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PAPERS  ON  MINIMUM  CVAR  APPROACH

 Presentation is based on the following papers:

 [1] Rockafellar R.T. and S. Uryasev (2001): Conditional Value-at-
Risk for General Loss Distributions. Research Report 2001-5. ISE 
Dept., University of Florida, April 2001. 

 (download: www.ise.ufl.edu/uryasev/cvar2.pdf)

 [2] Rockafellar R.T. and S. Uryasev (2000): Optimization of 
Conditional Value-at-Risk. The Journal of Risk. Vol. 2, No. 3, 2000, 
21-41  (download: www.ise.ufl.edu/uryasev/cvar.pdf)

 Several more papers on applications of Conditional Value-at-Risk 
and the related risk measure, Conditional Drawdown-at-Risk, can 
be downloaded from  www.ise.ufl.edu/rmfe



ABSTRACT OF PAPER1

“Fundamental properties of Conditional Value-at-Risk (CVaR), as a 
measure of risk with significant advantages over Value-at-Risk, 
are derived for loss distributions in finance that can involve 
discreetness.  Such distributions are of particular importance in 
applications because of the prevalence of models based on 
scenarios and finite sampling. Conditional Value-at-Risk is able to 
quantify dangers beyond Value-at-Risk, and moreover it is 
coherent.  It provides optimization shortcuts which, through linear 
programming techniques, make practical many large-scale 
calculations that could otherwise be out of reach. The numerical
efficiency and stability of such calculations, shown in several 
case studies, are illustrated further with an example of index 
tracking.”

 1Rockafellar R.T. and S. Uryasev (2001): Conditional Value-at-Risk for General Loss Distributions.
 Research Report 2001-5. ISE Dept., University of Florida, April 2001. 
 (download: www.ise.ufl.edu/uryasev/cvar2.pdf)



• Let f(x,y)  be a loss functions depending upon a decision vector 
x = ( x1 ,…, xn ) and a random vector y = ( y1 ,…, ym ) 

• VaR=  αααα −−−−percentile of loss distribution (a smallest value such that
probability that losses exceed or equal to this value is 
greater or  equal to αααα ))))

• CVaR+ ( “upper CVaR” ) = expected losses strictly exceeding VaR 
(also called Mean  Excess Loss and Expected Shortfall)

• CVaR- ( “lower CVaR” ) = expected losses weakly exceeding VaR,
i.e., expected losses which are equal to or exceed VaR 
(also called Tail VaR)

• CVaR is a weighted average of VaR and CVaR+

CVaR = λλλλ VaR + (1- λλλλ) CVaR+ ,          0 ≤≤≤≤λλλλ ≤≤≤≤1

PERCENTILE   MEASURES  OF  LOSS  (OR  REWARD)
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CVaR: NICE CONVEX FUNCTION  
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CVaR is convex, but  VaR, CVaR- ,CVaR+ may be non-convex,
inequalities are valid:  VaR ≤≤≤≤CVaR- ≤≤≤≤CVaR ≤≤≤≤CVaR+



• Value-at-Risk (VaR)  is a popular measure of risk:
current standard in finance industry

 various resources can be found  at http://www.gloriamundi.org

• Informally VaR  can be defined as a maximum loss in a 
specified period with some confidence level (e.g., 
confidence level = 95%, period = 1 week)

• Formally, αααα −−−−VaR   is  the αααα −−−−percentile of the loss 
distribution: 
αααα −−−−VaR is a smallest value such that probability that loss exceeds 

or equals to this value is bigger or equals to αααα

VaR  IS  A  STANDARD  IN  FINANCE 



FORMAL DEFINITION OF CVaR   
• Notations:

Ψ = cumulative distribution of losses,
Ψαααα = αααα-tail distribution, which equals to zero for losses below VaR,

and equals to (Ψ- αααα)/(1)/(1)/(1)/(1 −−−−αααα)))) for losses  exceeding or equal to VaR

Definition: CVaR is mean of αααα-tail distribution Ψαααα

Cumulative Distribution of Losses, Ψ
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CVaR: WEIGHTED AVERAGE   

• Notations:

