ψ1(t, 0) = r0ψ2(t, 0) + α(t)
ψ2(t, L) = rLψ1(t, L)

}

and initial conditions

(4) ψ(0, x) = ψ0(x), n(0, x) = n0(x).

The function n is real valued, ψ = (ψ1, ψ2) is
�

2 valued. They depend on the time
t ∈ � and space variable x ∈ [0, L]. The interval [0, L] = ∪mk=1Sk is divided into m
subsectional intervals Sk := ]xk−1, xk[, xk−1 < xk, k = 1, ...,m. By χSk

we denote
the characteristic function of Sk, that is χSk

(x) := 1 for x ∈ Sk, χSk
(x) := 0 if

x /∈ Sk. The symbol
∫

Sk
:= 1

xk−xk−1

∫

Sk
denotes the integral average on the subin-

terval Sk. The nonlinearities G : ]0, L[×
� 2 × � →

� 2 and H : ]0, L[×
� 2 × � → �

are differentiable with respect to the phase variables (ψ, n), but only measurable
and bounded with respect to the spatial variable x ∈ [0, L]. We now list the as-
sumptions and refer to Section 5 for an example from semiconductor laser dynamics
fulfilling all our assumptions:

We assume that T > 0 is arbitrarily chosen but fixed. The abbreviation ”a.a.”
stands for ”almost all” in the sense of Lebesgue’s measure, Re denotes the real
part of a complex number, 〈·, ·〉 the canonical scalar product in

�
2 and ‖·‖ its

corresponding norm.

(I) The functions G and H are Ck-Carathéodory functions (see Def. 2.12)
on ]0, L[ from

� 2 × � into
� 2 and � , respectively.

(II) There exist constants 0 < ν1 < ν2 and c1, c2, d1, d2 > 0 such that for all
ψ ∈

�
2 and a.a. x ∈]0, L[ the relations
H(x, ψ, n) ≥ −c1n, if n ≤ ν1,
H(x, ψ, n) ≤ −c2n, if n ≥ ν2,

H(x, ψ, n) + d1Re 〈G(x, ψ, n), ψ〉 ≤ −d2

(

n+ ‖ψ‖2
)

for all n ∈ �
hold.

(III) For every compact K ⊂ � there exists M > 0 such that for all n ∈ K,
ψ ∈

� 2 and a.a x ∈ ]0, L[ we have ‖G(x, ψ, n)‖ ≤M (‖ψ‖ + 1) .
(IV) I ∈ L∞ (]0, T [× ]0, L[ , � ) , I(t, x) ≥ 0 for a.a. (t, x) ∈ ]0, T [× ]0, L[ .
(V) α ∈ L∞ (]0, T [ ;

�
) .

(VI) r0, rL ∈
�
, |r0| < 1, |rL| ≤ 1.

(VII) n0 ∈ L∞(]0, L[ ; � ), n0(x) ≥ 0 for a.a. x ∈]0, L[, ψ0 ∈ L∞(]0, L[ ;
�

2).
(VIII) bk ∈ � , bk ≥ 0 for 1 ≤ k ≤ m.

Remark 2.1. The third relation in condition (II) implies the apriori estimate (8)
which allows to treat the nonlocal term appearing in the carrier rate equation. When
the nonlocal term vanishes, as in [11, 18], this condition can be dropped.
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Definition 2.2. A pair (ψ, n) ∈ L∞
(

]0, T [× ]0, L[ ;
�

2 × �
)

is a weak solution to
(2), (3), (4) if

(5)

∫ L

0

〈

ψ(t, x) − ψ0(x), ϕ(x)
〉

dx

=

∫ t

0

{

∫ L

0

[

ψ1(s, x)(∂xϕ1)(x) − ψ2(s, x)(∂xϕ2)(x)

+ 〈G(x, ψ(s, x), n(s, x)), ϕ(x)〉
]

dx+ α(s)ϕ1(0)

}

ds

for all t ∈ [0, T ] and all ϕ ∈ W 1,2
(

]0, L[,
� 2
)

with ϕ2(0) = r0ϕ1(0) and ϕ1(L) =
rLϕ2(L) and if

(6)

n(t, x) = n0(x) +

∫ t

0

{

I(s, x) +H(x, ψ(s, x), n(s, x))

+
∑m
k=1 bkχSk

(x)

[
∫

Sk

n(s, y) dy − n(s, x)

]

}

ds

for all t ∈ [0, T ] and a.a. x ∈ ]0, L[.

Theorem 2.3 (Existence, Uniqueness and smooth Dependence). Assume (I) −
(VIII). Then there exists a unique weak solution (ψ, n) to (2), (3), (4). Moreover,
the map

(ψ0, n0, I, α) ∈ L∞
(

]0, L[ ;
� 2 × �

)

× L∞ (]0, T [× ]0, L[ , � ) × L∞ (]0, T [ ;
�

)
7→ (ψ, n) ∈ L∞

(

]0, T [× ]0, L[ ;
� 2 × �

)

is Ck-smooth.

We denote the closed subspace in L∞(]0, L[ , � ) of section-wise uniformly con-
tinuous functions by

CP :=
{

n ∈ L∞(]0, L[; � ) | n|Sk
uniformly continuous for k = 1, 2, . . . ,m

}

.

Theorem 2.4 (Solution Regularity I). Assume (I) − (VIII) and let (ψ, n) be the
weak solution. Then the following holds:
ı) ψ ∈ C

(

[0, T ] ;L2
(

]0, L[ ;
� 2
))

, n ∈W 1,∞ (]0, T [ ;L∞ (]0, L[ ; � )) .

ıı) For t ∈ [0, T ] denote ψ̃(t) :=
∫ t

0 ψ(s) ds. Then for all t ∈ [0, T ] we have ψ̃(t) ∈

W 1,2
(

]0, L[ ;
�

2
)

and

ψ̃1(t)(0) = r0ψ̃2(t)(0) +

∫ t

0

α(s)ds, ψ̃2(t)(L) = rLψ̃1(t)(L).

ııı) Let α ∈W 1,2 (]0, T [ ;
�

) , ψ0 ∈W 1,2(]0, L[;
� 2) and suppose

(7) ψ0
1(0) = r0ψ

0
2(0) + α(0), ψ0

2(L) = rLψ
0
1(L).

Then ψ ∈ C
(

[0, T ];W 1,2
(

]0, L[ ;
� 2
))

∩C1
(

[0, T ] ;L2
(

]0, L[ ;
� 2
))

and (2), (3) hold
for t ∈ [0, T ] in the classical sense. Moreover, if I ∈ C ([0, T ];L∞(]0, T [ ; � )) then
n ∈ C1([0, T ];L∞(]0, L[; � )).
ıv) Suppose ψ0 ∈ C

(

[0, L] ;
�

2
)

, α ∈ C ([0, T ] ;
�

) and (7). Then

ψ ∈ C
(

[0, T ]× [0, L] ;
� 2
)

and (3) is satisfied pointwise.

Further assume n0 ∈ CP , I(t) ∈ CP for a.a. t ∈ [0, T ] and
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(IX) H (·, ψ, n) ∈ CP for all ψ ∈
� 2 and n ∈ � .

Then n ∈ C([0, T ];CP ). Moreover, if I ∈ C([0, T ];CP ), then n ∈ C1([0, T ];CP ).

Theorem 2.5 (A priori estimates). Suppose (I) − (VIII) and let (ψ, n) be the weak
solution. Then for all t ∈ [0, T ] we have

∫ L

0

n(t, x)dx +
d1

2
‖ψ(t)‖2

L2

≤ µ+ max

{

∫ L

0

n0(x)dx +
d1

2

∥

∥ψ0
∥

∥

2

L2
− µ, 0

}

e−ct(8)

with

c := min

{

d2,
2d2

d1

}

and µ := c−1

(

d1

2(1 − |r0|2)
‖α‖

2
L∞ + L ‖I‖L∞

)

.

Moreover, for all t ∈ [0, T ] and a.a. x ∈ ]0, L[

(9) min
{

n0(x), ν1
}

e−(c1+b)t ≤ n(t, x) ≤ N + max
{

n0(x) −N, 0
}

e−c2t,

where b := max {bk | 1 ≤ k ≤ m} and

N := max

{

ν2,
1
c2

(

‖I‖L∞ + max
1≤k≤m

(

bk

|Sk|

)

· max
{

µ,
∫ L

0
n0(x)dx + d1

2

∥

∥ψ0
∥

∥

2

L2

}

)}

.

