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The “true” (or expected value) optimization problem

Min
x∈X

{g(x) := EP [G(x, ξ(ω))]},

where ξ(ω) is a random vector having probability distri-

bution P , G(x, ξ) is a real valued function and X ⊂ Rn.

The random vector ξ(ω) represents the uncertain pa-

rameters (data) of the problem. In two-stage stochastic

programming G(x, ξ) is the optimal value of the second

stage program.

The feasible set X can be finite, i.e., integer first stage

problem. Both stages can be integer (mixed integer)

problems.

• How difficult is the above two-stage problem?

• What about multistage problems?

Suppose that P has a finite support, i.e., ξ(ω) can take

values ξ1, ..., ξK with respective probabilities p1, ..., pK. In

that case EP [G(x, ξ(ω))] =
∑K

k=1 pkG(x, ξk). The number

K (number of scenarios), however, grows exponentially

with dimension of the data ξ(ω).
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Monte Carlo sampling approach

Let ξ1, ..., ξN be a generated (iid) random sample drawn

from P . Then by the Law of Large Numbers, for a given

x ∈ X, we have

N−1
N∑
j=1

G(x, ξj)→ EP [G(x, ξ(ω))] w.p.1.

The sample average ĝN(x) := N−1
∑N

j=1G(x, ξj) is an un-

biased and consistent estimate of g(x) = EP [G(x, ξ(ω))].

Notoriously slow convergence of order Op(N−1/2). In or-

der to improve the accuracy by one digit the sample size

should be increased 100 times.

By the Central Limit Theorem

N1/2 [ĝN(x)− g(x)]⇒ N(0, σ2(x)),

where σ2(x) := Var[G(x, ξ(ω)].

Good news: rate of convergence does not depend on

the number of scenarios, only on the variance σ2(x).

The accuracy can be improved by variance reduction

techniques. However, the rate of the square root of N

(of Monte Carlo sampling estimation) cannot be changed.
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Monte Carlo sampling optimization approaches

Two basic philosophies: interior and exterior Monte

Carlo sampling. In interior sampling methods, sampling

is performed inside a chosen algorithm with new (inde-

pendent) samples generated in the process of iterations.

Higle and Sen (stochastic decomposition), Infanger (sta-

tistical L-shape method), Norkin, Pflug and Ruszczynski

(stochastic branch and bound method).

In the exterior sampling approach the true problem is ap-

proximated by the sample average approximation prob-

lem:

(SAA) Min
x∈X

ĝN(x) := N−1
N∑
j=1

G(x, ξj)

 .

Once the sample ξ1, ..., ξN ∼ P is generated, the SAA

problem becomes a deterministic optimization and can

be solved by an appropriate algorithm.

Difficult to point out an exact origin of this method.

Variants of this approach were suggested by a number

of authors under different names.
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Advantages of the SAA method:

• Ease of numerical implementation. Often one can

use existing software.

• Good convergence properties.

• Well developed statistical inference: validation and

error analysis, stopping rules.

• Easily amendable to variance reduction techniques.

• Ideal for parallel computations.

The idea of common random numbers generation.

Suppose that X = {x1, x2}. Then the variance of

N1/2 [ĝN(x1)− ĝN(x2)] is

Var[G(x1, ξ)] + Var[G(x2, ξ)]− 2Cov[G(x1, ξ), G(x2, ξ)].

It can be much smaller than Var[G(x1, ξ)]+Var[G(x2, ξ)],

when the samples are independent.
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Notation

v0 is the optimal value of the true problem
S0 is the optimal solutions set of the true problem
Sε is the set of ε-optimal solutions of the true problem
v̂N is the optimal value of the SAA problem
ŜεN is the set of ε-optimal solutions of the SAA problem
x̂N is an optimal solution of the SAA problem

Convergence properties

Vast literature on statistical properties of the SAA esti-

mators v̂N and x̂N :

Consistency. By the Law of Large Numbers, ĝN(x) con-

verge (pointwise) to g(x) w.p.1. Under mild additional

conditions, this implies that v̂N → v0 and dist(x̂N, S0)→
0 w.p.1 as N → ∞. In particular, x̂N → x0 w.p.1 if

S0 = {x0}. (Consistency of Maximum Likelihood esti-

mators, Wald (1949)).

Central Limit Theorem type results.

v̂N = min
x∈S0

ĝN(x) + op(N
−1/2).

In particular, if S0 = {x0}, then

N1/2[v̂N − v0]⇒ N(0, σ2(x0)).
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These results suggest that the optimal value of the SAA

problem converges at a rate of
√
N . In particular, if

S0 = {x0}, then v̂N converges to v0 at the same rate as

ĝN(x0) converges to g(x0).

If S0 = {x0}, then under certain regularity conditions,

N1/2(x̂N − x0) converges in distribution. (Asymptotic

normality of M-estimators, Huber (1967)).

The required regularity conditions are that the expected

value function g(x) is smooth (twice differentiable) at x0

and the Hessian matrix ∇2g(x0) is positive definite. This

typically happens if the probability distribution P is con-

tinuous. In such cases x̂N converges to x0 at the same

rate as the stochastic approximation iterates calculated

with the optimal step sizes (Shapiro, 1996).