VaR=  αααα −−−−percentile of loss distribution (a smallest value such that
probability that losses exceed or equal to this value is greater or 
equal to αααα ))))

CVaR+ ( “upper CVaR” ) = expected losses strictly exceeding VaR 
(also called Mean  Excess Loss and Expected Shortfall)

Ψ(VaR) = probability that losses do not exceed VaR or equal to VaR

λλλλ = (Ψ(VaR) - αααα)/ (1)/ (1)/ (1)/ (1 −−−−αααα) ,        ( 0 )  ,        ( 0 )  ,        ( 0 )  ,        ( 0 ≤≤≤≤λλλλ ≤≤≤≤1 )1 )1 )1 )

• CVaR is weighted average of VaR and CVaR+

CVaR = λλλλ VaR + (1- λλλλ) CVaR+



CVaR: DISCRETE DISTRIBUTION, EXAMPLE 1

• αααα does not “split” atoms: VaR < CVaR- < CVaR = CVaR+,
λλλλ = (Ψ- αααα)/ (1)/ (1)/ (1)/ (1 −−−− αααα) =) =) =) = 0 

1 2 4
1 2 6 6 3 6

1 1
5 62 2

Six scenarios, ,

CVaR CVaR  =

p p p

f f

α= = = = = =

= +

�

+

 Probability                                                                                         CVaR

  

1
6                                    

1
6                                       

1
6                                                

1
6                                           

1
6                                    

1
6

  1f                2f                    3f                        4f                    5f                 6f

                                                          VaR             
--CVaR             

+CVaR
Loss



CVaR: DISCRETE DISTRIBUTION, EXAMPLE 2

• αααα “splits” the atom: VaR < CVaR- < CVaR < CVaR+ ,
λλλλ = (Ψ- αααα)/ (1)/ (1)/ (1)/ (1 −−−− αααα) >) >) >) >0
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CVaR: DISCRETE DISTRIBUTION, EXAMPLE 3

• αααα “splits” the last atom: VaR = CVaR- = CVaR,
CVaR+ is not defined, λλλλ = (Ψ −−−−αααα)/ (1)/ (1)/ (1)/ (1 −−−−αααα) >) >) >) >0 
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CVaR: NICE CONVEX FUNCTION  
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CVaR is convex, but  VaR, CVaR- ,CVaR+ may be non-convex,
inequalities are valid:  VaR ≤≤≤≤CVaR- ≤≤≤≤CVaR ≤≤≤≤CVaR+



CVaR  FEATURES1,2

 - simple convenient representation of risks (one number)

 - measures downside risk
 - applicable to non-symmetric loss distributions

 - CVaR accounts for risks beyond VaR (more conservative than VaR)

 - CVaR is convex with respect to portfolio positions
 - VaR ≤≤≤≤CVaR- ≤≤≤≤CVaR ≤≤≤≤CVaR+

 - coherent in the sense of Artzner, Delbaen, Eber and Heath3:
 (translation invariant, sub-additive, positively homogeneous, monotonic
 w.r.t. Stochastic Dominance1)

 1Rockafellar R.T. and S. Uryasev (2001): Conditional Value-at-Risk for General Loss Distributions.
 Research Report 2001-5. ISE Dept., University of Florida, April 2001. (Can be downloaded: 
 www.ise.ufl.edu/uryasev/cvar2.pdf)
 2 Pflug, G. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk, in ``Probabilistic 
 Constrained Optimization: Methodology and Applications'' (S. Uryasev ed.), Kluwer Academic 
 Publishers, 2001.
 3Artzner, P., Delbaen, F., Eber, J.-M. Heath D. Coherent Measures of Risk,  Mathematical Finance, 9
 (1999), 203--228.



