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PAPERS ON MINIMUM CVAR APPROACH

Presentation is based on the following papers:

[1] Rockafellar R.T. and S. Uryasev (2001): Conditional Value-at-
Risk for General Loss Distributions. Research Report 2001-5. ISE
Dept., University of Florida, April 2001.

(download: www.ise.ufl.edu/uryasev/cvar2.pdf)

[2] Rockafellar R.T. and S. Uryasev (2000): Optimization of

Conditional Value-at-Risk. The Journal of Risk. Vol. 2, No. 3, 2000,
21-41 (download: www.ise.ufl.edu/uryasev/cvar.pdf)

Several more papers on applications of Conditional Value-at-Risk
and the related risk measure, Conditional Drawdown-at-Risk, can
be downloaded from www.ise.ufl.edu/rmfe



ABSTRACT OF PAPER?

“Fundamental properties of Conditional Value-at-Risk (CVaR), as a
measure of risk with significant advantages over Value-at-Risk,
are derived for loss distributions in finance that can involve
discreetness. Such distributions are of particular importance in
applications because of the prevalence of models based on
scenarios and finite sampling. Conditional Value-at-Risk is able to
guantify dangers beyond Value-at-Risk, and moreover it is
coherent. It provides optimization shortcuts which, through linear
programming techniques, make practical many large-scale
calculations that could otherwise be out of reach. The numerical
efficiency and stability of such calculations, shown in several
case studies, are illustrated further with an example of index
tracking.”

'Rockafellar R.T. and S. Uryasev (2001): Conditional Value-at-Risk for General Loss Distributions.
Research Report 2001-5. ISE Dept., University of Florida, April 2001.
(download: www.ise.ufl.edu/uryasev/cvar2.pdf)



PERCENTILE MEASURES OF LOSS (OR REWARD)

Let f(X,y) be aloss functions depending upon a decision vector
X =(Xy,..., X,)and arandom vectory = (y,,..., ¥,)

VaR= a percentile of loss distribution (a smallest value such that

probability that losses exceed or equal to this value is
greater or equal to a)

CvaR* g “upper CVaR” ) = expected losses strictly exceeding VaR
also called Mean Excess Loss and Expected Shortfall)

CVvaR™ (“lower CVaR” ) = expected losses weakly exceeding VaR,

I.e., expected losses which are equal to or exceed VaR
(also called Tail VaR)

CVaR is aweighted average of VaR and CVaR*

CVaR =A VaR + (1- A) CVaR*, 0<A<l
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CVaR: NICE CONVEX FUNCTION
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CVaR is convex, but VaR, CVaR™ ,CVaR*may be non-convex,
Inequalities are valid: VaR <CVaR™ <CVaR <CVaR*



VaR IS A STANDARD IN FINANCE

Value-at-Risk (VaR) is a popular measure of risk:
current standard in finance industry
various resources can be found at http://www.gloriamundi.org

Informally VaR can be defined as a maximum loss in a
specified period with some confidence level (e.qg.,
confidence level = 95%, period = 1 week)

Formally, a VaR is the a —percentile of the loss
distribution:

a VaR is a smallest value such that probability that loss exceeds
or equals to this value is bigger or equals to a



FORMAL DEFINITION OF CVaR

Notations:
¥ = cumulative distribution of losses,

¥, = o-tail distribution, which equals to zero for losses below VaR,
and equals to (W¥- d)/(1—a) for losses exceeding or equal to VaR

Definition: | CVaR is mean of o-tail distribution ¥,
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Cumulative Distribution of Losses, ¥ a-Tail Distribution, ¥,



CVaR: WEIGHTED AVERAGE

Notations:

VaR= a percentile of loss distribution (a smallest value such that
probability that losses exceed or equal to this value is greater or

equal to a)

CVaR* (“upper CVaR” ) = expected losses strictly exceeding VaR
(also called Mean Excess Loss and Expected Shortfall)

Y(vaR) = probability that losses do not exceed VaR or equal to VaR
A =(¥(var) - a)/(1—q), (0=A £1)