Large Deviations type bounds. For any given ε > 0,

P(‖x̂N − x0‖ ≥ ε) approaches zero exponentially fast as

N →∞ (Kaniovski, King and Wets, 1995).
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Complexity issues

Suppose that the feasible set X is finite. Consider a
mapping u : X \ Sε → S0, and

H(x, ω) := G(u(x), ξ(ω))−G(x, ξ(ω)).

Suppose that for every x ∈ X the moment generating
function of H(x, ω) is finite valued in a neighborhood of
zero. Let ε and δ be nonnegative numbers such that
δ ≤ ε. Then there is γ(δ, ε) > 0 such that

P
(
ŜδN 6⊂ Sε

)
≤ |X|e−Nγ(δ,ε).

The constant γ(δ, ε) can be estimated

γ(δ, ε) ≥ (ε∗ − δ)2

3σ2
>

(ε− δ)2

3σ2
,

where

ε∗ := min
x∈X\Sε

g(x)− v0 and σ2 := max
x∈X\Sε

Var[H(x, ω)].

Note that ε∗ > ε. This gives the following estimate of
the sample size N which guarantees that P

(
ŜδN ⊂ Sε

)
≥

1− α, for a given α ∈ (0,1),

N ≥ 3σ2

(ε− δ)2
log

(
|X|
α

)
.

Kleywegt, Shapiro, Homem-de-Mello (2000).

The required sample size grows as a logarithm of |X|.
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Now let X be a bounded subset of Rn. Then for a given

ν > 0, consider a finite subset Xν of X such that for

any x ∈ X there is x′ ∈ Xν satisfying ‖x − x′‖ ≤ ν. If D

is the diameter of the set X, then such set Xν can be

constructed with |Xν| ≤
(
D
ν

)n
. Reducing the feasible set

X to its subset Xν, we obtain the following estimate of

the required sample size to solve the reduced problem

N ≥ 3σ2

(ε− δ)2

[
n log

(
D

ν

)
− logα

]
.

Suppose that g(x) is Lipschitz continuous modulus L.

By taking ν := (ε − δ)/(2L) we obtain the following

estimate of the required sample size to solve the the

true problem

N ≥ 12σ2

(ε− δ)2

[
n log

(
2DL

(ε− δ)2

)
− logα

]
.

This suggests a linear growth of the required sample

size with the dimensionality n of the first stage problem.
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Convergence of subdifferentials

Suppose that G(·, ξ(ω)) is convex for a.e. ω ∈ Ω and
g(·) is finite. Then

g′(x, d) = EP
[
G′ω(x, d)

]
,

lim
N→∞

sup
‖d‖≤1

∣∣g′(x, d)− ĝ′N(x, d)
∣∣ = 0, w.p.1,

lim
N→∞

H (∂g(x), ∂ĝN(x)) = 0, w.p.1,

where H(·, ·) denotes the Hausdorff distance between
sets and G′ω(x, d) is the directional derivative of G(·, ξ(ω)).

Suppose, further, that:
(i) the distribution P has a finite support, i.e., finite
number of scenarios,
(ii) for every ω ∈ Ω the function G(·, ξ(ω)) is piecewise
linear and convex.

Then the expected value function g(x) is convex piece-
wise linear, and
(a) the subdifferentials ∂g(x), ∂ĝN(x) are polyhedrons,
(b) there is a correspondence between extreme points
of ∂ĝN(x) and a subset of extreme points of ∂g(x),
(c) w.p.1 for N large enough there is one-to-one cor-
respondence between extreme points of ∂ĝN(x) and ex-
treme points of ∂g(x), and distances between these ex-
treme points tend to zero as N →∞.
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Suppose that the true problem is convex piecewise
linear, i.e.,
(i) the distribution P has a finite support,
(ii) for every ω ∈ Ω the function G(·, ξ(ω)) is piecewise
linear and convex,
(iii) the feasible set X is polyhedral (i.e., is defined by a
finite number of linear constraints).

Suppose also that the optimal solutions set S0 is nonempty
and bounded.

Then :
(1) W.p.1 for N large enough, x̂N is an exact optimal
solution of the true problem. More precisely, w.p.1 for
N large enough, the set ŜN of optimal solutions of the
SAA problem is nonempty and forms a face of the (poly-
hedral) set S0.

(2) Probability of the event {ŜN ⊂ S0} tends to one
exponentially fast. That is, there exists a constant γ > 0
such that

lim
N→∞

1

N
log

[
1− P (ŜN ⊂ S0)

]
= −γ.

(Shapiro & Homem-de-Mello, 2000)
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Well and ill conditioned problems

Suppose that the problem is convex piecewise linear, and
let x0 be unique optimal solution of the true problem.
Then

g′(x0, d) > 0, ∀ d ∈ TX(x0) \ {0}.
Furthermore, there exists a finite set {d1, ..., d`} ⊂ TX(x0)
of nonzero directions, independent of the sample, such
that if ĝ′N(x0, dj) > 0 for j = 1, ..., `, then x̂N = x0.