CVaR  FEATURES (Cont’d)

- stable statistical estimates (CVaR has integral characteristics
compared to VaR which may be significantly impacted by one scenario)

 - CVaR is continuous with respect to confidence level αααα,  ,  ,  ,  
 consistent at different confidence levels compared to VaR
 ( ( ( ( VaR, CVaR-, CVaR+ may be discontinuous in αααα ))))

 - consistency with mean-variance approach: for normal loss
 distributions optimal variance and CVaR portfolios coincide

- easy to control/optimize for non-normal distributions; 
 linear programming (LP): can be used for optimization
 of very large problems (over 1,000,000 instruments and 
 scenarios);  fast, stable algorithms

 - loss distribution can be shaped using CVaR constraints (many LP
 constraints with various confidence levels  αααα in different intervals)

 - can be used in fast online procedures



CVaR versus EXPECTED SHORTFALL 
• CVaR for continuous distributions usually coincides with 

conditional expected loss exceeding VaR (also called Mean Excess 
Loss or Expected Shortfall).

• However, for non-continuous (as well as for continuous)
distributions CVaR may differ from conditional expected loss 
exceeding VaR. 

• Acerbi et al.1,2 recently redefined Expected Shortfall to be consistent 
with CVaR definition.

• Acerbi et al.2 proved several nice mathematical results on properties 
of CVaR, including asymptotic convergence of sample estimates to
CVaR.

 1Acerbi, C., Nordio, C., Sirtori, C.  Expected Shortfall as a Tool for Financial Risk
 Management, Working Paper, can be downloaded: www.gloriamundi.org/var/wps.html

 2Acerbi, C.,  and Tasche, D.  On the Coherence of Expected Shortfall. 
 Working Paper, can be downloaded: www.gloriamundi.org/var/wps.html



CVaR  OPTIMIZATION 
• Notations:

x = (x1,...xn) = decision vector (e.g., portfolio weights)
X = a convex set of feasible decisions
y = (y1,...yn) = random vector
y j = scenario of random vector y ,  ( j=1,...J  )
f(x,y) = loss functions

• Example: Two Instrument Portfolio
 A portfolio consists of two instruments (e.g., options). Let x=(x1,x2) be a 

vector of positions, m=(m1,m2) be a vector of initial prices, and y=(y1,y2) be 
a vector of uncertain prices in the next day. The loss function equals the 
difference between the current value of the portfolio, (x1m1+x2m2), and an 
uncertain value of the portfolio at the next day (x1y1+x2y2), i.e., 

 
 f(x,y) = (x1m1+x2m2)–(x1y1+x2y2) = x1(m1–y1)+x2(m2–y2) . 

 If we do not allow short positions, the feasible set of portfolios is a two-
dimensional set of non-negative numbers 

 X = {(x1,x2), x1 ≥≥≥≥ 0, x2 ≥≥≥≥ 0} .
 

 Scenarios y j = (y j
1,y j

2), j=1,...J , are sample daily prices (e.g., historical 
data for J trading days).

 



CVaR  OPTIMIZATION (Cont’d)
• CVaR minimization

min{ x∈∈∈∈ X } CVaR

can be reduced to the following linear programming (LP) problem

min{ x∈∈∈∈ X , ζζζζ ∈∈∈∈ R , z ∈∈∈∈ RJ }    ζζζζ + νννν ∑∑∑∑{ j =1,...,J } zj

subject to 
zj ≥≥≥≥ f(x,y j) - ζζζζ , zj ≥≥≥≥ 0 ,   j=1,...J       (νννν = (( 1- αααα)J)-1 = const )

• By solving LP we find an optimal portfolio x* , corresponding VaR, 
which equals to the lowest optimal ζζζζ *, and minimal CVaR, which 
equals to the optimal value of the linear performance function

• Constraints, x ∈∈∈∈ X , may account for various trading constraints, 
including mean return constraint (e.g., expected return should 
exceed 10%)

• Similar to return - variance analysis, we can construct an efficient 
frontier and find a tangent portfolio



RISK MANAGEMENT WITH CVaR CONSTRAINTS

• CVaR constraints in optimization problems can be replaced by a 
set of linear constraints. E.g., the following CVaR constraint

CVaR ≤≤≤≤C
can be replaced by linear constraints

ζζζζ + νννν ∑∑∑∑{ j =1,...,J } zj  ≤≤≤≤ C
zj ≥≥≥≥ f(x,y j) - ζζζζ , zj  ≥≥≥≥ 0 ,   j=1,...J       ( νννν = (( 1- αααα)J)-1 = const )

• Loss distribution can be shaped using multiple CVaR constraints 
at different confidence levels in different times

• The reduction of the CVaR risk management problems to LP is a 
relatively simple fact following from possibility to replace CVaR by 
some function F (x, ζζζζ) , which is convex and piece-wise linear with 
respect to x and ζζζζ . A simple explanation of CVaR optimization 
approach can be found in paper1 .
1Uryasev, S. Conditional Value-at-Risk: Optimization Algorithms and Applications.
Financial Engineering News, No. 14, February, 2000. 
(can be downloaded: www.ise.ufl.edu/uryasev/pubs.html#t).