If the data ψ0 and α are W 1,2-smooth, then Theorem 2.4, ııı), states that the
weak solution ψ will be W 1,2-smooth with respect to the spatial variable x. Of
course, under natural assumptions of piecewise smoothness for the data entering
the carrier rate equation, this smoothness of ψ carries over to n via the coupling of
ψ and n in (2). Theorem 2.6 states this precisely. Let

W 1,2
P :=

{

n ∈ L∞(]0, L[; � ) | n|Sk
∈W 1,2 (Sk; � ) k = 1, 2, . . . ,m

}

denote the space of piecewise W 1,2 functions.

Theorem 2.6 (Solution Regularity II). Suppose (I)−(VIII) and the following con-
ditions:
(X) H|Sk× � 2× � ∈ C1

(

Sk ×
�

2 × � ; �
)

for 1 ≤ k ≤ m.
(XI) For all compact K ⊂ � there exists Λ > 0 such that for x ∈ Sk, ψ ∈

�

and n1, n2 ∈ K we have ‖DH(x, ψ, n1) −DH(x, ψ, n2)‖ ≤ Λ|n1 − n2|.
(XII)There exists a constant τ > 0 such that for all compact K ⊂ � there exists

R > 0 with

∂xH(x, ψ, n)ñ+ ∂nH(x, ψ, n)ñ2 + ∂ψH(x, ψ, n)ψ̃ñ

≤ R

(

1 + |ñ| +
∥

∥

∥ψ̃
∥

∥

∥+
∥

∥

∥ψ̃
∥

∥

∥ |ñ| +
∥

∥

∥ψ̃
∥

∥

∥

2
)

− τñ2

for all x ∈ Sk, 1 ≤ k ≤ m, ψ ∈
� 2, ψ̃ ∈

� 2, n ∈ K and ñ ∈ � .

Moreover, suppose α ∈ W 1,2 (]0, T [ ;
�

), ψ0 ∈ W 1,2(]0, L[;
�

2), (7), n0 ∈ W 1,2
P

and I ∈ C
(

[0, T ];W 1,2
P

)

. Then, if (ψ, n) is the weak solution, we have

n ∈ C1([0, T ];W 1,2
P ).
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In (XI) the symbol DH denotes the total derivative of H with respect to all
variables (x, ψ, n), and in (XII) ∂xH , ∂nH and ∂ψH are the corresponding partial
derivatives. Remark that

� 2 is always considered as a four dimensional real vector
space, and the derivatives have to be understood correspondingly. We note that all
assumptions (I) − (XII) are fulfilled in applications, see Section 5.

Define the phase space

P := {ψ ∈ C([0, L],
� 2) | ψ1(0) = r0ψ2(0), ψ2(L) = rLψ1(L)} × CP .

The following Theorems 2.7-2.8 are a direct consequence of Theorems 2.3-2.5:

Theorem 2.7 (Ck-Semiflow property). Suppose (I) − (IX), α = 0 and let I be
constant with respect to time. Then the weak solutions generate a smooth semiflow
in the function space P. Then the operator St : P → P, defined through

St
(

ψ0, n0
)

:= (ψ(t), n(t))

for t ≥ 0 and
(

ψ0, n0
)

∈ P, where (ψ(t), n(t)) denotes the weak solution corre-

sponding to the initial values
(

ψ0, n0
)

, has the following properties

ı) (t, ψ, n) 7→ St(ψ, n) is continuous from [0,∞[×P into P,
ıı) St : P → P is Ck smooth,
ııı) St+s = St ◦ Ss, t, s ∈ � , t, s ≥ 0,
ıv) S0 is the identity operator on P.

Finally consider the nonautonomous case: Assume

(XIII) α ∈ C( � ;
�

) and I ∈ L∞( � ;CP ).

Let g ∈ C( � +×Cp;C([0, L],
�

2)) be such that g satisfies the inhomogeneous bound-
ary condition

g1(t, n)(0) = r0g2(t, n)(0) + α(t) and g2(t, n)(L) = rLg1(t, n)(L)

for t ≥ 0. For t ≥ s define X
(

t, s,
(

ψ0, n0
))

:= (ψ(t − s), n(t − s)), where (ψ, n)

is the weak solution in the sense of Definition 2.2 to the initial data ψ0, n0 and
α(s+ ·). Then X

(

t, s,
(

ψ0, n0
))

, s ≤ t, can be interpreted as the weak solution at

time t + s corresponding to the initial condition ψ(s, x) = ψ0(x), n(s, x) = n0(x)
for a.a. x ∈ ]0, L[ at time s. Define the operator Y (t, s) : P → P, through

Y (t, s)
(

ψ0, n0
)

:=X
(

t, s,
(

ψ0 + g(s, n0), n0
))

−

(

g
(

t,ΠnX
(

t, s,
(

ψ0 + g(s, n0), n0
)))

0

)

for t ≥ s and
(

ψ0, n0
)

∈ P. Here ΠnX denotes the n-component ofX . The operator
Y (t, s) maps P into itself, hence the function g homogenizes the boundary condition
(3). From the definition of Y one verifies that Y has the process property stated
in Theorem 2.8.

Theorem 2.8. Suppose (I) − (IX) and (XIII). Further suppose that for t ≥ 0 the
map

n ∈ Cp 7→ g(t, n) ∈ C([0, L],
� 2) is Ck smooth.

Then the operator Y (t, s) is a Ck smooth two parameter nonautonomous process
satisfying
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ı) for t ≥ s the map p ∈ P 7→ Y (t, s, p) ∈ P is Ck smooth,
ıı) the map (t, s, p) 7→ Y (t, s, p) is continuous

from {(t, s) ∈ � 2 | s ≤ t} × P into P,
ııı) Y (s, s, ·) is the identity operator on P,
ıv) for t ≥ s ≥ r the process property Y (t, s, Y (s, r, p)) = Y (t, r, p) holds.

Example 2.9. In applications one has to choose an appropriate homogenization
g. We give two examples for choices of g:

(i) g(t, n)(x) = L−x
L

(

α(t)
0

)

,

(ii) For each n ∈ Cp g(t, n) solves






∂tg(t, n) = (diag (−∂x, ∂x) + ∂ψG(·, 0, n)) g(t, n),
g1(t, n)|x=0 = r0g2(t, n)|x=0 + α(t),
g2(t, n)|x=L = rLg1(t, n)|x=L

with suitable initial data.
The simple example (i) has been used by Sandstede and Peterhof in [18]. We choose
(ii) in section 6 to perform a center manifold reduction for the nonautonomous
(α 6= 0 in (3)) traveling wave equation (23).

The process Y can be equivalently written as a skew product semiflow Z t on
the trivial Banach bundle P × [0,∞[ if one defines for (p, θ) ∈ P × [0,∞[

Zt (p, θ) := (Y (θ + t, θ, p), θ + t) , p ∈ P, (θ, t ≥ 0).

We extend Zt onto the Banach space Pe := P × � by setting

Zt(p, θ) =







Zt (p, θ) , θ ≥ 0
(

ΠpZ
t+θ (p, 0) , θ + t

)

, θ < 0, θ + t ≥ 0
(p, θ + t) , θ < 0, θ + t < 0.

Then we can state the following

Corollary 2.10. If α ∈ Ck([0,∞[ , � ) and g(t, n) is of class Ck in both variables
(t, n), then the operator Zt is a Ck smooth semiflow on Pe.

After introducing the concrete model in section 5 we will consider the local ex-
istence of smooth exponentially attracting3 invariant center manifolds in section 6.
For this we first write the model in suitable dimensionless variables and find the
following slow fast structure

(10)

{

∂tψ(t) = A(n)ψ(t) + εK(n(t), ψ(t))
∂tn(t) = εF (t, n(t), ψ(t)) ,

where ψ satisfies (3),

(11) A(n)ψ :=

((

−∂x 0
0 ∂x

)

+ L(·, n(·))

)

ψ,

L(x, n) is matrix valued, K is a nonlinear Nemytskij operator generated by a vector
valued Ck Carathéodory function, F is composed of Carathéodory functions and a
nonlocal term, ε is small and all other parameters of the PDE are of order one.

3with respect to the topology of Pe
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Under a spectral gap assumption for A(n), using Corollary 2.10, the persistence
theory for invariant manifolds [4] and the spectral gap mapping theorem obtained
in [12] we show the following Theorem which is a brief summary of Theorem 6.2

Theorem 2.11. For sufficiently small ε > 0 the process Y has local smooth expo-
nentially attracting invariant center manifolds. The PDE locally reduces to nonau-
tonomous ODEs on these manifolds.

The flow on this manifold can be expanded in powers of ε, the unknown graph
of this manifold only enters terms of order ε2. If one drops these terms one gets
an approximated flow on this manifold called mode approximation. Such mode
approximations have been used succesfully for numerical bifurcation analysis in the
autonomous case (α = 0) [19, 22].

