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This Presentation: Transitions from Con-
tinuous to Discrete

1. Lessons from successful algorithms

e Convexity and Decomposition

e Special structure

e Sampling

* |Inexact “solves”

2. “Informal” exploration of challenges in
multi-stage problems



e Scenario trees, stopping criteria and esti-
mates of solution quality

e Real-time Algorithms

* Multi-granularity multi-stage models

3. “Less Informal” exploration into Sto-
chastic IP

e Literature

* Two Stage SIP: Stochastic Polyhedral
Combinatorics

* Multi-stage SIP

4. Conclusions



1. Lessons from Successful Algorithms
(for Continuous Problems)

1.1 Convexity and Decomposition:

* Benders’ Decomposition (L-shaped
Method), and its extensions to Regularized,
Stochastic and Interior Point methods pro-
vide resource directive decomposition-
coordination approaches.



Work of Birge, Dantzig, Gassmann, Goffin,
Higle, Ruszczynski, Sen, Vial, Wets and
others.

Convexity of the value functions provides
the justification

e Scenario Aggregation/Decomposition pro-
vides a certain price directive (Augmented
Lagrangian-type) approach.



Work of Rockafellar, Ruszczynski, Wets
and others.

Duality and hence convexity again provides
the basis

1.2 Special structure: Stochastic linear pro-
gramming

Polyhedral structure of the value function
of LPs help streamline computations.
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It iIs well known that for problems with

finite support (i.e. finitely many scenarios),
Benders’ decomposition is finite. This Is
also true for regularized decomposition (see

work of Kiwiel, Ruszczynski)

Homem de Mello and Shapiro show that
sampling also leads to an optimal solution
In finitely many steps (for SLP with finite

support).



Work with Higle shows how the Stochastic
Decomposition method by-passes LP
“solves” by a matrix update for fixed
recourse problems

1.3 Sampling: Large number of scenarios

Mi = 2
oy )= EL[h(x w)]



e Since f(x) Is difficult to evaluate, algorith-
mic schemes replacgx) by, (x) ,whdre

IS an iteration counter.
 For deterministic algorithmsf, are

obtained by the same deterministic selec-

N

tion of scenariostw}, _,

For stochastic algorithms
f, are obtained by sampling scenarios
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o Stochastic-Quasi Gradients: Work of
Ermoliev, Gaivoronski, Uryasiev etc.

e Successive Sample Mean Optimization
(Stochastic Counterpart/Sample Average
Approximation, “Retrospective Optimi-
zation” in Simulation).

 The approach: create one sample mean
function, optimize It; create another
sample mean function (with larger sam-
ple size), optimize that, and so on.
This is really a “meta”-concept:
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- each sample mean optimization is a SP

- does not use information generated in one

iteration for subseguent ones.

e Stochastic Decomposition approximates
the sample mean function by one “cut”
In each iteration and each “cut” progres-
sively approximates a sample mean
function resulting from increasing the
sample size.

« Common random numbers reduce vari-
ance, and allow recursive updates.
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« Sampling iIn Multi-stage Problems: By
solving adual SLRP one can use a sto-
chastic cutting plane algorithm (a la
SD). This algorithm, called SSD, will be
discussed Iin detail IBrenda Rayco’s
presentation. A brief observation
though ..aggregation techniques can
reduce the growth of the master dramti-
cally.
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1.4 Inexact “solves”

* Not as common in SP as in Nonlinear Pro-
gramming and Integer Programming

*In SP, the Scenario Aggregation method
allows inexact solves, but implementations
have typically not used this feature.