CVaR OPTIMIZATION: MATHEMATICAL BACKGROUND

Definition

F (x, ζζζζ) = ζζζζ + νννν ΣΣΣΣj=1,J ( f(x,y j )- ζζζζ)+, νννν = (( 1- αααα)J)-1 = const 

Theorem 1.

CVaRαααα((((x) = min ζ∈ζ∈ζ∈ζ∈ R F (x, ζζζζ)   and ζζζζαααα(x) is a smallest minimizer

Remark. This equality can be used as a definition of CVaR ( Pflug ).

Theorem 2.

min x∈∈∈∈ X CVaRαααα((((x) =  min ζ∈ζ∈ζ∈ζ∈ R, x∈∈∈∈ X F (x, ζζζζ)              (1)

• Minimizing of F (x, ζζζζ) simultaneously calculates VaR= ζζζζαααα(x), 
optimal decision x, and optimal CVaR

• Problem (1) can be reduces to LP using additional variables



Proposition 1.
Let  f(x,y)  be a loss functions and ζζζζαααα(x) be αααα- percentile (αααα-VaR) then

ζζζζαααα(x) ≤≤≤≤εεεε ���� Pr{ f(x,y) ���� εεεε } ≥≥≥≥ αααα

Proof follows from the definition of αααα- percentile ζζζζαααα(x)

ζζζζαααα(x) = min {εεεε : Pr{ f(x,y) ���� εεεε } ≥≥≥≥ α }α }α }α }

• Generally, ζζζζαααα(x) is nonconvex (e.g., discrete distributions), 
therefore    ζζζζαααα(x) ≤≤≤≤εεεε as well as    Pr( f(x,y) ���� εεεε ) ≥≥≥≥ α α α α may be  
nonconvex constraints

• Probabilistic constraints were considered by Prekopa, Raik,
Szantai, Kibzun, Uryasev, Lepp, Mayer, Ermoliev, Kall, Pflug, 
Gaivoronski, …

PERCENTILE  V.S.  PROBABILISTIC  CONSTRAINTS



• Low partial moment constraint (considered in finance literature 
from 70-th)

E{ ((f(x,y) - εεεε)+)a } ≤≤≤≤b ,  a ≥≥≥≥ 0,   g+=max{0,g}
special cases

a = 0   =>     Pr{ f(x,y) - εεεε }
a = 1 => E{ (f(x,y) - εεεε)+ } 
a = 2 ,  εεεε = E f(x,y) => semi-variance E{ ((f(x,y) - εεεε)+)2 } 

• Regret (King, Dembo) is a variant of low partial moment with 
εεεε=0 and f(x,y) = performance-benchmark

• Various variants of low partial moment were successfully applied 
in stochastic optimization by Ziemba, Mulvey, Zenios, 
Konno,King, Dembo,Mausser,Rosen,…

• Haneveld and Prekopa considered a special case of low partial 
moment with a = 1, εεεε = 0:  integrated chance constraints

NON-PERCENTILE  RISK MEASURES  



• Low partial moment with a>0 does not control percentiles. It is 
applied  when loss can be hedged at additional cost

total expected value =   expected cost without high losses 
+ expected cost of high losses

expected cost of high losses = p E{ (f(x,y) - εεεε)+ } 

• Percentiles constraints control risks explicitly in percentile terms.
• Testury and Uryasev1 established equivalence between CVaR 

approach (percentile measure) and low partial moment, a = 1 (non-
percentile measure) in the following sense:

a) Suppose that a decision is optimal in an optimization problem
with a CVaR constraint, then the same decision is optimal with a low 
partial moment constraint with some εεεε>0;
b) Suppose that a decision is optimal in an optimization problem 
with a low partial moment constraint, then the same decision is 
optimal with a CVaR constraint at some confidence level α.α.α.α.