CVaR is weighted average of VaR and CVaR*

CVaR = A VaR + (1- A) CVaR*




CVaR: DISCRETE DISTRIBUTION, EXAMPLE 1

e Q@ does not “split” atoms: VaR < CVaR™ < CVaR = CVaRt,
A=(Y-a)/(Q-a) =0

Six scenarios, P, =p, =---=p, =L, a =2 =2

CVaR =CVaR"™ =1 f, +1f,

Probability CVaR
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CVaR: DISCRETE DISTRIBUTION, EXAMPLE 2

e @ “splits” the atom: VaR < CVaR™ < CVaR < CVaR*,
A=(Y-0a)/(1-a) >0

. : 3 L . .
Six scenarios, P, =P, = =P, =+, a =%
= 1 4 o1 2 2
CVaR —;VaR +?CV3R —§f4 +§f5 +? f6
Probability CVaR
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CVaR: DISCRETE DISTRIBUTION, EXAMPLE 3

e « “splits” the last atom: VaR = CVaR™ = CVaR,
CVaR*is not defined, A = (¥ -0)/(1-a) >0

Four scenarios, p,=Pp, =P, =p, =5, O =%

CVaR =VaR =f1,

Probability CVaR
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CVaR: NICE CONVEX FUNCTION

Risk
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CVaR is convex, but VaR, CVaR™ ,CVaR*may be non-convex,
Inequalities are valid: VaR <CVaR™ <CVaR <CVaR*



CVaR FEATURES!?

- simple convenient representation of risks (one number)

- measures downside risk
- applicable to non-symmetric loss distributions

- CVaR accounts for risks beyond VaR (more conservative than VaR)
- CVaR is convex with respect to portfolio positions

- VaR £CVaR™ <CVaR <CVaRt*

- coherent in the sense of Artzner, Delbaen, Eber and Heaths3;

(translation invariant, sub-additive, positively homogeneous, monotonic
w.r.t. Stochastic Dominancel)

'Rockafellar R.T. and S. Uryasev (2001): Conditional Value-at-Risk for General Loss Distributions.
Research Report 2001-5. ISE Dept., University of Florida, April 2001. (Can be downloaded:
www.ise.ufl.edu/uryasev/cvar2.pdf)

2 Pflug, G. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk, in “"Probabilistic
Constrained Optimization: Methodology and Applications” (S. Uryasev ed.), Kluwer Academic
Publishers, 2001.

SArtzner, P., Delbaen, F., Eber, J.-M. Heath D. Coherent Measures of Risk, Mathematical Finance, 9
(1999), 203--228.



CVaR FEATURES (Cont'd)

- stable statistical estimates (CVaR has integral characteristics
compared to VaR which may be significantly impacted by one scenario)

- CVaR is continuous with respect to confidence level a,

consistent at different confidence levels compared to VaR
(VaR, CVaR", CVaR" may be discontinuous in a)

- consistency with mean-variance approach: for normal loss
distributions optimal variance and CVaR portfolios coincide

- easy to control/optimize for non-normal distributions;

linear programming (LP): can be used for optimization
of very large problems (over 1,000,000 instruments and
scenarios); fast, stable algorithms

- loss distribution can be shaped using CVaR constraints (many LP
constraints with various confidence levels a in different intervals)

- can be used in fast online procedures



CVaR versus EXPECTED SHORTFALL

CVaR for continuous distributions usually coincides with
conditional expected loss exceeding VaR (also called Mean Excess
Loss or Expected Shortfall).

However, for non-continuous (as well as for continuous)
distributions CVaR may differ from conditional expected loss
exceeding VaR.

Acerbi et al.1? recently redefined Expected Shortfall to be consistent
with CVaR definition.

Acerbi et al.2proved several nice mathematical results on properties
of CVaR, including asymptotic convergence of sample estimates to
CVaR.

1Acerbi, C., Nordio, C., Sirtori, C. Expected Shortfall as a Tool for Financial Risk
Management, Working Paper, can be downloaded: www.gloriamundi.org/var/wps.html

2Acerbi, C., and Tasche, D. On the Coherence of Expected Shortfall.
Working Paper, can be downloaded: www.gloriamundi.org/var/wps.htmi



CVaR OPTIMIZATION

Notations:

X = (X,,...X,)) = decision vector (e.g., portfolio weights)
X =aconvex set of feasible decisions

y =(Yy...y,) = random vector

yl=scenario of random vectory, (j=1,...J )
f(x,y) =loss functions

Example: Two Instrument Portfolio

A portfolio consists of two instruments (e.g., options) Let x=(x,,X,) be a
vector of positions, m= (m m2) be a vector of initial prices, and y=(y, y,) be
a vector of uncertain prices in the next day. The loss function equals the
difference between the current value of the portfolio, (x,m,;+x,m,), and an
uncertain value of the portfolio at the next day (xly1+x2y2), i.e.,

f(x,y) - (X1m1+X2m2)_(X1y1+X2y2) - Xl(ml_y1)+xz(m2_y2) .

