Übungsaufgaben 1 "Algebra I"

Serie 7 zum 2.6.04

- 1. $V = \mathbb{R}^2$ und $W = \mathbb{R}^3$ bezeichnen die reellen Standardräume mit den kanonischen Basen $\mathcal{B} = (\boldsymbol{e}_1, \boldsymbol{e}_2)$, bzw. $\mathcal{B}' = (\boldsymbol{e}'_1, \boldsymbol{e}'_2, \boldsymbol{e}'_3)$. Zerlegen Sie die Tensoren $\boldsymbol{v} \otimes \boldsymbol{w} \in V \otimes_{\mathbb{R}} W$ in Vielfachensummen der Basisvektoren aus $\mathcal{B} \otimes \mathcal{B}'$, wobei
 - (1) $\mathbf{v} = -2\mathbf{e}_1 + \mathbf{e}_2$, $\mathbf{w} = 2\mathbf{e}_2' + \mathbf{e}_3'$,
 - (2) $\mathbf{v} = (-2, -3), \ \mathbf{w} = (0, 3, -1).$
- 2. Zeigen Sie: Sind V, W und P Moduln über dem Ring R, so existieren folgende Isomorphismen (1) bzw. (2), die durch die angegebenen Bedingungen eindeutig bestimmt sind.
 - (1) $V \otimes_R W \cong W \otimes_R V$, $\boldsymbol{v} \otimes \boldsymbol{w} \mapsto \boldsymbol{w} \otimes \boldsymbol{v}$
 - (2) $(V \otimes_R W) \otimes_R P \cong V \otimes_R (W \otimes_R P)$, $(\boldsymbol{v} \otimes \boldsymbol{w}) \otimes \boldsymbol{p} \mapsto \boldsymbol{v} \otimes (\boldsymbol{w} \otimes \boldsymbol{p})$
- 3. $\varphi: M \to N$ und $\psi: M' \to N'$ seien Homomorphismen freier R-Moduln, die bezüglich gegebener Basen $\mathcal{B}_M = (m_i)_{i \in I}$ von M, $\mathcal{B}_{M'} = (m'_{i'})_{i' \in I'}$ von M', $\mathcal{B}_N = (n_j)_{j \in J}$ von N und $\mathcal{B}_{N'} = (n'_{j'})_{j' \in J'}$ von N' die Matrizen $A \in M(J \times I, R)$, bzw. $B \in M(J' \times I', R)$ besitzen.
 - (i) Welche Matrix hat der Homomorphismus

$$\varphi \otimes_R \psi : M \otimes_R M' \to N \otimes_R N'$$

bezüglich der Basen $(m_i \otimes m'_{i'})_{(i,i') \in I \times I'}$ von $M \otimes_R M'$ und $(n_j \otimes n'_{j'})_{(j,j') \in J \times J'}$ von $N \otimes_R N'$?

(ii) Geben Sie diese Matrix an, wenn $R = \mathbb{Z}$ ist,

$$\varphi: \mathbb{Z}^2 \to \mathbb{Z}^2, \quad (x,y) \mapsto (x+y,y),$$

$$\psi: \mathbb{Z}^3 \to \mathbb{Z}, \quad (x, y, z) \mapsto x - y + z$$

und alle gegebenen Basen die kanonischen Basen sind.

Hinweis. Wählen Sie für die Anordnung der Basisvektoren im Tensorprodukt jeweils die lexikographische Ordnung der Indexpaare.

- 4.* Es seien $f = X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n \in \mathbb{Z}[X]$ ein Polynom und $p \in \mathbb{Z}$ eine Primzahl mit den folgenden Eigenschaften:
 - (1) $p \mid a_i$ für alle i,
 - (2) $p^2 \not\mid a_n$.

Dann ist f irreduzibel als Polynom aus $\mathbb{Q}[X]$.

5.* Wir betrachten ein irreduzibles Polynom $f \in K[X]$, wobei $K \subseteq \mathbb{C}$ ein Unterkörper der komplexen Zahlen ist.

Beweisen Sie: f besitzt keine mehrfache Nullstelle $\alpha \in \mathbb{C}$, d.h. als Element von $\mathbb{C}[X]$ ist f nicht durch $(X - \alpha)^2$ teilbar.

 $^{^1}$ Einzelne Aufgaben entnommen aus "Lineare Algebra individuell", Online-Version: www.mathematik.hu-berlin.de/~roczen/software/la.htm

[©] M. Roczen und H. Wolter, W. Pohl, D. Popescu, R. Laza