1Testuri, C.E. and S. Uryasev. On Relation between Expected Regret and Conditional Value-At-Risk. 
Research Report 2000-9. ISE Dept., University of Florida, August 2000. Submitted to Decisions in 
Economics and Finance journal. (www.ise.ufl.edu/uryasev/Testuri.pdf)

PERCENTILE  V.S.  LOW  PARTIAL  MOMENT  



CVaR AND MEAN VARIANCE: NORMAL RETURNS



CVaR AND MEAN VARIANCE: NORMAL RETURNS

If returns are normally distributed, and return constraint is active, 
the following portfolio optimization problems have the same 
solution:

1. Minimize CVaR
subject to return and other constraints

2. Minimize VaR
subject to return and other constraints

3. Minimize variance
subject to return and other constraints



EXAMPLE 1:   PORTFOLIO   MEAN   RETURN  AND  COVARIANCE



OPTIMAL PORTFOLIO  (MIN VARIANCE APPROACH) 

α α α



PORTFOLIO, VaR and CVaR  (CVaR APPROACH) 
α



EXAMPLE  2: NIKKEI PORTFOLIO 



NIKKEI PORTFOLIO 



HEDGING: NIKKEI PORTFOLIO 



HEDGING: MINIM CVaR APPROACH 



ONE  INSTRUMENT HEDGING



ONE - INSTRUMENT HEDGING

α



MULTIPLE INSTRUMENT HEDGING:  CVaR APROACH 



MULTIPLE - INSTRUMENT HEDGING



MULTIPLE-HEDGING: MODEL DESCRIPTION 



EXAMPLE 3: PORTFOLIO REPLICATION USING CVaR 
• Problem Statement: Replicate an index using                instruments. Consider 
impact of CVaR constraints on characteristics of the replicating portfolio.

• Daily Data: SP100 index, 30 stocks (tickers: GD, UIS, NSM, ORCL, CSCO, HET, BS,TXN, HM, 
INTC, RAL, NT, MER,  KM, BHI, CEN, HAL, DK, HWP, LTD, BAC, AVP, AXP, AA, BA, AGC, BAX, AIG, AN, AEP) 

• Notations
= price of SP100 index at times
= prices of stocks                at times
= amount of money to be on hand at the final time

=         = number of units of the index at the final time 

= number of units of j-th stock in the replicating portfolio

• Definitions (similar to paper1 ) 
= value of the portfolio at time

= absolute relative deviation of the portfolio from the target 

= relative portfolio underperformance compared to target at time

1Konno H. and A. Wijayanayake. Minimal Cost Index Tracking under Nonlinear Transaction Costs and 
Minimal Transaction Unit Constraints,Tokyo Institute of Technology, CRAFT Working paper 00-07,(2000).
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PORTFOLIO REPLICATION (Cont’d)

Index and optimal portfolio values in in-sample region, CVaR 
constraint is inactive (w = 0.02)
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PORTFOLIO REPLICATION (Cont’d)

Index and optimal portfolio values in out-of-sample region, 
CVaR constraint is inactive (w = 0.02)
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PORTFOLIO REPLICATION (Cont’d)

Index and optimal portfolio values in in-sample region, 
CVaR constraint is active (w = 0.005).
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PORTFOLIO REPLICATION (Cont’d)

Index and optimal portfolio values in out-of-sample region, 
CVaR constraint is active (w = 0.005).
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PORTFOLIO REPLICATION (Cont’d)

Relative underperformance in in-sample region, CVaR 
constraint is active (w = 0.005) and inactive (w = 0.02).
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PORTFOLIO REPLICATION (Cont’d)

Relative underperformance in out-of-sample region, CVaR 
constraint is active (w = 0.005) and inactive (w = 0.02)
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PORTFOLIO REPLICATION (Cont’d)

In-sample objective function (mean absolute relative deviation),  
out-of-sample objective function, out-of-sample CVaR for various 
risk levels w in CVaR constraint.
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PORTFOLIO REPLICATION (Cont’d)
• Calculation results

• CVaR constraint reduced underperformance of the portfolio versus the index both in 
the in-sample region (Column 1 of table) and in the out-of-sample region (Column 4) . 
For w =0.02, the CVaR constraint is inactive, for w ≤≤≤≤0.01, CVaR constraint is active. 