In assumption (I) we require that both G andH are Ck-Carathéodory functions,
which we define next

Definition 2.12 (Ck-Carathéodory functions). Let V,W be finite dimensional vec-
tor spaces and k ∈

�
. A function S : ]0, L[×V →W , S = S(x, v), x ∈ ]0, L[, v ∈ V ,

is called a Ck Carathéodory function iff S satisfies the following three conditions:

ı) For a.a. x ∈ ]0, L[ S(x, ·) ∈ Ck(V ;W ) and S(·, v) is measurable for all v ∈ V .
ıı) For all compact K ⊂ V there exists a constant M > 0 such that
∥

∥

∥

∂iS(x,v)
∂vi

∥

∥

∥ ≤M for 0 ≤ i ≤ k, all v ∈ K and a.a. x ∈ ]0, L[.

ııı) For all compact K ⊂ V and ε > 0 there exists a δ > 0 such that for
all v1 ∈ K, v2 ∈ V with ‖v1 − v2‖ < δ and a.a. x ∈ ]0, L[ we have
∥

∥

∥

∂kS(x,v1)
∂vk − ∂kS(x,v2)

∂vk

∥

∥

∥ < ε.

Obviously, any Ck Carathéodory function S : ]0, L[ × V → W generates a
superposition operator

(12) S : M(]0, L[ ;V ) → M(]0, L[ ;W ), S(v)(x) := S(x, v(x)), for a.a. x ∈ ]0, L[ ,

where M(]0, L[ ;V ) denotes the linear space of measurable functions defined al-
most everywhere on ]0, L[ with values in V . We need the following easy to prove
differentiability property of S.

Proposition 2.13. (see [8]) The superposition operator S maps L∞(]0, L[ ;V ) Ck-
smoothly into L∞(]0, L[ ;W ).

3. Variation of constants formula and proofs for the truncated

problem

In the following we will frequently make use of the superposition operators

G ∈ Ck(L∞(]0, L[ ;
� 2 × � ), L∞(]0, L[ ;

� 2))

H ∈ Ck(L∞(]0, L[ ;
� 2 × � ), L∞(]0, L[ ; � ))

generated by G and H through (12). Also the following operator

B ∈ L (L∞(]0, L[ ; � ))
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will appear which is defined through

B(n)(x) :=
m
∑

k=1

bkχSk
(x)

(
∫

Sk

n(t, y) dy − n(t, x)

)

for a.a. x ∈ ]0, L[ .

Here L(L∞(]0, L[; � )) denotes the space of bounded linear mappings of L∞(]0, L[ ; � )
into itself. Finally, for sake of simple writing, we denote

I(t) := I(t, ·) for a.a. t ∈ [0, T ] .

The map I is not Bochner measurable from [0, T ] into L∞(]0, L[; � ), in general.
But, because of assumption (IV), it is Bochner integrable as a map from [0, T ] into
Lp (]0, L[ , � ) for any p ∈ [1,∞[, and

∥

∥

∥

∥

∫ t

0

I(s) ds

∥

∥

∥

∥

Lp

≤ ess sup
0<t<T
0<x<L

I.

Hence, the map (t, x) ∈ ]0, T [ × ]0, L[ 7→
(

∫ t

0
I(s) ds

)

(x) =
∫ t

0
I(s, x) ds is in

L∞ (]0, T [× ]0, L[ ; � ) . This will be used in what follows.

For establishing the variation of constants formula for our notion of weak solu-
tion we first need some definitions:

For η ∈ � let

L2
η(]0,∞[,

�
) :=

{

f :]0,∞[→
�
| f measurable

∫ ∞

0

|f(x)|2(1 + x2)ηdx <∞

}

denote the Hilbert space of complex valued weighted square integrable functions on
]0,∞[ with weight (1 + x2)η with respect to the Lebesque measure on ]0,∞[. We

denote its scalar product by 〈f, g〉L2
η

:=
∫∞

0
f(x)g(x)(1 + x2)ηdx. Let W 1,2

η denote

the corresponding Sobolev space of functions f ∈ L2
η(]0,∞[,

�
) with distributional

derivative in L2
η(]0,∞[,

�
). Define the extended phase space

(13) Xe := L2(]0, L[;
� 2) × L2(]0, L[; � )× L2

η(]0,∞[;
�

)

with some fixed η < −0.5. This choice of η guarantees that L∞(]0,∞[;
�

) is con-
tinuously embedded in L2

η(]0,∞[;
�

). Put

Te(t)
(

ψ0
1 , ψ

0
2 , n

0, a
)

:=
(

ψ1(t), ψ2(t), n
0, τta

)

,

where τta(x) := a(t+ x) denotes the left translation of a by t, and ψ1, ψ2 are given
by

(14)

ψ1(t, x) :=

{

ψ0
1(x− t) , for a.a. x ∈ ]t, L[

r0ψ
0
2(t− x) + a(t− x) , for a.a. x ∈ ]0, t[

ψ2(t, x) :=

{

ψ0
2(x+ t) , for a.a. x ∈ ]0, L− t[

rLψ
0
1(2L− x− t) , for a.a. x ∈ ]L− t, L[ .

Extend Te(t), t ∈ [0, L] to the whole positive axis [0,∞[ by defining for t > L
inductively Te(t) := Te(t − L)Te(L). Then it is easy to verify that Te(·) is a C0

semigroup of bounded operators in Xe with infinitesimal generator

Ae := diag(−∂x, ∂x, 0, ∂x)
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having the domain

D(Ae) := {(ψ, n, a) ∈ W 1,2(]0, L[;
� 2) × L2(]0, L[; � )×W 1,2

η (]0,∞[;
�

) |

ψ1(0) = r0ψ2(0) + a(0), ψ2(L) = rLψ1(L)}.

Set

T (t)(ψ0) := ΠψTe(t)(ψ
0, 0, 0)

for t ≥ 0 and ψ0 ∈ L2(]0, L[ ,
� 2), where Πψ is the projection onto the first variable

ψ. Then T (t) is a C0 semigroup of contractions in L2(]0, L[ ,
�

2) with infinitesimal
generator

A := diag(−∂x, ∂x)

and domain

D(A) :=
{

ψ ∈ W 1,2(]0, L[ ;
� 2) | ψ1(0) = r0ψ2(0), ψ2(L) = rLψ1(L)

}

.

Let
∏

(ψ,n) denote the projection of Xe onto L2(]0, L[;
� 2 × � ) by dropping the

trivial last component. Then the following Lemma holds

Lemma 3.1. The pair (ψ, n) is a weak solution to (2), (3), (4) iff for all t ∈ [0, T ]
the functions ψ(t) := ψ(t, ·) and n(t) := n(t, ·) satisfy

(

ψ(t)
n(t)

)

=
∏

(ψ,n)Te(t)





ψ0

n0

α



+(15)

∫ t

0

(

T (t− s)G(ψ(s), n(s))
I(s) + Bn(s) + H(ψ(s), n(s))

)

ds.

Proof. Straightforward calculations yield that the adjoint A∗
e of Ae is the closed

densely defined operator

A∗
e(ψ, n, a) = (∂xψ1,−∂xψ2, 0,−(1 + x2)−η∂x(a(x) · (1 + x2)η)) =: (A∗ψ, 0, B∗a)

with the domain

D(A∗
e) =

{

(ψ, n, a) ∈W 1,2(]0, L[;
� 2) × L2(]0, L[; � )

×W 1,2
η (]0,∞[;

�
) | ψ2(0) = r0ψ1(0), ψ1(L) = rLψ2(L), a(0) = ψ1(0)

}

.

