Übungsaufgaben¹ "Algebra I"

Serie 9 zum 16.6.04

1. Bestimmen Sie die natürliche Form der Matrix $A \in M(4; \mathbb{F}_2)$,

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Lösung. Wir berechnen zunächst die Elementarteiler $e_1(A), \ldots, e_4(A)$ aus $\mathbb{F}_2[X]$. Dazu wird die charakteristische Matrix

$$X \cdot E_4 - A = \begin{pmatrix} X & 1 & 1 & 1 \\ 0 & X + 1 & 0 & 0 \\ 0 & 1 & X + 1 & 0 \\ 1 & 0 & 1 & X \end{pmatrix}$$

durch Zeilen- und Spaltenoperationen äquivalent umgeformt. Wir erhalten

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & X^2 + 1 & 0 \\ 0 & 0 & 0 & X^2 + 1 \end{pmatrix}$$

als Normalform einer Präsentationsmatrix für A. Es gibt daher zwei von 1 verschiedene Elementarteiler $e_3(A)=e_4(A)=X^2+1$. Die aus den beiden Begleitmatrizen gebildete Blockdiagonalmatrix B ist die natürliche Form der Matrix A,

$$B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

2. Bestimmen Sie die natürliche Form und die jordansche Normalform einer Matrix mit den nichttrivialen Elementarteilern

$$\begin{aligned} \mathbf{e}_6 &= X - 1, \\ \mathbf{e}_7 &= X^3 - X^2 + 9X - 9, \\ \mathbf{e}_8 &= X^4 - 2X^3 + 10X^2 - 18X + 9 \\ \text{aus } \mathbf{C}[X]. \end{aligned}$$

Lösung. Die natürliche Form ist die aus den Begleitmatrizen B(e₈), B(e₇) und B(e₆) der nichttrivialen Elementarteiler gebildete Blockmatrix, daher gegeben durch

¹ Einzelne Aufgaben entnommen aus "Lineare Algebra individuell", Online-Version: www.mathematik.hu-berlin.de/~roczen/software/la.htm

[©] M. Roczen und H. Wolter, W. Pohl, D. Popescu, R. Laza

Zur Bestimmung der primären Elementarteiler ist über \mathbb{R} , bzw. \mathbb{C} die Zerlegung der Elementarteiler in irreduzible Faktoren auszuführen. Dies wird durch die Teilbarkeitseigenschaft $e_6 \mid e_7 \mid e_8$ erleichtert. Division von e_7 durch $p := e_6 = X - 1$ ergibt $q := X^2 + 9$, und nach Division von e_8 durch $e_7 = p \cdot q$ folgt $e_8 = p^2 \cdot q$.

Über dem Grundkörper \mathbb{C} der komplexen Zahlen zerfällt q in zwei irreduzible Faktoren $q_1 = X + 3i$, $q_2 = X - 3i$, so dass in diesem Fall die primären Elementarteiler durch $(p^2, p, p, q_1, q_1, q_2, q_2)$ gegeben sind. So ergibt sich die Matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -3i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3i \end{pmatrix}$$

als jordansche Normalform.

3. V sei ein K-Vektorraum der endlichen Dimension $n \geq 1$, $\varphi : V \to V$ ein Endomorphismus und U_1 , U_2 zwei φ -invariante Unterräume, für die $V = U_1 \oplus U_2$ gilt. Mit $\varphi_1 : U_1 \to U_1$ und $\varphi_2 : U_2 \to U_2$ bezeichnen wir die Einschränkungen von φ auf die beiden direkten Summanden, χ , χ_1 bzw. χ_2 , bezeichnen die charakteristischen Polynome von φ , φ_1 bzw. φ_2 und m, m₁ bzw. m₂ die entsprechenden Minimalpolynome aus K[X].

Entscheiden Sie für jede der folgenden Aussagen, ob sie

- a) immer richtig,
- b) immer falsch,
- c) in Abhängigeit von den gegebenen Daten in gewissen Fällen richtig, in anderen falsch ist.
- $(1) \chi = \chi_1 \cdot \chi_2$
- (2) $\chi = \text{kgV}(\chi_1, \chi_2)$
- (3) $\chi = ggT(\chi_1, \chi_2)$
- $(4) m = m_1 \cdot m_2$

- $(5) m = kgV(m_1, m_2)$
- $(6) m = ggT(m_1, m_2)$
- 4. K sei ein Körper, $f \in K[X]$. Zeigen Sie:
 - (i) f und f' sind genau dann teilerfremd, wenn f in keinem Erweiterungskörper von K eine mehrfache Nullstelle besitzt.
 - (ii)* Geben Sie ein Beispiel für einen Körper K und ein irreduzibles Polynom $f \in K[X]$ an, das eine mehrfache Nullstelle in einem Erweiterungskörper von K besitzt.
- 5.* Einen Körper K nennen wir perfekt, falls die irreduziblen Polynome $f \in K[X]$ keine mehrfachen Nullstellen (in den Erweiterungskörpern von K) besitzen. Nun sei K ein Körper der Charakteristik $p \neq 0$.
 - (i) Zeigen Sie, daß K genau dann perfekt ist, wenn jedes Element von K eine p-te Wurzel besitzt.

Anleitung. K sei perfekt. Zeigen Sie: Aus $a \notin K^p$ folgt, daß die irreduziblen Faktoren des Polynoms $f = X^p - a$ vom Grad ≥ 2 sind, seine Nullstellen sind jedoch alle gleich, Widerspruch.

Umgekehrt sei vorausgesetzt, daß jedes Element von K eine p-te Wurzel hat. Falls f ein irreduzibles Polynom über K mit mehrfachen Nullstellen ist, so ist seine Ableitung 0 (warum?), also $f = g(X^p)$ und $g(X^p)$ ist p-te Potenz, also nicht irreduzibel.

(ii) Zeigen Sie: Jeder endliche Körper ist perfekt.

Anleitung. Betrachten Sie den Homomorphismus $K \to K$, $x \mapsto x^p$.