Mathematik für Informatiker I: Analysis

Aufgabenserie 3 zum 12.11.02

- 1. Für die Mengen M, N bezeichne M^N die Menge aller Abbildungen von N in M.
 - (1) Bestimmen Sie die Mengen \emptyset^M und M^{\emptyset} .
 - (2) Wieviele Elemente enthält M^N , wenn M und N endlich sind?
- 2. Beweisen Sie folgende Behauptungen:
 - (1) Die in $\mathbb{Z} \times (\mathbb{Z} \{0\})$ definierte Relation $(a, b) \sim (c, d) \iff a \cdot d = b \cdot c$ ist eine Äquivalenzrelation.
 - (2) Die Vorschriften $(a,b)+_q(c,d):=(a\cdot d+b\cdot c,b\cdot d)$ und $(a,b)\cdot_q(c,d):=(a\cdot c,b\cdot d)$ sind auf den Klassen der obigen Relation wohldefiniert, d.h. die Klasse der rechten Seite ist jeweils unabhängig von der Wahl der Repräsentanten der auf der linken Seite auftretenden Paare.
- 3. Stellen Sie in jedem der folgenden Fälle fest, für welche Zahlen $n \in \mathbb{N}$, n > 0 die angegebene Bedingung erfüllt ist.
 - (1) $n^2 + 3n + 7 < (n+1)^2$
 - (2) $(1+\frac{1}{n})^n > 2$
 - (3) $n! < (\frac{n}{2})^n$
- 4. Beweisen Sie:
 - (1) $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}$ für $n \in \mathbb{N} \{0\}$.
 - $(2) \quad \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{99}{100} \le \frac{1}{12}$

(Hinweis: technische Hilfsmittel sind hier nicht zugelassen).

- 5.* Geben Sie jeweils eine nichtleere Menge A und eine Relation $R\subseteq A\times A$ mit den folgenden Eigenschaften an:
 - (1) R ist reflexiv, symmetrisch und nicht transitiv,
 - (2) R symmetrisch, nicht reflexiv und nicht transitiv,
 - (3) R ist reflexiv, transitiv und nicht symmetrisch,
 - (4) R ist irreflexiv, antisymmetrisch und transitiv,
 - (5) R ist reflexiv, transitiv und nicht antisymmetrisch.