We trivially extend α on the whole axis [0,∞[ by setting α to zero on [T,∞[. Then
define a ∈ C([0,∞[;L2

η([0,∞[;
�

)), a(t) := τtα, t ∈ [0,∞[. By definition (ψ, n) is a

weak solution iff (ψ, n) ∈ L∞
(

]0, T [× ]0, L[ ;
� 2 × �

)

and for all (ϕ, 0, ϕa) ∈ D(A∗
e)

the equation

〈ψ(t) − ψ0, ϕ〉L2 + 〈a(t) − a(0), ϕa〉L2
η

= lim
ρ→0

{∫ t

0

(

〈ψ(s), A∗ϕ〉L2 + 〈G(ψ(s), n(s)), ϕ〉L2 + αρ(s)ϕ1(0)
)

ds

+

∫ t

0

〈(∂xαρ)(s+ ·), ϕa〉L2
η
ds

}

= lim
ρ→0

{∫ t

0

(

〈ψ(s), A∗ϕ〉L2 + 〈G(ψ(s), n(s)), ϕ〉L2 + 〈αρ(s+ ·), B∗ϕa〉L2
η

)

ds

}

=

∫ t

0

(

〈ψ(s), A∗ϕ〉L2 + 〈G(ψ(s), n(s)), ϕ〉L2 + 〈a(s), B∗ϕa〉L2
η

)

ds
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holds and (6) is satisfied for n. Here

αρ(x) :=

∫ T

0

mρ(x− y)α(y)dy, mρ(y) :=
m0(ρy)

ρ
(x, y ∈ � )

denotes the mollification of α with parameter ρ > 0 with respect to some mollifier
m0 ∈ C∞( � ), m0 ≥ 0, suppm0 ⊂ B1,

∫∞

−∞
m0(y)dy = 1. It was used above in

order to perform partial integration. For the first equality one should note that
for α ∈ L2

η, αρ ∈ W 1,2
η and limx→∞ αρ(x)

(

1 + x2
)η

= 0. The above calculations
together with [1] proves: (ψ, n) is a weak solution iff (15) holds for t ∈ [0, T ]. �

Remark 3.2. The map s 7→ T (t − s)f(s), where f(s) := G(ψ(s), n(s)) is not
Bochner measurable from � into L∞(]0, L[ ;

�
2), but it is integrable as a map into

Lp
(

]0, L[ ;
�

2
)

for any p ∈ [1,∞[. Because the integral satisfies
∥

∥

∥

∥

∫ t

0

T (t− s)f(s) ds

∥

∥

∥

∥

Lp

≤ c

∫ t

0

‖f(s)‖Lp ds,

where the constant c does not depend on f and p, we get, using Lebesgue’s conver-
gence Theorem, that

∥

∥

∥

∥

∫ t

0

T (t− s)f(s) ds

∥

∥

∥

∥

L∞

≤ c

∫ t

0

‖f(s)‖L∞ ds.

We now define the truncated problem to (2)-(4):

Definition 3.3. Let δ ∈ ]0,∞[ be arbitrary. Let T δ1 : � → � be a C∞ function
with T δ1 (n) = n for |n| ≤ δ−1 and T δ1 (n) = 2δ−1|n|−1n for |n| ≥ 2δ−1. Similarly let

T δ2 :
� 2 →

� 2 be C∞ with T δ2 (v) = v for ‖v‖ ≤ δ−1 and T δ2 (v) = 2δ−1 ‖v‖
−1
v for

‖v‖ ≥ 2δ−1. Define the truncated nonlinearities

Gδ : ]0, L[ ×
� 2 × � →

� 2, Gδ(x, ψ, n) := G(x, T δ2 (ψ), T δ1 (n)),

Hδ : ]0, L[×
� 2 × � → � , Hδ(x, ψ, n) := H(x, T δ2 (ψ), T δ1 (n)).

Then Gδ , Hδ are Ck-smooth Carathéodory functions generating the smooth super-
position operators Gδ,Hδ. The truncated problem reads:

(16)







∂tψ
δ(t, x) =

(

−∂xψ
δ
1(t, x), ∂xψ

δ
2(t, x)

)

+Gδ(x, ψδ(t, x), nδ(t, x))
∂tn

δ(t, x) = I(t, x) +Hδ(x, ψδ(t, x), nδ(t, x))

+
∑m
k=1 bkχSk

(x)
(
∫

Sk
nδ(t, y) dy − nδ(t, x)

)

with the same boundary conditions and initial values:

(17) ψδ1(t, 0) = r0ψ
δ
2(t, 0) + α(t), ψδ2(t, L) = rLψ

δ
1(t, L)

(18) ψδ(0, x) = ψ0(x), nδ(0, x) = n0(x).

Weak solutions to (16)-(18) are defined analogously to Def. 2.2.

Remark 3.4. After truncation Gδ and Hδ satisfy condition ıı) of Definition 2.12
globally. In particular Gδ and Hδ become globally Lipschitz uniformly with respect
to x ∈ ]0, L[, that is for each δ > 0 there exists a constant Λ such that for all
ψ1, ψ2 ∈

� 2, n1, n2 ∈ � and a.a. x ∈]0, L[
∥

∥Gδ(x, ψ1, n1) −Gδ(x, ψ2, n2)
∥

∥+ |Hδ(x, ψ1, n1) −Hδ(x, ψ2, n2)|

≤ Λ (‖ψ1 − ψ2‖ + |n1 − n2|) .

The superposition operators Gδ and Hδ become globally Lipschitz from Lp(]0, L[ ;
�

2×
� ) into Lp(]0, L[ ;

� 2) and Lp(]0, L[ ; � ), respectively, for any p ∈ [1,∞].
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Lemma 3.5. For each δ > 0 the Theorems 2.3 and 2.4 hold for the weak solution
(

ψδ, nδ
)

to the truncated problem (16)-(18)

Proof. Denote the weak solution space

X := L∞
(

]0, T [× ]0, L[ ;
� 2 × �

)

.

Extend it to

Xe := X × L∞(]0, L[;
� 2 × � ) × L∞(]0, T [;

�
) × L∞(]0, T [×]0, L[; � )

by attaching the corresponding spaces of the initial data ψ0, n0 and the dynamic
data α, I . Both X and Xe are equipped with the corresponding L∞ norms. Define
the operator F : Xe → X,

F

















ψ
n
ψ0

n0

α
I

















(t) :=

(

ψ(t)
n(t)

)

−
∏

(ψ,n)

{

Te(t)





ψ0

n0

α





+

∫ t

0

Te(t− s)





Gδ(ψ(s), n(s))
I(s) + Bn(s) + Hδ(ψ(s), n(s))

0



 ds

}

.

Note that the image of F is measurable on the product space ]0, T [ × ]0, L[ and
hence F maps into the Banach space X. For fixed ψ0, n0, α, I denote F0 : X → X,

F0(ψ, n)(t) := (ψ(t), n(t)) − (F(ψ, n, ψ0, n0, α, I))(t).

By Lemma 3.1 the truncated problem (16)-(18) has a unique weak solution (ψδ , nδ)
corresponding to the data ψ0, n0, α, I iff F0 has a unique fixed point in X. By Re-
mark 3.4 Gδ and Hδ are globally Lipschitz from L∞

(

]0, L[ ;
� 2 × �

)

into L∞
(

]0, L[ ,
� 2
)

and L∞ (]0, L[ , � ), respectively, with some Lipschitz constant Λ depending on the
truncation parameter δ. Thus from the explicit formula (14) for the semigroup
Te(t) it follows by induction that for l ∈

�
, (ψa, na), (ψb, nb) ∈ X

∥

∥Fl0(ψa, na) − Fl0(ψb, nb)
∥

∥

X
≤

(ΛT )
l

l!
‖(ψa, na) − (ψb, nb)‖X .

Hence, for l sufficiently large Fl0 is a contraction in the Banach space X. By a
generalization of Banachs fixed point theorem F0 has a unique fixed point (ψδ , nδ)
in X. This proves the existence and uniqueness part of Theorem 2.3.

From the assumptions that G,H are Ck Caratheódory functions (Definition 2.12)
and Proposition 2.13 we get that F maps Xe C

k-smoothly into X (this follows by
Taylor expansion). The existence and uniqueness of the weak solutions just proved
is equivalent to saying that for any ψ0, n0, α, I there exists a unique (ψ, n) ∈ X

such that F(ψ, n, ψ0, n0, α, I) = 0. The partial derivative of F with respect to
(ψ, n) operating on v = (vψ , vn) ∈ X satisfies the formula

(

∂F

∂(ψ, n)

(

ψ, n, ψ0, n0, α, I
)

(

vψ
vn

))

(t) =

(

vψ(t)
vn(t)

)
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−
∏

(ψ,n)

∫ t

0

Te(t− s)





(

∂Gδ(ψ(s), n(s))
)

v(s)
Bvn(s) + ∂Hδ(ψ(s), n(s))v(s)

0



 ds.

Again it follows by Banachs fixed point theorem that for any w ∈ X there exists a
unique v ∈ X such that

v(t) =
∏

(ψ,n)

∫ t

0

Te(t− s)





(

∂Gδ (ψ(s), n(s))
)

v(s)
Bvn(s) + ∂Hδ (ψ(s), n(s)) v(s)

0



 ds+ w(t).

Banachs open mapping theorem implies that ∂(ψ,n)F
(

ψ, n, ψ0, n0, α, I
)

is an iso-
morphism from X onto X. Hence Theorem 2.3 is a consequence of the implicit
function theorem.

Statement ı) of Theorem 2.4 follows directly from Definition 2.2 and the varia-
tion of constants formula.

