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Abstract: This note gives a short motivation to study stringy invariants and presents

results on string theoretic Euler numbers of the 3-dimensional simple singularities, obtained

by D. I. Dais and the author in [8] .

0. Introduction

Deformation an resolution of singularities is one of the central topics in
algebraic geometry. The local question to study isolated singularities is closely
related to the the investigation of properties of their resolutions, which is of
global nature. The local part can be well formulated in terms of commutative
algebra, for the other geometric techniques related to cohomology show their
strength.

LetX be a Calabi-Yau variety, i.e. a d-dimensional, compact complex variety
such that ωX ∼= OX , H i(X,OX) = 0 for i = 1, . . . , d − 1, which has at most
canonical singularities. If f : X̃ → X is a crepant, projective resolution, then
an expected mirror partner Ỹ → Y of f should have the property that Hodge
numbers satisfy the condition

hp,q(X̃) = hd−p,q(Ỹ ), 0 ≤ p, q ≤ d.

It is reasonable to ask whether hp,q(X̃) are independent on the resolution X̃ →
X . The affirmative answer results from the work of Batyrev and Kontsevich
(see [2]). Unfortunately, there exist examples of Calabi-Yau varieties which do
not admit a crepant resolution.

Working in the singular category, it is possible to define string-theoretic
Hodge invariants which arise from appropriate correction terms in the neigh-
bourhood of singularities.

1. The definitions

Let X be a complex variety, not necessarily compact nor smooth. The
cohomology groupsHk

c (X, IC) with compact support have a natural mixed Hodge
structure which gives rise to the E-polynomial

E(X ;u, v) :=
∑

0≤p,q≤d
ep,q(X)upvq , ep,q(X) :=

∑

0≤k≤2d

hp,q(Hk
c (X, IC))
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of X . This polynomial encodes invariants like e(X) = E(X ; 1, 1), the topological
Euler characteristic of X . Now suppose X has at most log-terminal singularities
and f : X̃ → X is a resolution of singularities having exceptional divisors Di

(i ∈ I = {1, . . . , r}) which are smooth, irreducible with only normal crossings.
Then the string-theoretic E-function of X is defined by

Estr(X ;u, v) :=
∑

J⊆I
E(Do

j ;u, v)
∏

j∈J

uv − 1

(uv)aj+1 − 1
,

where aj are the discrepancy coefficients,

KX̃ − f∗KX =
∑

i∈I
aiDi, ai > −1,

and DJ := ∩j∈JDj for J 6= ∅, D∅ := X̃ and Do
J := DJ − ∪i6∈JDi. The rational

number

estr(X) := limu,v→1Estr(X ;u, v) =
∑

J⊆I
e(Do

J)
∏

j∈J

1

aj + 1

is said to be the string-theoretic Euler number of X , and the natural number

indstr(X) := min{q | estr(X) =
p

q
, p, q ∈ ZZ, q > 0}

is defined to be the stringtheoretic Index of X . In fact, by Batyrev’s results,
Estr is independent on the choice of the resolution, which gives a good sense to
the definition of estr(X) and indstr(X).

Motivated by the examples, in 1997 Batyrev asked the question whether
(among all relevant X) the number indstr(X) is bounded by a constant, de-
pending only on the dimension of X .

2. Stringy invariants of 3-dimensional ADE’s

Let (X, x) be a simple, 3-dimensional hypersurface singularity, i.e. one of
the singularities of type ADE ([1],[14]). Their canonical resolutions f : X̃ → X
are known since a long time (cf. [16], [12]). Using detailed information on those
resolutions, all discrepancy coefficients can be obtained. The E-polynomials are

E(X̃ − {x};u, v) = E(Do
∅;u, v) = (uv)d(E(L;u−1, v−1);

they only on the Link L of the singularity (X, x). For the case given this is
nothing but

E (X − {x} ;u, v) = (uv − 1)
[
1 +

(
1 + h1,1

(
H2(L, IC)

))
uv + (uv)

2
]
.
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From the resolution data, remaining terms of Estr are obtained by calculations
on the surfaces Di. This gives rise to a complete list of the algebraic functions
Estr(X ;u, v). Especially, we obtain that among An-singularities, as well as for
Dn, the number indstr has arbitrarily large values, thus answering Batyrev’s
question.

Here is an example how the results look like. Let X = An be defined by the
equation xn+1

1 + x2
2 + x2

3 + x2
4 in 4-space, n ≥ 1 and x the origin. Then

(i) n even implies

Estr (X ;u, v) = w3 + w − 1 +

n
2∑
i=2

(w−1)(w2−1)
wi+1−1 + (w−1)w2

wn+3−1

+ (w − 1)
(
w2 − 1

)
[
n
2−1∑
i=1

1
(wi+1−1)(wi+2−1) + 1

(w
n
2

+1−1)(wn+3−1)

]
,

(ii) n odd implies

Estr (X ;u, v) = (w − 1) (w + 1)2 + w

+
(
w2 − 1

)
[
n−1

2∑
i=2

(w−1)
wi+1−1 + w

w
n+3

2 −1
+

n−1
2∑
i=1

(w−1)
(wi+1−1)(wi+2−1)

]
.

The stringy Euler numbers are obtained as

(i) estr(X) = 2− 3

n+ 3
, and

(ii) estr(X) = 2, respectively.

Therefore, the following values for string theoretic indices of An are obtained,

indstr(X) =





1, if n ≡ 1 (mod 2)
n+ 3, if n ≡ 2 or 4 (mod 6)
n
3 + 1, if n ≡ 0 (mod 6).

3. Application

Globally, from the previous results string-theoretic Euler numbers can be
obtained for complex 3-folds with known Hodge numbers, if they have only
ADE-singularities. Among them, there are symmetric hypersurfaces like Segre’s
cubic (estr = 14), Burkhart’s quartic [6], where estr = 34, van Straten’s quintic
[20], where estr = 60, or Knörrer’s quadric’s [15] with estr = 6 and estr = 8 41

864 ,
respectively.
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