If we do not allow short positions, the feasible set of portfolios is a two-
dimensional set of non-negative numbers

X ={(X1,X,), X120, x,20} .

Scenarios y! = (yl;,y),), j=1,...J , are sample daily prices (e.g., historical
data for J trading days).



CVaR OPTIMIZATION (Cont'd)

CVaR minimization

ming o, CVaR

can be reduced to the following linear programming (LP) problem

subject to

z, 2f(x,y)-¢, z=20, j=1,.0 (v=((1-a)d)'=const)

By solving LP we find an optimal portfolio x*, corresponding VaR,
which equals to the lowest optimal {*, and minimal CVaR, which
equals to the optimal value of the linear performance function

Constraints, x 0 X, may account for various trading constraints,
iIncluding mean return constraint (e.g., expected return should
exceed 10%)

Similar to return - variance analysis, we can construct an efficient
frontier and find a tangent portfolio



RISK MANAGEMENT WITH CVaR CONSTRAINTS

CVaR constraints in optimization problems can be replaced by a
set of linear constraints. E.g., the following CVaR constraint

CVaR <C

can be replaced by linear constraints

z, 2 f(xy)-¢, z =20, j=1,.J (v=((1-a)J)t=const)

Loss distribution can be shaped using multiple CVaR constraints
at different confidence levels in different times

The reduction of the CVaR risk management problems to LP is a
relatively simple fact following from possibility to replace CVaR by
some function F(x,{) , which is convex and piece-wise linear with
respect to x and { . A simple explanation of CVaR optimization
approach can be found in paper?!.

lUryasev, S. Conditional Value-at-Risk: Optimization Algorithms and Applications.
Financial Engineering News, No. 14, February, 2000.

(can be downloaded: www.ise.ufl.edu/uryasev/pubs.html#t).



CVaR OPTIMIZATION: MATHEMATICAL BACKGROUND

Definition
FX,0)=C+ Vv Z_, (f(x,y - 0, v =((1- a)J)* =const

Theorem 1.
CVaRy(X) = min ;o F(x,{) and {,(x) is a smallest minimizer
Remark. This equality can be used as a definition of CVvaR ( Pflug ).

Theorem 2.
min o CVaRy(X) = min ;g ,ox F (X, () (1)

* Minimizing of F(x,{) simultaneously calculates VaR= {(x),
optimal decision x, and optimal CVaR

 Problem (1) can be reduces to LP using additional variables



PERCENTILE V.S. PROBABILISTIC CONSTRAINTS

Proposition 1.
Let f(x,y) be aloss functions and {,(x) be a- percentile (a-VaR) then

(4(X) s @ Pr{f(x,y)<e}=a

Proof follows from the definition of a- percentile { (x)

((X)=min{e: Pr{f(xy)<e}= a}

« Generally, {,(x) is nonconvex (e.g., discrete distributions),
therefore (,(x) <€ aswellas Pr(f(x,y)<e)= a may be
nonconvex constraints

 Probabilistic constraints were considered by Prekopa, Raik,
Szantai, Kibzun, Uryasev, Lepp, Mayer, Ermoliev, Kall, Pflug,
Gaivoronski, ...



NON-PERCENTILE RISK MEASURES

Low partial moment constraint (considered in finance literature
from 70-th)

E{ ((f(x,y)-€))2} <b, a=0, g*=max{0,g}
special cases

a=0 => Pr{f(x,y)-€}
a=1 => E(f(xy)-£)"}
a=2, e=Ef(x,y) => semi-variance E{ ((f(x,y)-€)*)?}

Regret (King, Dembo) is a variant of low partial moment with
e=0 and f(x,y) = performance-benchmark

Various variants of low partial moment were successfully applied
In stochastic optimization by Ziemba, Mulvey, Zenios,
Konno,King, Dembo,Mausser,Rosen,...