We now prove ıı): As in the proof of Lemma 3.1 trivially extend α to the whole
[0,∞[ by setting α almost everywhere to zero on [T,∞[ and define

a ∈ C
(

]0,∞[ ;L2
η(]0,∞[ ;

�
)
)

, a(s)(x) := τsα(x),

for s ≥ 0 and a.a. x ∈ ]0,∞[, where τs denotes the left translation of α again.
Integrating the variation of constants formula (15) with respect to time yields

∫ t

0





ψ(s)
n(s)
a(s)



 ds =

∫ t

0

Te(s)





ψ0

n0

α



 ds

+

∫ t

0

∫ s

0

Te(s− r)





Gδ(ψ(r), n(r))
I(r) + Bn(r) + Hδ(ψ(r), n(r))

0



 drds.

From this formula and the uniform continuity (t, p) 7→ Te(t)p of the C0 semigroup
Te one easily proves that the limit

lim
h↓0

Te(h) − I

h

∫ t

0

(ψ(s), n(s), a(s))ds

exists inXe (see (13)) for each t ∈ [0, T ]. This is equivalent to
∫ t

0
(ψ(s), n(s), a(s))ds ∈

D(Ae) or statement ıı).

Now assume α ∈ W 1,2(]0, T [ ;
�

), ψ0 ∈ W 1,2(]0, L[;
�

2) and (7). Extend α to
the whole ]0,∞[ such that the extension lies in W 1,2

η (]0,∞[ ;
�

). Then (ψ0, n0, α)
belongs to D(Ae). Since Xe is reflexive it follows from Proposition 4.3.9 in [7] that

(ψ, n, τt α) ∈ C([0, T ]; D(Ae)) ∩ C
1([0, T ];Xe),

which proves ııı).

We prove Theorem 2.4, ıv). Choose sequences ψ0
i ∈ W 1,2(]0, L[;

� 2), αi ∈
W 1,2(]0, T [ ;

�
), i ∈

�
, which satisfy the boundary condition ψ0

i 1(0) = r0ψ
0
i 2(0) +

αi(0) and ψ0
i 2(L) = rLψ

0
i 1(L) , and have the property that ψ0

i → ψ0 in L∞(]0, L[ ;
� 2)

and αi → α in L∞(]0, T [ ;
�

). By Theorem 2.4 ııı) ψi ∈ C([0, T ] × [0, L];
�

2),
and by Theorem 2.3 the solution sequences (ψi, n) converge to (ψ, n) in X. Thus
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ψ ∈ C([0, T ] × [0, L];
�

2)) and ψ satisfies (3) pointwise in [0, T ]. By assumption
(IX) on H the superposition operator Hδ keep the space CP invariant. The ψ-part
of the fixed point (ψ, n) of the operator F0 is uniformly continuous on [0, T ]× [0, L].
Since n0 ∈ CP and the part n can be obtained by a fixed point iteration in the
space C([0, T ];CP ) alone, keeping ψ unchanged, we obtain that n ∈ C([0, T ];CP ).
The relation n ∈ C1([0, T ], CP ) follows directly from (6) if I ∈ C([0, T ];CP ). �

Remark 3.6. (Lipschitz dependence of solutions with respect to L2) Because of Re-
mark 3.4 Gronwall’s Lemma applied to (15) easily shows that there exists a constant
C = C(δ, T ) such that

∥

∥

∥(ψ, n) − (ψ̃, ñ)
∥

∥

∥

C([0,T ];L2(]0,L[; � 2× � )
≤

C

(

∥

∥

∥(ψ0, n0) − (ψ̃0, ñ0)
∥

∥

∥

L2(]0,L[; � 2× � )
+ ‖α− α̃‖L2(]0,T [; � )

)

where (ψ, n) and (ψ̃, ñ) denote the weak solution with initial data
(

ψ0, n0, α
)

and
(

ψ̃0, ñ0, α̃
)

, respectively.

4. A priori estimates

We will use the following elementary inequality:

Proposition 4.1. Let u : [0, b] → � be absolutely continuous and u∗ ∈ � . Suppose
there are constants r1, r2 > 0 such that u′(t) ≤ −r1u(t) + r2 for a.a. t ∈ [0, b]
with u(t) ≥ u∗. Then u(t) ≤ ū + max {u(0) − ū, 0} e−r1t for t ∈ [0, b] with ū :=

max
{

r2
r1
, u∗
}

.

Proof. Define h : � → � , h(x) := (max {x− ū, 0})
2
. Set f(t) := h(u(t)). Then f is

absolutely continuous and

f ′(t) = h′(u(t))u′(t) ≤ −h′(u(t))r1

(

u(t) −
r2
r1

)

≤ −2r1f(t)

for a.a. t ∈ [0, b]. Therefore f(t) ≤ e−2r1tf(0) for t ∈ [0, b] and taking the square
root yields the inequality. �

Lemma 4.2. Let (ψδ , nδ) be the weak solution to the truncated problem (16), (17),
(18). There exists δ0 > 0 such that for all 0 < δ < δ0 estimate (8) holds for t ∈ [0, T ]
and the bounds (9) are satisfied for t ∈ [0, T ] and a.a. x ∈ ]0, L[. Moreover, there
exists a constant B not depending on δ > 0 such that

(19)
∥

∥ψδ(t)
∥

∥

L∞
≤ B for all t ∈ [0, T ].

Proof. Let t0 ∈ [0, T ] be arbitrary and assume first that
∫

Sk
nδ(t, y) dy ≥ 0 for all

t ∈ [0, t0] and all 1 ≤ k ≤ m. Let k ∈
�

, 1 ≤ k ≤ m. Suppose 0 < δ ≤ ν−1
1 . Then

for a.a. x ∈ Sk assumptions (II), (IV), (VIII) imply that for a.a. t ∈ [0, t0] which
satisfy nδ(t, x) ≤ ν1 the inequality

d

dt
nδ(t, x) ≥ (−c1 − bk)n

δ(t, x)

holds. Put

h(t, x) := min
{

nδ(t, x), ν1
}

and τk(n) :=

{

1 , n ≤ ν1
0 , n > ν1

.
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Then for a.a. x ∈ Sk and a.a. t ∈ [0, t0]

d

dt
h(t, x) = τk

(

nδ(t, x)
) d

dt
nδ(t, x)

≥ (−c1 − bk) τk
(

nδ(t, x)
)

nδ(t, x)

≥ (−c1 − bk)h(t, x).

Therefore for a.a. x ∈ Sk and all t ∈ [0, t0]

(20) nδ(t, x) ≥ h(t, x) ≥ h(0, x)e−(c1+bk)t = min
{

n0(x), ν1
}

e−(c1+bk)t (≥ 0).

Now we show that
∫

Sk
nδ(t, y) dy ≥ 0 for all t ∈ [0, T ] and all 1 ≤ k ≤ m. Assume

the contrary. Then there exists a k ∈
�

, 1 ≤ k ≤ m, such that

(21) t0 := sup
{

t ∈ [0, T ] |
∫

Sk
nδ(s, y)dy ≥ 0 for s ∈ [0, t]

}

< T.

By (20) we have nδ(t0, x) ≥ 0 for a.a. x ∈ ]0, L[ and by (21)
∫

Sk
nδ(t0, y) dy = 0.

Therefore nδ(t0, x) = 0 for a.a x ∈ Sk. Hence, by continuity, there exists 0 < ε <
T − t0 such that for all t ∈ [t0, t0 + ε[ and a.a. x ∈ Sk we have nδ(t, x) ≤ ν1. Thus
from the assumptions (II) and (IV), definition of Hδ and due to the choice δ ≤ ν−1

1

we have for a.a t ∈ [t0, t0 + ε[

d

dt

∫

Sk

nδ(t, y)dy =

∫

Sk

(

I(t, y) +H(y, ψδ(t, y), nδ(t, y))
)

dy ≥ −c1

∫

Sk

nδ(t, y)dy.

This yields
∫

Sk
nδ(t, y)dy ≥

∫

Sk
nδ(t0, y) dy ·e

−c1(t−t0) = 0 for t ∈ [t0, t0 + ε[ which con-
tradicts the choice of t0 from which there exist infinitely many points s ∈ ]t0, t0 + ε[
with

∫

Sk
nδ(s, y)dy < 0 accumulating in t0. This proves (20) for all t ∈ [0, T ] and the

lower bound for nδ in (9).

Now define

Tδ := sup
{

t ∈ [0, T ] |
∥

∥ψδ(s)
∥

∥

L∞
≤ δ−1 and

∥

∥nδ(s)
∥

∥

L∞
≤ δ−1 for s ∈ [0, t]

}

.

