Übungsaufgaben 1 Lineare Algebra und analytische Geometrie I Serie 2 zum $^3.11.08$

1. M sei eine Menge. Für eine Teilmenge $N\subseteq M$ ist durch

$$\operatorname{Char}_{N}(x) := \begin{cases} 1, & \text{falls } x \in N, \\ 0 & \text{sonst} \end{cases}$$

die charakteristische Abbildung Char_N: $M \to \{0,1\} = 2$ definiert.

Zeigen Sie, dass $N \mapsto \operatorname{Char}_N$ eine Bijektion zwischen $\operatorname{Pot}(M)$ und 2^M ist (wobei $2^M = \operatorname{Abb}(M,2)$).

- 2. Geben Sie in der Menge $M = \{1, 2, 3, 4\}$ Relationen R_1 , $R_2 R_3$ und R_4 an, für die gilt:
 - (1) R_1 ist reflexiv, transitiv und nicht symmetrisch.
 - (2) R_2 ist reflexiv, symmetrisch und nicht transitiv.
 - (3) R_3 ist transitiv, symmetrisch und nicht reflexiv.
 - (4) R_4 ist transitiv, symmetrisch und reflexiv.
- 3. f und g seien Abbildungen, für die $f \circ g$ definiert ist. Beweisen Sie:
 - (1) Ist $f \circ g$ surjektiv, so ist auch f surjektiv.
 - (2) Ist $f \circ g$ injektiv, so ist auch g injektiv.
 - (3) Gilt unter (1) bzw. (2) die Behauptung auch für die jeweils andere Abbildung g bzw. f?
- 4. $(f_i)_{i\in I}$ sei eine Familie von Abbildungen $f_i:M_i\to N_i$. Beweisen Sie, dass das kartesische Produkt

$$\prod_{i \in I} f_i : \prod_{i \in I} M_i \to \prod_{i \in I} N_i, \quad (x_i)_{i \in I} \mapsto (f_i(x_i))_{i \in I}$$

dieser Abbildungen surjektiv ist, falls alle Abbildungen $\,f_i\,$ surjektiv sind.

Gilt die Umkehrung?

¹ Entnommen aus M. Roczen, H. Wolter, W. Pohl, D. Popescu, R. Laza: Lineare Algebra individuell Online-Version 0.61, http://www.math.hu-berlin.de/~roczen/la.htm