Haneveld and Prekopa considered a special case of low partial
moment with a =1, € = 0: integrated chance constraints



PERCENTILE V.S. LOW PARTIAL MOMENT

Low partial moment with a>0 does not control percentiles. It is
applied when loss can be hedged at additional cost

total expected value = expected cost without high losses
+ expected cost of high losses

expected cost of high losses = p E{ (f(x,y) -€)* }

Percentiles constraints control risks explicitly in percentile terms.

Testury and Uryasev! established equivalence between CVaR
approach (percentile measure) and low partial moment,a=1 (non-
percentile measure) in the following sense:

a) Suppose that a decision is optimal in an optimization problem
with a CVaR constraint, then the same decision is optimal with a low
partial moment constraint with some £>0;

b) Suppose that a decision is optimal in an optimization problem
with a low partial moment constraint, then the same decision is
optimal with a CVaR constraint at some confidence level a.

Testuri, C.E. and S. Uryasev. On Relation between Expected Regret and Conditional Value-At-Risk.
Research Report 2000-9. ISE Dept., University of Florida, August 2000. Submitted to Decisions in
Economics and Finance journal. (www.ise.ufl.edu/uryasev/Testuri.pdf)



CVaR AND MEAN VARIANCE: NORMAL RETURNS

X = (®14...,2,) = positions
v = (¥1y+..,Yn) = random returns
m = (1y,...,7,;) = mean returns

loss function

F(x,y) = <[z + -+ 2oyn] = —x"y

mean loss and variance

p(x) = —x'm and o(x)=x"Vx

return constraint

pu(x) < —R (3)

no-shorts and budget constraints

z; >0 and Y7, x;=1 (4)

X = { set of x satisfying (3) and (4) }



CVaR AND MEAN VARIANCE: NORMAL RETURNS

If returns are normally distributed, and return constraint is active,
the following portfolio optimization problems have the same
solution:

1. Minimize CVaR
subject to return and other constraints

2. Minimize VaR
subject to return and other constraints

3. Minimize variance
subject to return and other constraints



EXAMPLE 1: PORTFOLIO MEAN RETURN AND COVARIANCE

Instrument Mean Return
S&P 0.0101110
Gov Bond 0.0043532
Small Cap 0.0137058

S& P Gov Bond  Small Cap
S&P 0.00324625 0.00022983  0.00420395
Gov Bond  0.00022983 0.00049937 0.00019247
Small Cap 0.00420395 0.00019247 0.00764097




OPTIMAL PORTFOLIO (MIN VARIANCE APPROACH)

S&P Gov Bond Small Cap
0.452013  0.115573 0.432414

a=090 a=09 a =0.99
VaR  0.067347 0.090200 0.132128
CVaR 0.096975 0.115908 0.152977




PORTFOLIO, VaR and CVaR (CVaR APPROACH)

A Smpls S&P Gov Small Val Val CVaR CVaR  Iter Time

# Bond Cap Dif(%) Dif (%) (min)
(0.9 1000 0.352500 0.15382  0.49368  0.06795  0.154  0.09962 2.73 1157 0.0
0.9 3000 055726 0.07512 036762 006537  3.645 0.09511  -1.92 636 0.0
0.9 5000 042914 012436 044649  0.06662 1809  0.09824 1.30 B60 0.1
0.9 10000 0.48215 010399 041386 006622 2,395  0.09503  -200 2290 0.3
0.9 20000 0.45951  0.11269 042730 0.06629 <2295 0.09602 <0498 8704 1.5
0.95 1000 053717 008284 037999  0.09224 2259 0.11516  -0.64 156 (.0
0.95 3000 054875 0.0V839  0.37286  0.09428 4.524  (0.11558 2.006 G52 (.0
(.95 H000 057986 006643 0035371 0.09175 L7156 (0.11659 (.59 el .1
0.95 10000 047102 0.10827 042072 008927 -1.03 011467  -1.00 1451 .2
0.95 20000 0.49035 010082 040879 0.09156  1.284  0.11719 I.11 2643 0.7
0.99 1000 041844 0.12848 045308 0.13451 1.829  0.14513  -5.12 340 0.0
0.99 3000 06196 005116 032924 012791 -3.187  0.14855  -2.89 1058 0.0
0.99 5000 0.63926 0.04360 031714 013176 -0.278  0.15122 <114 909 0.1
0.99 10000  0.45203 0.11556  0.43240  0.12881 -2.51 0.14791  -3.31 Gisl) (.1
0.99 20000 045766  0.11340 042894 0.13153  -0.451  0.15334 0.24 3083 0.9




EXAMPLE 2: NIKKEI PORTFOLIO

0.25

B Empirical
0.20 ———Normal Approx.