Suppose δ > 0 is sufficiently small such that Tδ > 0. Assume α ∈ W 1,2(]0, T [;
�

)
and ψ0 ∈ W 1,2(]0, L[;

�
2) together with (7). Denote

h(t) :=

∫ L

0

nδ(t, x) dx +
d1

2

∫ L

0

∥

∥ψδ(t, x)
∥

∥

2
dx.
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From (I), (II), (VI) and Theorem 2.4 ııı), proved for the truncated problem in
Lemma (3.5), it follows by partial integration that for a.a t ∈ [0, Tδ]

d

dt
h(t) = d1 Re

∫ L

0

[

−∂xψ
δ
1(t, x)ψ

δ
1(t, x) + ∂xψ

δ
2(t, x)ψ

δ
2(t, x)

]

dx

+

∫ L

0

[

I(t, x) +H(x, ψδ(t, x), nδ(t, x))

+d1Re
〈

G(x, ψδ(t, x), nδ(t, x)), ψδ(t, x)
〉

]

dx

≤
d1

2

(

−
∣

∣ψδ1(t, L)
∣

∣

2
+
∣

∣ψδ1(t, 0)
∣

∣

2
+
∣

∣ψδ2(t, L)
∣

∣

2
−
∣

∣ψδ2(t, 0)
∣

∣

2
)

+

∫ L

0

I(t, x) dx − d2

(

∫ L

0

nδ(t, x) dx +

∫ L

0

∥

∥ψδ(t, x)
∥

∥

2
dx

)

≤
d1

2

(

(

|r0|
2 − 1

)

|ψδ2(t, 0)|2 + |α(t)|2 + 2|r0||ψ
δ
2(t, 0)||α(t)|

+
(

|rL|
2 − 1

)

|ψδ1(t, L)|2
)

+ L ‖I‖L∞ − c · h(t)

≤ L ‖I‖L∞ +
d1

2
‖α‖2

L∞ + d1 max
ρ∈ �

(

|r0|
2−1
2 ρ2 + |r0| ‖α‖L∞ ρ

)

− c · h(t)

=
d1

2(1 − |r0|2)
‖α‖

2
L∞ + L ‖I‖L∞ − c · h(t).

Therefore the δ-independend estimate (8) for
(

ψδ , nδ
)

and t ∈ [0, Tδ] follows from
Proposition 4.1. Because of Remark 3.6 this remains valid by density if α ∈
L∞(]0, T [ ;

�
)\W 1,2(]0, T [ ;

�
) or ψ0 ∈ L∞(]0, L[ ;

�
2)\W 1,2(]0, L[ ;

�
2). By Defini-

tion 2.2 nδ(·, x) is absolutely continuous on [0, T ] for a.a x ∈]0, L[. From assumption
(II) it follows that for a.a t ∈ [0, Tδ] with nδ(t, x) ≥ ν2 the inequality

d

dt
nδ(t, x) ≤ ‖I‖L∞ + max

1≤k≤m

(

bk

|Sk|

)

·max
{

µ,
∫ L

0 n0(x)dx + d1
2

∥

∥ψ0
∥

∥

2

L2

}

− c2n
δ(t, x)

holds. Proposition 4.1 yields the δ-independend upper bound for nδ and t ∈ [0, Tδ]
in (9).

From the explicit formula (14) we have the following decay rates for the semigroups
T and Te: For t ≥ 0

(22)

∥

∥

∥

∥

∥

∥

ΠψTe(t)





ψ0

n0

α





∥

∥

∥

∥

∥

∥

L∞

≤ D0e
−γt

∥

∥ψ0
∥

∥

L∞
+ 2 (1 − |r0rl|)

−1 ‖α‖L∞ ,

whereD0 :=

{

|r0rL|
−1

, r0rL 6= 0
e , r0rL = 0

and γ :=

{

− (2L)
−1

log |r0rL| , r0rL 6= 0

(2L)
−1

, r0rL = 0
.

Let M0 be a constant in assumption (III) for K =
[

0, N +
∥

∥n0
∥

∥

L∞

]

. From (22),
(15), (9) and (III) we get for t ∈ [0, Tδ]

∥

∥ψδ(t)
∥

∥

L∞
≤

∥

∥

∥

∥

∥

∥

ΠψTe(t)





ψ0

n0

α





∥

∥

∥

∥

∥

∥

L∞

+

∫ t

0

∥

∥T (t− s)Gδ(ψδ(s), nδ(s))
∥

∥

L∞
ds

≤ D0e
−γt

∥

∥ψ0
∥

∥

L∞
+

2 ‖α‖L∞

1 − |r0rl|
+M0T +

∫ t

0

M0

∥

∥ψδ(s)
∥

∥

L∞
ds.
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Gronwall’s Lemma yields the existence of a constant B independent on δ > 0 such
that

∥

∥ψδ(t)
∥

∥

L∞
≤ B for t ∈ [0, Tδ].

Moreover, since assumption (III) is valid also for the truncated nonlinearity Gδ and
nδ is continuous from [0, T ] to L∞ by choosing a possibly larger M0 corresponding
to a larger set K than above we can find a constant B independent of δ > 0 such
that for each δ > 0 there exists a neighborhood Uδ of Tδ so that

∥

∥ψδ(t)
∥

∥

L∞
≤ B

for t ∈ [0, Tδ] ∪ Uδ. This proves that Tδ = T if δ is chosen sufficiently small. �

We have shown that for sufficiently small δ > 0 the weak solutions of the truncated
problem coincide with the original weak solutions of the nontruncated problem.
Hence the proof of Theorems 2.3-2.5 is complete. We are left with the proofs of
Theorem 2.6 and Corollary 2.10.

Proof. (Corollary 2.10) From the assumption that α and g are of class Ck it follows
that the map





ψ0

n0

θ



 ∈ Pe 7→





ψ0 + g(θ, n0)
n0

α(θ + ·)



 ∈ L∞(]0, l[ ,
� 2 × � ) × L∞(]0, T [ ,

�
)

is Ck. Hence Theorems 2.3 and 2.4 imply that




ψ0

n0

θ



 ∈ Pe 7→ X(θ + t, θ,

(

ψ0 + g(θ, n0)
n0

)

) ∈ C([0, l],
� 2) × CP

is Ck. This shows that for t ≥ 0 the map (p, θ) ∈ Pe 7→ Y (θ + t, θ, p) ∈ P is of
class Ck. Hence Zt is a Ck smooth semiflow on Pe. �

Proof. (Theorem 2.6) Let (ψ, n) be the weak solution. From the differentiability

assumption (X) on H the map w 7→ H(ψ(s), w) is well defined from W 1,2
P into

itself for s ∈ [0, T ] since ψ ∈ C([0, T ],W 1,2). Furthermore condition (XI) implies

that this map is Lipschitz on bounded subsets of W 1,2
P uniformly in s ∈ [0, T ]. By

truncation we can make it globally Lipschitz: for η > 0 let Tη : W 1,2
P → W 1,2

P be

globally Lipschitz with Tη(w) = w, if ‖w‖W 1,2

P
≤ η−1, Tη(w) = 2η−1w ‖w‖

−1

W
1,2

P

, if

‖w‖W 1,2

P
≥ 2η−1. Define the following truncated operators

Hη(p, w) := H(p, Tη(w)) for p ∈W 1,2 and w ∈W 1,2
P .

Then for all p ∈ W 1,2 the map w 7→ Hη(p, w) is globally Lipschitz in W 1,2
P where

the Lipschitz constant depends only on η and ‖p‖W 1,2 .

Define F : C([0, T ],W 1,2
P ) → C([0, T ],W 1,2

P ),

(Fm) (t) := n0 +

∫ t

0

(I(s) + Bm(s) + Hη(ψ(s),m(s))) ds (t ∈ [0, T ]) .

Then F has a unique fixed point nη in C([0, T ],W 1,2
P ) by a generalization of Ba-

nachs fixed point theorem since sufficient high iterates of F become contractive. In
particular nη ∈ C1([0, T ],W 1,2

P ).
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Set Tη := sup
{

t ∈ [0, T ] | ‖nη(s)‖W 1,2

P
≤ η−1 for 0 ≤ s ≤ t

}

. By (XII) and the

Hölder-Young inequalities we have for all t ∈ [0, Tη]

∂t
1

2
‖∂xnη(t)‖

2
L2(Sk)

=

∫

Sk

∂x (I(t, x) − bknη(t, x) +H(x, ψ(t, x), nη(t, x))) ∂xnη(t, x) dx

≤

∫

Sk

|∂xI(t, x)∂xnη(t, x)| dx+

∫

Sk

(

∂xH(x, ψ(t, x), nη(t, x))∂xnη(t, x)

+∂ψH(x, ψ(t, x), nη(t, x))∂xψ(t, x)∂xnη(t, x)

+∂nH(x, ψ(t, x), nη(t, x)) (∂xnη(t, x))
2
)

dx

≤
3

2τ
‖∂xI(t)‖

2
L2(Sk) − τ

5

6
‖∂xnη(t)‖

2
L2(Sk) +R0

(

‖1‖L1(Sk) + ‖∂xnη(t)‖L1(Sk)

+ ‖∂xnη(t)‖L2(Sk) ‖∂xψ(t)‖L2(Sk) + ‖∂xψ(t)‖
2
L2(Sk)

)

≤
3

2τ
sup
t∈[0,T ]

‖∂xI(t)‖
2
L2 +R0L+

3

2τ
R2

0L+

(

3R2
0

2τ
+ 1

)

‖∂xψ(t)‖
2
L2(Sk)

−τ 1
2 ‖∂xnη(t)‖

2
L2 .

Hence (see Prop. 4.1) we get the following η independent bound

‖∂xnη(t)‖
2
L2(Sk) ≤

3

2τ2
sup
t∈[0,T ]

‖∂xI(t)‖
2
L2(Sk) +

R0L

τ
+

3R2
0L

2τ2

+

(

3R2
0

2τ2
+

1

τ

)

sup
s∈[0,Tη ]

‖∂xψ(s)‖2
L2

which is valid for t ∈ [0, Tη].