* The "argmax” procedure in SD provides
“Inexact solves”
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* A recent version of Benders’ decomposi-
tion, known as Abridged Benders Decom-
position (Work of Birge and his students)
allows inexact solves in subproblems

This feature Is extremely important for SIP
algorithms since the subproblems are IP.
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2. “Informal” Exploration of Challenges
for Multi-stage SP

Qala W —1

Observation

X—1 = X,

Decision
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e Fort = 2,...T, define functions.

ft()—(t—l’ @t—l) = Min Ct(Xt, Xt — 1 @t—l)

S.1. Xt [ ] Xt()—(t—l’ (A)t_l)

Assuming f-, , = C, the decision problem is

Min C1(X1) + EJ[ fz(X]_, (1)1)]
X, L Xy
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2.1 Scenario Trees

e Current approaches seek a discrete approxi-
mation (of a given size) which satisfy some
properties associated with the stochastic
process. (The work of Consigli, Dempster,
Dupacova, Hoyland, Mulvey, Wallace)

* Pflug develops a nonlinear optimization
problem which seeks the “nearest” scenario
tree of a specified size which provides the
best approximation.
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 How could one develop a sequence of trees
(of the stochastic process) which provide
solutions with certain guarantees?auen-
dorfer’s Barycentric method provides a
partial answer.

e Approximations using probability metrics
(for problems with finite support) appears
to be promising (Dupacova, Growe-Kuska,
Romisch)
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Suppose one approximates the original SP
using some discrete approximation. What is
the quality of the resulting first stage solu-
tion?... Ouput Analysis
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2.2 Real-time Algorithms

* “Nested simple recourse problems.”
- Recourse decisions in real-time problems
must be made within constraints of compu-
tational time.
- Models consist of multi-stage “simple-
recourse decisions.” Such “trajectory plan-
ning models” may warrant continuous ran-
dom variables (e.g. wind speed at future
locations) on the right-hand side.
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* Real-time decision and control problems
- Example: a collection of mobile automa-
tons know their own location, but only
know approximate locations of others.
- Location information is updated with the
passage of time. Collision-free path plan-
ning problems lead to multi-stage real-time
scheduling problems.
- In AZ with Ntaimo and Xu. Similar appli-
cations by W. Powell, A. Kleyweqgt et al.
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2.3 Multi-granularity Multi-stage Models
Utility

Marke@t/' \Dist.
Gen.
Maint. Scheduling
\ﬁéspatch
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* Decisions of one group affects operations
of another.

* Modeling time-lags Is important. In our
example, power contracts agreed to In
montht, will affect production in month
t+s.

e Each group may have decision-aids that
capture a particular time-scale quite well.
For instance, dispatching decisions may be
daily, generation (unit commitment) plan-
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ning may happen week-by-week, power
contracts may range from “day ahead” to
“six-months” ahead.

How should we coordinate such decisions?

(Work with Lulli, Yu, and an AZ power com-
pany)
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3. “Less Informal” Exploration into SIP:
The Transition to Discrete Problems

e Our view Is based on successes for continu-
ous problems ... successful algorithms for
SIP problems will ultimately use
- Convexity and Decomposition
- Special structure
- Inexact “solves”

- Sampling for Large Scale Problems
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3.1 Literature

e Two stage simple integer recourse
Series of papers by Klein-Haneveld,
Stougie and van der Vlerk (well solved)

e Two stage 0-1 Problems
Laporte and Louveaux

* Two stage General Integer Problems
Schultz, Stougie and van der Vlerk
Hemmeke and Schultz (SPEPS)
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e Cutting planes for two stage problems
Caroe (dissertation)
Caroe and Tind
Ahmed, Tawarmalani, Sahinidis (SPEPS)
Sen and Higle (SPEPS)
Sherali and Fraticelli

e Multi-stage Problems
Birge and Dempster (see also Sen, Higle,
and Birge)
Lokketangen and Woodruff
Caroe and Schultz
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3.1 Two Stage Problems: Stochastic Polyhe-
dral Combinatorics

What role does polyhedral combinatorics
play In deterministic IP?
- Reduces size of the search tree in B&B

One should expect the stochastic versions (of
cuts) to play the same role
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Consider the following 2-stage SIP