0.15

Probability

0.10

0.05

0.00 -
-194 -157 -121 -84 -48 -11 25 62

Size of Loss (millions JPY)




NIKKEI PORTFOLIO

Instrument Type Day to  Strike Price  Position Value
Maturity  (10° JPY) (10%)  (10° JPY)
Mitsubishi EC 6mo 860  Call 184 860 11.5 563,340
Mitsubishi Corp Equity n/a n/a 2.0 1.720,00
Mitsubishi Cjul29 800 Call 7 800 -16.0 -967,280
Mitsubishi Csep30 836 Call 70 836 8.0 382,070
Mitsubishi Psep30 800 Put 70 800 40.0 2,418,012
Komatsu Ltd Equity n/a na 2.5 2,100,000
Komatsu Cjul29 900 Call 7 900 -28.0) -11,593
Komatsu Cjun2 670 Call 316 670 22.5 5,150,461
Komatsu Cjun2 760 Call 316 760 7.5 1,020,110
Komatsu Paugdl 760 Put 40 760 -10.0 -68,919
Komatsu Paugdl 830 Put 40 830 10.0 187,167




HEDGING: NIKKEI PORTFOLIO

e Mausser and Rosen from Algorithmics
Inc. developed parametric and simulation
VaR techniques for one-dimension hedging

[1] Mauser, H. and D. Rosen (1991): Beyond

VaR: From Measuring Risk to Managing
Risk. ALGO Research Quarterly. Vol.1, 2, 5-20.

e optimal one-dimension hedge 1s
calculated by changing a position in the
portfolio such that VaR is minimal

e smoothing techniques were used to cope
with nonsmooth multiextremum VaR
performance functions



HEDGING: MINIM CVaR APPROACH

. CVaR techniques for one-dimension and
multi-dimension hedging of portfolio

. 1,000 Monte Carlo scenarios of one-day
losses generated at Algorithmics Inc.

® loss function and constraints are linear:
LP techniques are applicable

- nonsmooth optimization techniques
were tested

[1] Uryasev, S. (1991): New Variable-Metric
Algorithms for Nondifferential Optimization

Problems. J. of Optim. Theory and Applic. Vol.
71, No. 2, 359-388.

e comparing to LP techniques, nonsmooth
optimization may have some advantages for
very large number of scenarious



ONE INSTRUMENT HEDGING

Instrument Best Hedge VaR CVaR

Mitsubishi EC 6mo 860 7,337.53  -205,927 1,183,040
Mitsubishi Corp -026.073  -1,180,000  551.892
Mitsubishi Cjul29 800 -18,978.6  -1,170,000 553,696
Mitsubishi Csep30 836 4381.22  -1,150,000 549,022
Mitsubishi Psep30 800 43.637.1  -1,150,000 542,168
Komatsu Litd -196.167  -1,180,000 551,892
Komatsu Cjul29 900 -124.939  -1.200,000  593.078
Komatsu Cjun2 670 19,964.9 -1,220,000 385,698
Komatsu Cjun2 760 4.745.20  -1,200,000 363,556
Komatsu Paug3l 760 3.1426.3  -1,120,000 538,662
Komatsu Paug3l 830 19.356.3  -1,150,000 536,500




ONE - INSTRUMENT HEDGING

e one-instrument hedging is done with
two-dimensional nonsmooth optimization

e MATHEMATICA version of the
variable metric code on Pentium II, 450MHz
(download from www.ise.ufl.edu/uryasev)

e withg = 0.95, initial VaR=657.816 JPY
and CVaR=2,022,060 JPY

e one-instrument hedges with Minimum
VaR approach (Mausser & Rosen) and
Minimum CVaR approach are very close

e e.g., the best one-instrument VaR hedge
is Komatsu Cjun2 760, position= 4,800 the
best one-instrument CVaR hedge i1s also
Komatsu Cjun2 760, position=4.745 with
VaR=-1,200,000 and CVaR=363,556



