Mathematik für Informatiker I: Analysis

Aufgabenserie 2 zum 5.11.02

1. Beweisen Sie, dass die folgende Aussagenverbindung eine Identität ist, d.h. für beliebige Wahrheitswerte der Grundaussagen A, B den Wahrheitswert W annimmt:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$
 ("Kontraposition")

2. Beweisen Sie durch vollständige Induktion, dass für natürliche Zahlen $n \ge 1$ die folgenden Beziehungen erfüllt sind:

(1)
$$1+2+\ldots+n=\frac{n(n+1)}{2}$$
,

(2)
$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

- 3. Geben Sie alle Abbildungen $f:\{0,1\}\to\{0,1,2\}$ durch ihre Wertetafeln an. Welche dieser Abbildungen sind injektiv, surjektiv bzw. bijektiv?
- 4. M sei eine geordnete Menge.
 - (1) Ist $x \in M$ obere Schranke für M, so ist x durch diese Eigenschaft eindeutig bestimmt und maximales Element in M.
 - (2) Ist M vollständig geordnet, so ist ein maximales Element stets obere Schranke für M.
- 5.* Addition und natürliche Ordnung der Menge N:

Wir erinnern zunächst an die Definitionen. $0 := \emptyset \in \mathbb{N}$, und für $n \in \mathbb{N}$ wird n+1 durch $n+1 := n \cup \{n\}$ definiert; so wird (entsprechend dem Induktionsaxiom) die gesamte Menge \mathbb{N} erhalten. Weiter wird vereinbart:

- a) n+k:=n für k=0 sowie n+(k+1):=(n+k)+1 für beliebige $k\in\mathbb{N}$ (Addition auf \mathbb{N}).
- b) n < m falls $n \in m$ (natürliche Ordnung auf \mathbb{N}).

Beweisen Sie für beliebige $m, n, k \in \mathbb{N}$:

- (1) $m = \{x \in \mathbb{N} \mid x < m\}$ (Hinweis: Definition)
- (2) $m < n \Rightarrow (m+1 < n \lor m+1 = n)$
- (3) $m < n \Rightarrow m + 1 < n + 1$
- (4) $m < n \Rightarrow m + k < n + k$ (Hinweis: vollständige Induktion)