. T T

Min C x+ZS PsOs Vs

s.t  AX > b
TXx+Wy,  =w, foralls

N N
x0Zz,, y.02,°
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e Caroe’s approach:
a) Solve SLP relaxation of SIP;
b) If solution Is integer, stop;
c) Else, develop a “cut” for each non-inte-
ger pair(x, ys) -
d) Update the SIP by adding cuts
- Repeat from a)
e Observations:
- Note the close connection with Determin-
Istic IP
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- Various different cuts are permitted
(Gomory, “Lift-and-Project” etc.)
e Each cut involves onlyx, y,). Thus L-

shaped structure of SIP Is maintained and
the SLP relaxation can be solved using L-
shaped method.

e Caroe suggests “lift-and-project” cuts for
binary problems.
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e Disjunctive Decomposition (£)
Algorithm (with Higle):

e Decomposéhe problem into two stages.
a) Given a first stage, solve an LP relaxation
of the second, anstrengthen each second
stage convexificatiowhenever necessary. If
no further strengthening Is necessary, stop.
b) Convexifythe value function approxima-
tion of each second stage IP.
c) Update the master program; repeat.
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e Observations:Special structuréLinear
Inequalities, fixed recourse) allows all sce-

narios to share common cut-coefficie(ts
Theorem).
e Cut generation is simple recourse LP

* Does not reduce to a known IP method for
problems with only one deterministic sce-
nario, that is, this is also@ew IP decompo-
sition method
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Convergence for 0-1 Stochastic MILP

Assumptions

e Complete recourse

* All second stage integer variables are 0-1

* First stage feasibility requires extreme
points ofX as in 0-1 problems

» Maintain all cuts inw"
o If there are multiple “fractional variables”
to form a disjunction, choose one with
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smallest index, and recall the matrix from
the most recent iteration at which the same
variable was used for cut formation

Under these assumptions, the  method
results in a convergent algorithm.

Extensions to allow Branch-and-Cut and

continuous first stage decisions are currently
underway. (Work with Higle and Sherali)
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3.2 Multi-stage SIP

Even more important to use special structure
for realistic problems

For examples of the use of special structure,
see papers by Takriti, Birge and Long;
Nowak and Romisch.

Very few general algorithms available for
this class of problems to date.
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e Caroe and Schultz propose a Branch-and-
Bound method in which bounds are calcu-
lated using Lagrangian relaxation
- Dual iterates generated with Kiwiel’s
NDQO algorithm
- Computations are reported for 2-stage
problems, although the development is
valid for multi-stage problems.

e Several important advantages ...
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- Two stage and multi-stage problems han-
dled with equal ease

- It Is possible to take advantage of special
structure

- Transition from deterministic to stochastic
model Is easy
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 Branch and Price for MSIP (Work with
Lulli)

Motivation

 Has many of the same advantages associ-
ated with Lagrangian Relaxation
- Handles 2-stage and Multi-stage SIP
- Allows exploitation of special structure

* Makes greater use of LP software (mature)
- Warm starts are easy to handle
- Sensitivity analysis Is routine
- Greater availability of reliable code
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For notational simplicity consider a two-
stage problem

T T

Min ¢ X+ 2. PO Vs

s.t AX > Db
TXx+Wy., =w, foralls

n

N
x02Z, r y.0Z,°
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We have chosen a two stage, pure integer
problem only for notational ease. Solving
multi-stage, and mixed integer problems add
no additional conceptual complexity ... only
greater computational work.

The general Branch-and-Price idea is to have
a master IP that enforces non-anticipativity,
and the subproblems are deterministic multi-
stage problems.
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Both master and sub-problems enforce inte-
ger restrictions

For each scenario “s”, subproblems gener-
ate integer point&, ,,ys,) , where Is an

Index associated with an integer poirgt
f T T
S r C Xs, r+gsys,r
* As in “column generation” schemes, each

of these points will be associated with a
“column” Iin the master program
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* The rows in the master program will consist
of
- First stage constraints (optional)
- Non-anticipativity constraints
- Convexity constraint
- Bounds on x’s used in branching
- Bounds on y’s used in branching
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The master problem at any B&B node Is:

Max f
X. O p S, r¢ S, I
s.t  AX <b
X_Zszrpsxs, Y r = 0
> q = 1 foralls

|.<X.<u., Jjamong X branches,

L U i | among y branches

S,I_ZySFI S I
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The Basic Scheme
 For any node) of the B&B tree, solve the
nodal problem using column generation.