MULTIPLE INSTRUMENT HEDGING: CVaR APROACH

Instrument Position in Portfolio Best Hedge
Komatsu Cjun2 670 22,500 22,500
Komatsu Cjun2 760 7,000 -027
Komatsu Paug31 760 -10,000 -10,000

Komatsu Paug31 830 10,000 -10,000




MULTIPLE - INSTRUMENT HEDGING

e hedging using the last 4 of the 11
instruments

. multiple-instrument hedging gives
VaR=-1,400,000 and CVaR=37,335, while
the best one-instrument hedge gives
VaR=-1,200,000 and CVaR=363,556

e CVaR is a more adequate (conservative)
estimate of risk than VaR. VaR shows gain
while CVaR shows loss.

. Six correct digits in the performance
function and the positions were obtained
after 400-800 iterations of the variable
metric algorithm. It took about 4-8 minutes
with MATHEMATICA code on a Pentium
II, 450MHz.



MULTIPLE-HEDGING: MODEL DESCRIPTION

Zz = (214...,211) = initial positions

K is an index set within {1,2,...,11}

of instruments to be adjusted

X = (x1,...,T11) = adjusted positions

feasible set X is defined by constraints

—|zj| < x; < |zj| forj € K,

r;=z; forjg& K
random prices one day later
Yy = (Y1s+4+5yn)

mean prices one day later
m = (My,...,"M)

loss function
flz,y) =x"m — xTy = x"(m — y)



EXAMPLE 3: PORTFOLIO REPLICATION USING CVaR

 Problem Statement: Replicate an index using j=1....n instruments. Consider
impact of CVaR constraints on characteristics of the replicating portfolio.

» Daily Data: sP100 index, 30 stocks (tickers: GD, UIS, NSM, ORCL, CSCO, HET, BS,TXN, HM,
INTC, RAL, NT, MER, KM, BHI, CEN, HAL, DK, HWP, LTD, BAC, AVP, AXP, AA, BA, AGC, BAX, AIG, AN, AEP)

* Notations
|, = price of SP100 index at times t=1...T

p,, = prices of stocks j=1...,n attimest=1..T
v =amount of money to be on hand at the final time T

o = Y = number of units of the index at the final time T

Iy

x; = number of units of j-th stock in the replicating portfolio

* Definitions (similar to paper?!)

Zp,t ; = value of the portfolio at time t

(60, - Zp,tx,)/(é’ﬂl)l = absolute relative deviation of the portfolio from the target o0,

f(x,p,) =(60 —ijtxj)/(e 1) =relative portfolio underperformance compared to target at time t

Konno H. and A. Wijayanayake. Minimal Cost Index Tracking under Nonlinear Transaction Costs and
Minimal Transaction Unit Constraints,Tokyo Institute of Technology, CRAFT Working paper 00-07,(2000).



PORTFOLIO REPLICATION (Cont'd)
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Day number: in-sample region

Index and optimal portfolio values in in-sample region, CVaR
constraint is inactive (w = 0.02)




PORTFOLIO REPLICATION (Cont'd)

Portfolio value (USD)
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Day number in out-of-sample region

Index and optimal portfolio values in out-of-sample region,
CVaR constraint is inactive (w = 0.02)




PORTFOLIO REPLICATION (Cont'd)

12000
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Day number: in-sample region

Index and optimal portfolio values in in-sample region,
CVaR constraint is active (w = 0.005).




PORTFOLIO REPLICATION (Cont'd)

12000
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Day number in out-of-sample region

Index and optimal portfolio values in out-of-sample region,
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PORTFOLIO REPLICATION (Cont'd)
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Relative underperformance in in-sample region, CVaR
constraint is active (w = 0.005) and inactive (w = 0.02).