Since the a priori estimates of Theorem 2.5 must hold for nη as long as t ∈ [0, Tη]
we see that Tη = T and nη = n if η is chosen sufficiently small. �

5. Example

The system of equations (2)-(4) is a general form of the traveling wave model
used to simulate temporal-longitudinal behaviour of slowly varying complex ampli-
tudes of counterpropagating optical fields and carriers in multisection semiconduc-
tor lasers [5, 6, 22, 26]. Different dynamical behaviour of properly designed lasers
can be effectively used in different technological applications. Examples are wave-
length tuning, chirp reduction, enhanced modulation bandwidths, mode-locking of
short pulses, and frequency-tunable self-pulsations for high-speed data transmission
in optical communication systems (see, e.g., technology references in [5, 6]).

In the nonnormalized form the model equations can be written as follows:

(23)































∂tψ(t, x) = vgr [(−∂xψ1, ∂xψ2) + (βψ1 + iκ(x)ψ2, iκ(x)ψ1 + βψ2)]

β(x, ψ, n) := −i (δ(x) + βth(x)I(x)) −
α0(x)

2 + (1−iαH )g̃(x,n)
2(1+εG(x)‖ψ‖2)

∂tn(t, x) = I(x)+IM (t,x)
e

P

m
k=1

χSk
(x)|Sk|

+H(x, ψ, n)

+
∑m
k=1

χSk
(x)

e|Sk|Rk

(
∫

Sk
n(t, y) dy − n(t, x)

)

H(x, ψ, n) := −
[

A(x)n +B(x)n2 + C(x)n3
]

−
vgr g̃(x,n)‖ψ‖2

1+εG(x)‖ψ‖2 .
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Moreover, field function ψ satisfies boundary conditions (3) and (ψ, n) satisfy the
initial value condition (4).

The group velocity vgr is assumed to be positive and constant within all laser.
It can be easily eliminated from the above equations by simple scaling of time or
space. Due to this elimination the equations (23) are a particular case of the eqs.
(2).

Functions ‖ψ(t, x)‖2 = 〈ψ, ψ〉 and n(t, x) are local photon and carrier densities.
When multiplying |ψj(t, x)|

2 by factor vgr
~c0
λ0

and by local crossection area of ac-

tive zone one gets the local power of the forward (j = 1) or backward (j = 2)
propagating field. The function g̃(x, n) denotes the gain function. It is increasing
in n, that is

for a.a. x ∈ ]0, L[ and all n ∈ � ∂ng̃(x, n) ≥ 0.

In the following simulations we assume a frequently used linear in n approximation
of gain function: g̃(x, n) ' gd(x) (n− ntr).

In the equations above the used physical constants e, c0 and ~ denote electron
charge, speed of light in vacuum and Planck’s constant, respectively. The remain-
ing parameters specifying the considered laser are described below in Table 1.

After elimination of vgr and taking into account the dependence of the used func-
tions and parameters to the functional spaces indicated in Table 1 one can easily
check the validity of all assumptions (I)-(XII) taken in Section 2. The operators β
and H are physically meaningless for n < 0. In particular assumption (II) may not
be satisfied for n < 0. However, since our a priori estimates guarantee that n will
always stay positive, we are free to extend the definitions of the operators G (or β)
and H so that for all n ∈ � our required assumptions are satisfied. In our exam-
ple condition (II) holds with d1 = 2 and d2 = ess infx∈]0,L[ min {α0(x),A(x)} > 0,
since the internal absorption and inverse linear carrier life time are both posi-
tive. Assumptions (XI) and (XII) are satisfied due to nonlinear gain compression
essinfx∈]0,L[εG(x) > 0. Hence, the results described in previous sections fits our
system (23), (3), (4) originated from the real world applications.

In the four right columns of Table 1 we specify typical parameters of a 3 section
(i.e. m = 3) distributed feedback (DFB) laser schematically depicted in Fig. 1 and
considered in more details in, e.g., [6]. The symbol

C1
P :=

{

n ∈ L∞(]0, L[ ; � ) | ∀k n|Sk
∈ C1

(

Sk, �
)}

appearing in the first column denotes the space of on each laser section Sk, 1 ≤
k ≤ m, C1 functions.

The first section (DFB1) of this laser contains Bragg grating which couples coun-
terpropagating fields (nonzero κ(x)|S1

), is active (sufficiently large positive I(x)|S1

and strictly positive gd(x)|S1
), generating optical field output from this section and

from the full laser. The third section (DFB2) is similar, but here the applied cur-
rent is low. This section operates mainly as a wavelength dependent reflector. The
middle section is passive (gd(x)|S2

= 0), has no coupling (κ(x)|S2
= 0) and provides
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an additional possibility of control in experiments via the thermal detuning term
βth(x)I(x)|S2

. We have performed a test simulation of the laser described above
using the software LDSL-tool (abbreviation for ”longitudinal dynamics in semicon-
ductor lasers”). Fig. 2 shows an induced transition of the simulated solution from
the quasi-stationary state to quasi-periodic state after a kick of the current injection
in the middle section. Using the language of equivariant dynamics, these states are
rotating waves (relative equilibria) or modulated waves (relative periodic orbits).
In Fig. 3 we draw spatial-temporal distributions of some functions in already es-
tablished quasi-periodic state. These figures indicate continuity of optical fields
and discontinuity of the carrier densities at the interfaces between the sections.
We also point out a strong nonuniformity (spatial hole burning) of the carrier den-
sities within the first section, while in other sections its variation is less pronounced.

These observed quasi-periodic, or “pulsating” states with ∼ 7 GHz repetition fre-
quency are of particular interest for high speed data transmission in optical com-
munication systems.

A rich dynamics of the considered system is represented in Fig. 4. Here we
show orbit changes by varying current injection in the middle section S2. Our
simulations were made as follows. After fixing the parameter we have performed a
numerical integration of the model over some transient time interval, during which
the trajectory could approach the attractor. Extremas of the outgoing field intensity
computed in the consequent time interval are depicted in Fig. 4. Next, we change
the parameter I with a small step and repeat the procedure described above.

In the considered parameter interval we distinguish a few different dynamical
regimes. The rotating and periodically modulated waves already discussed above
are found in regions A and D, respectively. In region C we have quasi-periodically
modulated waves. Besides the rotational (optical) frequency, here the optical fields
posses two other characteristic frequencies. In region B more complex chaotic
behaviour can be found.

All these dynamical regimes are typical for different multisection semiconductor
lasers. These states with the same sequence of bifurcations were observed experi-
mentally and theoretically in [5, 20, 26]. The identification and numerical continu-
ation of bifurcations of such states for a slightly simpler version of our model (23)
was performed in [5, 20, 22].

6. Center manifold for the traveling wave model with

nonautonomous optical injection

In this section we show existence of smooth center manifolds for the traveling
wave model (23). First we write (23) in dimensionless variables using the following
scaling

x 7→
x

|S1|
=: x̃, t 7→

vgr

|S1|
t =: t̃,(24)

n 7→
n

ntr,1
=: ñ, ψ 7→ (ntr,1ε)

− 1

2 ψ =: ψ̃,
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where ntr,1 is the transparent density in section S1 and ε > 0 is an arbitrary scaling
parameter. The model equations then become (we omit tildas for better readabil-
ity) of the form (10). If we choose ε = 10−2 then all remaining parameters entering
(10) are of order one so that we have a slow fast structure. We assume ε is a variable
parameter and all remaining parameters are constant. For sufficiently small ε > 0
we show that there exists a smooth exponentially attracting local center manifold
for (10) under a common spectral gap assumption.