+If xj is the value of variablg for nodeq

and, this value Is fractional, then this vari-
able Is a candidate for branching.

e Similarly, If for some scenaris, the value

q
Zrys, r iO(s, r
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Is fractional, then we may use this to gener-
ate two new nodes of a B&B tree.

Branching on xy \

5 E Branching on y’s

Master Program B&B Tree
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* The pricing problem for scenarshas the
form

N B
Min C X+ Q. Y
S.1 TX+Wy, 2w

n n

x0Z,, y.02,°

S

* Note that this problem maintains the special
structure that may be associated with a sce-

48



nario problem. Thus, If we'’re interested In
solving Stochastic Dynamic Lot Sizing
Problems, each pricing problem is a
Dynamic Deterministic Lot Sizing Problem

* Also, each pricing problem can be solved in

parallel. (These advantages are the same as
In Lagrangian Relaxation)
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3.3 Computations for Multi-stage SIP (Work
with G. Lulli)

Branch-and-Price concepts were applied to a
batch sizing problem ... an extension of
dynamic lot sizing problems. In such prob-
lems, one studies trade-offs between produc-
tion/setup costs with inventory holding costs.

Assuming no backlogging, or probabillistic
constraints, the stochastic batch sizing model
IS written as follows
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Min 25 pg 2y CXis+ TV + Nilig

S.L. Its - It—l,s_l_l:)xts_dts
Xis S M Yiq
(X l1g) 20 [t

X, Integer, y,. {0, 1}
Xio Yis NON-anticipative

“Pretty much” the same as lot sizing
model,except ....that production quantities
are in increments ddf
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lllustrative Computations

Table 1:

B&P B&P | CPLEX | CPLEX
PrOb time | nodes!| Time | Nodes

16a | 1.13 0 |1.80| 1722
16b 1.15] O ' 0.71 569
16c |[11.6) 8 | 1.8 1626
16d 16.3] 11 | 6.3 5585
16e [13.3] 8 | 0.9 761

These are 5 stage problems
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B&P B&P | CPLEX | CPLEX
PrOb time | nodes!| Time | Nodes

32a | 156 O | >T |>10P°
32b 12945 0 | >T |>1(f
32c | 91 | 8 [1110>1¢P
32d 11064 11 | >T |>1(f
32e | 403| 8 [2800s>10P

These are 6 stage problems
/ stage problems with 64 scenarios also
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Conclusions

| should reiterate that

e Convexity and Decompositioiemain criti-
cal

e Special structure, inexact solves, warm
startsetc. remain critical.

e Samplingis new to SIP, but will emerge as
we solve larger problems
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Important Trends which should continue ...
 Algorithmic approacho tree generation

and output analysis

e Computer implementations should find eas-
ler Interfaces with simulation/validation
software
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For SP, algorithms if there I1s one word that
deserves its own slide it is ...
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Scalability

Scalability

Scalability

Scalabllity
Scalability



And finally,

Two Stage and Multi-stage

Stochastic Integer Programming Problems
Remain One of the

Grand Challenges in Optimization....
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Thank you for your interest.

Comments and Questions, Most Welcome!
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In appreciation of the SP community ...
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Top 5 reasons to work on

Stochastic Programming Problems

5. Can work with “cosmic distances” with-
out leaving home!

4. One begins to easily distinguish musicians

from mathematicians: one composes; the
other “decomposes”
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3. One learns that “Log-concavity” has noth-
INg In common with either lumber or cavi-
ties!

2. One also learns that “clairvoyance”
requires connections in very high places!

1. The word “non-anticipativity” makes you

appreciate what President Bush must go
through!
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