Schwerpunkte und Aufgaben zur euklidischen Geometrie

Zur Vorbereitung dieses Themas beachten Sie bitte:

- Die wichtigen Verfahren sollten Sie beherrschen: Orthonormierung nach E. Schmidt, Spektralzerlegung, Auffinden der Hauptachsenform von Quadriken, Untersuchung orthogomaler Abbildungen (Bewegungen) in kleinen Dimensionen
- Die Übungsaufgaben (bis einschl. Serie 13) sollten so verstanden sein, dass Sie entsprechende Probleme lösen können.
- Auf die nachfolgenden kleinen Beweisaufgaben sollten Sie sich vorbereiten, sie könnten in ähnlicher Gestalt als Klausuraufgaben vorkommen.

Aufgabe 6/2/030

V sei ein euklidischer Vektorraum. Beweisen Sie:

- (1) Für eine Teilmenge $M \subseteq V$ ist M^{\perp} stets Unterraum von V.
- (2) Sind $\boldsymbol{x}, \boldsymbol{y} \in V$, so gilt

$$\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 = \|\boldsymbol{x} + \boldsymbol{y}\|^2 \quad \Longleftrightarrow \quad \boldsymbol{x} \perp \boldsymbol{y} \;.$$

- (3) Für Unterräume U und W von V gilt stets
 - (i) $U \subseteq W \Rightarrow U^{\perp} \supseteq W^{\perp}$,
 - (ii) $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$,
 - (iii) $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$.

Aufgabe 6/3/005

 φ sei ein Endomorphismus des euklidischen Vektorraumes V und φ^\star sein adjungierter Endomorphismus.

Beweisen Sie: $\ker(\varphi) = \ker(\varphi^* \cdot \varphi)$.

Aufgabe 6/3/006

 φ sei ein Endomorphismus des euklidischen Vektorraumes Vund φ^\star sein adjungierter Endomorphismus.

Beweisen Sie: $\operatorname{im}(\varphi) = \operatorname{im}(\varphi \cdot \varphi^*)$.

Aufgabe 6/3/007

 φ und ψ seien Endomorphismen des euklidischen Vektorraumes V und φ^* der zu φ adjungierte.

Beweisen Sie: Ist $\varphi^*\psi = 0$, so gilt $\operatorname{im}(\varphi) \perp \operatorname{im}(\psi)$.

Aufgabe 6/3/050

Wir betrachten die lineare Abbildung $\varphi: E \to E$ der euklidischen Ebene E, die bezüglich einer gegebenen Orthonormalbasis die folgende Matrix

$$\frac{1}{2} \cdot \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

hesitzt

- (1) Zeigen Sie: φ ist eine Spiegelung.
- (2) Geben Sie die Spiegelungsgerade G an (d.h. die Gerade, deren Punkte bei φ unverändert bleiben).

(3) Bestimmen Sie den Winkel zwischen G und der ersten Koordinatenachse.

Aufgabe 6/3/060

Geben Sie die Eigenwerte von Drehungen und Spiegelungen der euklidischen Ebene an.

Aufgabe 6/3/080

Wir betrachten die euklidische Ebene E.

- (1) Zeigen Sie: Sind φ und ψ Spiegelungen von E, so ist $\varphi \cdot \psi$ eine Drehung oder die Identität.
- (2) Wir beziehen uns nun auf eine fest gewählte Orthonormalbasis und die durch sie gegebene Orientierung. φ sei die Spiegelung an der Geraden, die gegen die erste Koordinatenachse um den Winkel $\frac{\pi}{6}$ geneigt ist, ψ die Spiegelung an der Geraden, die gegen die erste Koordinatenachse um den Winkel $\frac{\pi}{3}$ geneigt ist. Welchen Drehwinkel hat $\varphi \cdot \psi$?

Aufgabe 6/3/090

Wir betrachten einen euklidischen Vektorraum V und eine orthogonale Transformation $\varphi:V\to V$.

Beweisen Sie: Falls U invariant bezüglich φ ist, so ist auch das orthogonale Komplement U^{\perp} invariant bezüglich φ .

Aufgabe 6/3/100

V sei ein euklidischer Vektorraum.

- (1) Wir wählen zwei Vektoren $x, y \in V$ mit ||x|| = ||y||. Beweisen Sie: Es existiert eine orthogonale Abbildung $\varphi: V \to V$ mit $\varphi(x) = y$.
- (2) Gegeben sind die Vektoren $x_1, x_2, y_1, y_2 \in V$ mit $||x_1|| = ||y_1||$, $||x_2|| = ||y_2||$ und der Eigenschaft, dass der Winkel zwischen x_1 und x_2 mit dem Winkel zwischen y_1 und y_2 übereinstimmt. Beweisen Sie: Es existiert eine orthogonale Abbildung $\varphi: V \to V$ mit $\varphi(x_1) = y_1, \ \varphi(x_2) = y_2$.

Aufgabe 6/3/105

E sei eine euklidische Ebene, $\varphi: E \to E$ ein Endomorphismus, φ^* sein adjungierter Endomorphismus. Zeigen Sie:

- (1) Ist φ eine Drehung, so ist auch φ^* eine Drehung.
- (2) Ist φ eine Punktspiegelung, so ist auch φ^* Punktspiegelung.
- (3) Ist φ eine Geradenspiegelung, so ist auch φ^* eine Geradenspiegelung. Treffen entsprechende Aussagen für einen dreidimensionalen euklidischen Raum zu?