Assume α ∈ Ck ([0,∞[ ;
�

). Let

g ∈ Ck
(

[0,∞[ × L∞ (]0, l[ , � ) ;C
(

[0, l] ;
� 2
))

solve for all n ∈ L∞ (]0, l[ , � )






∂tg(t, n) = A(n)g(t, n),
g1(t, n)|x=0 = r0g2(t, n)|x=0 + α(t),
g2(t, n)|x=l = rlg1(t, n)|x=l,

where A(n) was defined in (11). Let Zt be the smooth skew product semiflow on
Pe defined in section 2. Then Zt is generated by the equations

(25)























∂tψ(t) = A(n(t)) + ε
[

K (n(t), ψ(t) + g(s, n(t)))

−∂ng(s, n(t))F(s, n(t), ψ(t))
]

∂tn(t) = εF (s, n(t), ψ(t) + g(s, n(t)))
∂ts = 1,

with boundary condition






















ψ(0) = ψ0 − g(0, n0),
n(0) = n0,
s(0) = θ,

ψ1(t, 0) = r0ψ2(t, 0),
ψ2(t, l) = rlψ1(t, l).

Note that the boundary conditions are homogeneous and time independent now, the
nonautonomous time dependence now appear through the variable s in the terms
g(s, n(t)) and ∂ng(s, n(t)) in both equations for ψ and n. Next we note spectral
properties of the infinitesimal generator A(n) (see [12]):

Lemma 6.1. The spectrum of A(n) only consists of eigenvalues with finite alge-
braic multiplicity. There exist η0 > 0 and Γ,∆ ∈ � , depending on the reflection
coefficients r0, rL and the propagation constant β(n), so that for 0 < η < η0 all
but finitely many eigenvalues of A(n) lie in ∪z∈ � {λ ∈

�
| |λ− (Γ + i∆z)| < η} and

have algebraic multiplicity one.

Under physical realistic parameters the laser model is dissipative so that Γ <
0. Moreover, A(n) only possesses few critical eigenvalues which are close to the
imaginary axis (usually one to four). Hence there exist Γ < Γ∗ < 0 and δ > 0 so
that

(A) {λ ∈
�
| −δ + Γ∗ < Reλ < Γ∗ + δ} ⊂ ρ(A(n)).

Since the asymptotics of the eigenvalues can be controlled in terms of the coefficients
entering A(n) the spectral gap property (A) holds for sufficient large open subsets
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U ⊂ CP . For n ∈ U let P(n) be the spectral projection for the critical eigenvalues
and Q := I − P. We perform a change of coordinates,

(26) ψ = B(n)xc + C(n)xs,

where B and C are smooth bases,

B : U → L(
� q , L2) and C : U → L(Y , L2).

The image of B(n) is equal to the image of P(n), q denotes the sum of the algebraic
multiplicities of the critical eigenvalues, Y ⊂ L2 is a codimension q subspace of
L2 := L2([0, l],

�
2), the image of C equals the kernel (image) of P(n) (Q(n)), Y is a

Banach coordinate system which can be chosen as the kernel of P(n0) for some fixed
n0 ∈ U . Let W := {ψ = (ψ1, ψ2) ∈ C([0, l],

�
2) | ψ1(0) = r0ψ2(0), ψ2(l) = rlψ1(l)},

YW := Y ∩ W (equipped with the norm of W) and CW denote the restriction of
C to YW , CW(n)(y) := C(n)(y) for y ∈ YW . We have CW ∈ Ck (U ,L (YW ,W)).
We are interested in solutions with n(t) ∈ U for 0 ≤ t < ∞, such as periodic or
quasiperiodic solutions. Using (26) we arrive at the following set of equations















































∂txc = Ac(n)xc + εGc(s, n, xc, xs)
∂txs = As(n)xs + εGs(s, n, xc, xs)
∂tn = εF(s, n,B(n)xc + C(n)xs + g(s, n))
∂ts = 1

xc(0) = B(n0)−1P(n0)
(

ψ0 − g(θ, n0)
)

,
xs(0) = C(n0)−1Q(n0)

(

ψ0 − g(θ, n0)
)

,
n(0) = n0,
s(0) = θ,

where

Ac(n) := (B(n))
−1

A(n)B(n),

As(n) := (C(n))
−1

A(n)C(n),

Gc(s, n, xc, xs) := (B(n))
−1

P(n)G(s, n, xc, xs),

Gs(s, n, xc, xs) := (C(n))
−1

Q(n)G(s, n, xc, xs),

and

G(s, n, xc, xs) := K(n,B(n)xc + C(n)xs + g(s, n))

− (∂B(n)F(s, n,B(n)xc + C(n)xs + g(s, n)))xc

− (∂C(n)F(s, n,B(n)xc + C(n)xs + g(s, n)))xs

−∂ng(s, n)F(s, n,B(n)xc + C(n)xs + g(s, n)).

From Corollary 2.10 Zt is a smooth semiflow in the Banach space
�
q×YW×CP× � .

Our spectral mapping results [12, 13, 14] together with (A) yield that for ε = 0 Z t

has the normally hyperbolic invariant manifold
�
q×{0}×U× � ⊂

�
q×YW×CP× � .

Using a cut off modification we can construct overflowing manifolds

IMr
0 := {ψc ∈

� q | |ψc| < r} × {0} × U × {s ∈ � | |s| < r}

for any given r > 0, so that the modified equation coincides with the original one
within a radius of r2 . By applying persistence theory for semiflows in Banach spaces
[4] we get
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Theorem 6.2. For any r > 0 there exists an ε0 > 0 so that for 0 < ε < ε0
the manifold IMr

0 persists as a nonlinear exponentially attracting smooth invariant
manifold IMr

ε, which can be represented as a Ck smooth graph xs = γ(xc, n, s, ε),

γ : IMr
0 × ]0, ε0[ → YW .

The flow on IMr
ε is given by the equations







∂txc = Ac(n)xc + εGc (s, n, xc, γ(s, xc, n, ε))
∂tn = εF(s, n,B(n)xc + C(n)γ(s, xc, n, ε) + g(s, n))
∂ts = 1.

If z : I → Pe is a trajectory on IMr
ε then z ∈ Ck(I,Pe).

Rewriting the equations without the time substitute variable s we arrive to the
following Ck-smooth ordinary nonautonomous differential equation in the Banach
space

�
q × U :

(27)

{

∂txc = Ac(n)xc + εGc (t, n, xc, γ(t, xc, n, ε))
∂tn = εF(t, n,B(n)xc + C(n)γ(t, xc, n, ε) + g(t, n)).

Since the graph γ is smooth and γ(t, xc, n, 0) = 0 we have that γ is of order ε,

γ(t, xc, n, ε) = εγ(t, xc, n, ε),

where γ is smooth. If we expand (27) in powers of ε then we see that the unknown
graph γ only appears in terms of order ε2. By dropping ε2 terms we achieve an
approximation to (27) which does not depend on γ and which can be used for
numerical bifurcation analysis, see [19, 22].
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Table 1. Parameters used in simulations.

symbol allowed spaces explanation values units
for (I)-(XII) S1 S2 S3

κ(x) L∞(]0, L[, � ) field coupling coefficients 15 0 5 103/m
δ(x) L∞(]0, L[, � ) static detuning 35 0 0 103/m

βth(x) L∞(]0, L[, � ) thermal detuning 0 1 0 10−7m/A
α0(x) L∞(]0, L[, � ) internal absorption 3 1 2 103/m

essinfx∈]0,L[α0 >0

αH(x) L∞(]0, L[, � ) Henry factor -4 0 -4
εG(x) C1

P , > 0 nonlinear gain saturation 3 3 3 10−24m3

A(x) C1
P , > 0 inverse carrier life time 3 5 3 108/s

B(x) C1
P , ≥ 0 bimolecular recombination 1 0 1 10−16m3/s

C(x) C1
P , ≥ 0 auger recombination 1 0 1 10−40m6/s

gd(x) C1
P , ≥ 0 differential gain 1 0 1 10−20m2

ntr(x) C1
P , ≥ 0 transparency density 1 1 1 1024/m3

I(x) W 1,2
P

current injection density 12 3 1010A/m2

IM (t, x) C([0, T ],W 1,2
P

) modulated current density 0 0 0 A/m2

Rk � , > 0 series resistance factor 5 5 5 10−39/Am
in section Sk

|Sk| � , > 0 length of the section Sk 3 2 1 10−4m

λ0 � , > 0 central wavelength 1.54 10−6m
c0/vgr � , > 0 group velocity factor 3.6
(r0, rL) � 2 facet reflectivities 0,0
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Figure 1. Scheme of 3-section DFB laser
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Figure 2. Simulated response of the laser (function |ψ2(t, 0)|2)
to the change of current.
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Figure 4. Changes of orbits when tuning current injection. Dots
for fixed I represent extrema of the simulated field intensity at the
left facet of the laser. Grey and black: increased and decreased I .