We call

κ := max
j∈{1,...,`}

Var[G′ω(x0, dj)]

[g′(x0, dj)]2

the condition number of the true problem. Recall that
E
[
G′ω(x0, d)

]
= g′(x0, d).

For convex piecewise linear problems with unique opti-
mal solution, the exponential rate holds and the corre-
sponding constant γ is approximately equal to (2κ)−1.
This means that the sample size N required to achieve a
given probability of the event “x̂N = x0” is roughly pro-
portional to the condition number κ. More accurately,
for large N and κ,

P (x̂N 6= x0) ≈ Ce−N/(2κ)√
4πN/(2κ)

,

where C is a positive constant independent of the sam-
ple.
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The idea of repeated solutions.

Solve the SAA problem M times using M independent

samples each of size N . Let v̂(1)
N , ..., v̂(M)

N be the opti-

mal values and x̂(1)
N , ..., x̂(M)

N be optimal solutions of the

corresponding SAA problems. Probability that at least

one of x̂(i)
N , i = 1, ...,M is an optimal solution of the true

problem is 1− pMN where

pN := P (x̂N 6= x0) ≈ CN−1/2e−Nγ.

and hence

pMN ≈ (CN−1/2)Me−NMγ.

Cutting plane (Benders cuts, L-shape) type algorithms.

Empirical observation: on average the number of iter-

ations (cuts) does not grow, or grows slowly, with in-

crease of the sample size N . From theoretical point of

view it converges to the respective number of the true

problem.
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Validation analysis

How one can evaluate quality of a given solution x̂ ∈ S?

Two basic approaches:

(1) Evaluate the gap g(x̂)− v0.

(2) Verify the KKT optimality conditions at x̂.

Statistical test based on estimation of g(x̂)− v0

(Mak, Morton & Wood 98):

(i) Estimate g(x̂) by the sample average ĝN ′(x̂), using

sample of a large size N ′.

(ii) Solve the SAA problem M times using M indepen-

dent samples each of size N . Let v̂(1)
N , ..., v̂(M)

N be the

optimal values of the corresponding SAA problems. Es-

timate E[v̂N ] by the average M−1
∑M

j=1 v̂
(j)
N .

Note that

E

ĝN ′(x̂)−M−1
M∑
j=1

v̂(j)
N

 =
(
g(x̂)− v0

)
+
(
v0 − E[v̂N ]

)
,

and that v0−E[v̂N ] > 0. For ill-conditioned problems the

bias v0 − E[v̂N ] can be large.
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The bias v0−E[v̂N ] is positive and (under mild regularity

conditions)

lim
N→∞

N1/2
(
v0 − E[v̂N ]

)
= E

[
max
x∈S0

Y (x)

]
,

where (Y (x1), ..., Y (xk)) has a multivariate normal dis-

tribution with zero mean vector and covariance matrix

given by the covariance matrix of the random vector

(G(x1, ξ(ω)), ..., G(xk, ξ(ω))).

For ill-conditioned problems this bias is of order O(N−1/2)

and can be large if the ε-optimal solution set Sε is large

for some small ε ≥ 0.

Common random numbers variant: generate a sample

(of size N) and calculate the gap

ĝN(x̂)− inf
x∈X

ĝN(x).

Repeat this procedure M times (with independent sam-

ples), and calculate the average of the above gaps. This

procedure works well for well conditioned problems, does

not improve the bias problem.
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KKT statistical test

Let

X := {x ∈ Rn : ci(x) = 0, i ∈ I, ci(x) ≤ 0, i ∈ J} .
Suppose that the probability distribution is continuous.
Then G(·, ξ(ω)) is differentiable at x̂ w.p.1 and

∇g(x̂) = EP [∇xG(x̂, ξ(ω))] .

KKT-optimality conditions at an optimal solution x0 ∈
S0 can be written as follows:

−∇g(x0) ∈ C(x0),

where

C(x) :=

y =
∑

i∈I∪J(x)

λi∇ci(x), λi ≥ 0, i ∈ J(x)

 ,

and J(x) := {i : ci(x) = 0, i ∈ J}. The idea of the KKT
test is to estimate the distance

δ(x̂) := dist (−∇g(x̂), C(x̂)) ,

by using the sample estimator

δ̂N(x̂) := dist (−∇ĝN(x̂), C(x̂)) .

The covariance matrix of ∇ĝN(x̂) can be estimated (from
the same sample), and hence a confidence region for
∇g(x̂) can be constructed. This allows a statistical val-
idation of the KKT conditions.
(Shapiro & Homem-de-Mello 98).
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Multistage stochastic programming

Nested formulation

Min
A11x1=b1

x1≥0

cT1x1+E

 Min
A21x1+A22x2=b2

x2≥0

cT2x2 + · · ·+ E[ Min
AT,T−1xT−1+ATT xT=bT

xT≥0

cTTxT ]

 .
Scenario tree

Scenario is a path. What is a right way of sampling?
Conditional sampling versus scenario sampling.
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