• Decreasing of CVaR  causes an increase of objective function (mean absolute 
deviation) in the in-sample region (Column 2). 

• Decreasing of CVaR causes a decrease of objective function in the out-of-sample 
region (Column 3). However, this reduction is data specific, it was not observed for 
some other datasets.

C VaR in -sam ple (600 days) ou t -of-sam p le ( 100 days) ou t -of-sam p le C VaR

level w ob ject ive fun ct ion , in % ob ject ive funct ion , in % in %

0.02 0.71778 2.73131 4.88654

0.01 0.82502 1.64654 3.88691

0.005 1.11391 0.85858 2.62559

0.003 1.28004 0.78896 2.16996

0.001 1.48124 0.80078 1.88564



PORTFOLIO REPLICATION (Cont’d)
In-sample-calculations: w=0.005
• Calculations were conducted using custom developed software (C++) in combination 

with CPLEX linear programming solver

• For optimal portfolio, CVaR= 0.005. Optimal ζζζζ *= 0.001538627671 gives VaR. Probability 
of the VaR point is 14/600 (i.e.14 days have the same deviation= 0.001538627671). The 
losses of 54 scenarios exceed VaR. The probability of exceeding VaR equals 
54/600 < 1- α α α α , and 

λλλλ = (Ψ(VaR) - αααα) / (1 )  / (1 )  / (1 )  / (1 - αααα) =) =) =) = [546/600 - 0.9]/[1 - 0.9] = 0.1 

• Since α α α α “splits” VaR probability atom, i.e., Ψ(VaR) - αααα >0, CVaR is bigger than CVaR-

(“lower CVaR”) and smaller than CVaR+ ( “upper CVaR”, also called expected shortfall)

CVaR- = 0.004592779726 < CVaR = 0.005 <  CVaR+=0.005384596925 

• CVaR is the weighted average of VaR and CVaR+

CVaR = λλλλ VaR + (1- λλλλ) CVaR+= 0.1 * 0.001538627671 + 0.9  * 0.005384596925= 0.005

• In several runs, ζζζζ* overestimated VaR because of the nonuniqueness of the optimal 
solution. VaR equals the smallest optimal  ζζζζ*.



EXAMPLE 4: CREDIT RISK (Related Papers)

• Andersson, Uryasev, Rosen and Mausser applied the CVaR 
approach to a credit portfolio of bonds

– Andersson, F., Mausser, Rosen, D. and S. Uryasev (2000), 
“Credit risk optimization with Conditional Value-at-Risk criterion”, 
Mathematical Programming, series B, December)

• Uryasev and Rockafellar developed the approach to minimize 
Conditional Value-at-Risk

– Rockafellar, R.T. and S. Uryasev (2000), ”Optimization of Conditional 
Value-at-Risk”, The Journal of Risk, Vol. 2 No. 3

• Bucay and Rosen applied the CreditMetrics methodology to 
estimate the credit risk of an international bond portfolio

– Bucay, N. and D. Rosen, (1999)“Credit risk of an international bond 
portfolio: A case study”, Algo Research Quarterly, Vol. 2 No. 1, 9-29

• Mausser and Rosen applied a similar approach based on the 
expected regret risk measure

– Mausser, H. and D. Rosen (1999), “Applying scenario optimization to 
portfolio credit risk”, Algo Research Quarterly, Vol. 2, No. 2, 19-33



Basic Definitions

• Credit risk
– The potential that a bank borrower or counterpart will fail to 

meet its obligations in accordance with agreed terms 

• Credit loss
– Losses due to credit events, including both default and credit 

migration



Credit Risk Measures

Credit loss
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Bond Portfolio

• Compiled to asses to the state-of-the-art portfolio credit risk 
models

• Consists of 197 bonds, issued by 86 obligors in 29 
countries

• Mark-to-market value of the portfolio is 8.8 billions of USD
• Most instruments denominated in USD but 11 instruments 

are denominated in DEM(4), GBP(1), ITL(1), JPY(1), TRL(1), 
XEU(2) and ZAR(1)

• Bond maturities range from a few months to 98 years, 
portfolio duration of approximately five years 



Portfolio Loss Distribution

• Generated by a Monte Carlo 
simulation based on 20000 
scenarios

• Skewed with a long fat tail
• Expected loss of 95 M USD

– Only credit losses, no 
interest income

• Standard deviation of 232 M 
USD

• VaR (99%) equal 1026 M USD
• CVaR (99%) equal 1320 M 
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Model Parameters

• Definitions
– 1) Obligor weights expressed as multiples of current holdings
– 2) Future values without credit migration, i.e. the benchmark 

scenario
– 3) Future scenario dependent values with credit migration
– 4) Portfolio loss due to credit migration

1 2

1 2

1 2

(Instrument positions) ( , , ..., ) (1)
(Future values without credit migration) ( , ,..., ) (2)

(Future values with credit migration) ( , ,..., ) (3)

(Portfolio loss) ( , ) ( ) (4)
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OPTIMIZATION PROBLEM
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SINGLE - INSTRUMENT OPTIMIZATION
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MULTIPLE - INSTRUMENT  OPTIMIZATION
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RISK CONTRIBUTION (original portfolio)
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RISK CONTRIBUTION (optimized portfolio)
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EFFICIENT  FRONTIER
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CONDITIONAL DRAWDOWN-AT-RISK (CDaR) 
• CDaR1 is a new risk measure closely related to CVaR
• Drawdown is defined as a drop in the portfolio value compared to

the previous maximum
• CDaR is the average of the worst z% portfolio drawdowns observed

in the past (e.q., 5% of worst drawdowns). Similar to CVaR, 
averaging is done using αααα-tail distribution.

• Notations:
w(x,t ) =  uncompounded portfolio value
t =  time
x = (x1,...xn) = portfolio weights 
f (x,t ) = max{ 0 ≤≤≤≤ττττ ≤≤≤≤t }  [w(x,ττττ )] - w(x,t )  =  drawdown 

• Formal definition:
CDaR is CVaR with drawdown loss function f (x,t )  .

• CDaR can be controlled and optimized using linear programming 
similar to CVaR

• Detail discussion of CDaR is beyond the scope of this presentation
1Chekhlov, A., Uryasev, S., and M. Zabarankin. Portfolio Optimization with Drawdown 
Constraints. Research Report 2000-5. ISE Dept., University of Florida, April 2000.



CDaR: EXAMPLE GRAPH 
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CONCLUSION

• CVaR is a new risk measure with significant advantages compared 
to VaR

- can quantify risks beyond VaR
- coherent risk measure
- consistent  for various confidence levels αααα (((( smooth w.r.t αααα )
- relatively stable statistical estimates (integral characteristics)

• CVaR is an excellent tool for risk management and portfolio 
optimization

- optimization with linear programming: very large dimensions and stable 
numerical implementations

- shaping distributions: multiple risk constraints with different
confidence levels at different times

- fast algorithms which can be used in online applications, such as active 
portfolio management

• CVaR methodology is consistent with mean-variance 
methodology under normality assumption

- CVaR minimal portfolio (with return constraint) is also variance minimal 
for normal loss distributions



CONCLUSION (Cont’d) 

• Various case studies demonstrated high efficiency and 
stability of of the approach (papers can be downloaded: 
www.ise.ufl.edu/uryasev)

- optimization of a portfolio of stocks
- hedging of a portfolio of options
- credit risk management (bond portfolio optimization)
- asset and liability modeling
- portfolio replication
- optimal position closing strategies

• CVaR has a great potential for further development. It stimulated 
several areas of applied research, such as Conditional Drawdown-
at-Risk and specialized optimization algorithms for risk 
management

• Risk Management and Financial Engineering Lab at UF 
(www.ise.ufl.edu/rmfe) leads research in CVaR methodology and 
is interested in applied collaborative projects
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