PORTFOLIO REPLICATION (Cont'd)
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Relative underperformance in out-of-sample region, CVaR
constraint is active (w = 0.005) and inactive (w = 0.02)




PORTFOLIO REPLICATION (Cont'd)
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PORTFOLIO REPLICATION (Cont'd)

e Calculation results

CVaR in-sample (600 days) out-of-sample (100 days) out-of-sample CVaR

level w objective function, in % objective function, in % in %

0.02 0.71778 2.73131 4.88654
0.01 0.82502 1.64654 3.88691
0.005 1.11391 0.85858 2.62559
0.003 1.28004 0.78896 2.16996
0.001 1.48124 0.80078 1.88564

« CVaR constraint reduced underperformance of the portfolio versus the index both in
the in-sample region (Column 1 of table) and in the out-of-sample region (Column 4) .
For w =0.02, the CVaR constraint is inactive, for w <0.01, CVaR constraint is active.

 Decreasing of CVaR causes an increase of objective function (mean absolute
deviation) in the in-sample region (Column 2).

» Decreasing of CVaR causes a decrease of objective function in the out-of-sample
region (Column 3). However, this reduction is data specific, it was not observed for
some other datasets.



PORTFOLIO REPLICATION (Cont'd)

In-sample-calculations: w=0.005

Calculations were conducted using custom developed software (C++) in combination
with CPLEX linear programming solver

For optimal portfolio, CVaR= 0.005. Optimal { *= 0.001538627671 gives VaR. Probability
of the VaR point is 14/600 (i.e.14 days have the same deviation= 0.001538627671). The
losses of 54 scenarios exceed VaR. The probability of exceeding VaR equals

54/600 < 1- a , and
A=(¥(VaR)-0)/(1-0) = [546/600 - 0.9]/[1-0.9] =0.1

Since a “splits” VaR probability atom, i.e., ¥(VaR) - a >0, CVaR is bigger than CVaR"
(“lower CVaR”)and smaller than CvaR* ( “upper CVaR”, also called expected shortfall)

CVaR™ =0.004592779726 < CVaR = 0.005 < CVaR"=0.005384596925
CVaR is the weighted average of VaR and CvVaR™

CVaR = A VaR + (1- A) CVaR*= 0.1 * 0.001538627671 + 0.9 * 0.005384596925= 0.005

In several runs, {* overestimated VaR because of the nonuniqueness of the optimal
solution. VaR equals the smallest optimal *.



EXAMPLE 4. CREDIT RISK (Related Papers)

Andersson, Uryasev, Rosen and Mausser applied the CvaR
approach to a credit portfolio of bonds

— Andersson, F., Mausser, Rosen, D. and S. Uryasev (2000),
“Credit risk optimization with Conditional Value-at-Risk criterion”,
Mathematical Programming, series B, December)
Uryasev and Rockafellar developed the approach to minimize
Conditional Value-at-Risk

— Rockafellar, R.T. and S. Uryasev (2000), " Optimization of Conditional
Value-at-Risk”, The Journal of Risk, Vol. 2 No. 3

Bucay and Rosen applied the CreditMetrics methodology to
estimate the credit risk of an international bond portfolio
— Bucay, N. and D. Rosen, (1999)“Credit risk of an international bond
portfolio: A case study”, Algo Research Quarterly, Vol. 2 No. 1, 9-29

Mausser and Rosen applied a similar approach based on the
expected regret risk measure

— Mausser, H. and D. Rosen (1999), “Applying scenario optimization to
portfolio credit risk”, Algo Research Quarterly, Vol. 2, No. 2, 19-33



Basic Definitions

e Creditrisk

— The potential that a bank borrower or counterpart will fail to
meet its obligations in accordance with agreed terms

e Credit loss

— Losses due to credit events, including both default and credit
migration



Credit Risk Measures
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Bond Portfolio

Compiled to asses to the state-of-the-art portfolio credit risk
models

Consists of 197 bonds, issued by 86 obligors in 29
countries

Mark-to-market value of the portfolio is 8.8 billions of USD

Most instruments denominated in USD but 11 instruments
are denominated in DEM(4), GBP(1), ITL(1), JPY(1), TRL(1),
XEU(2) and ZAR(1)

Bond maturities range from a few months to 98 years,
portfolio duration of approximately five years



Portfolio Loss Distribution

Generated by a Monte Carlo
simulation based on 20000
scenarios

Skewed with a long fat tail

Expected loss of 95 M USD

— Only credit losses, no
interest income

Standard deviation of 232 M
USD

VaR (99%) equal 1026 M USD

CVaR (99%) equal 1320 M
USD
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Model Parameters

o Definitions
— 1) Obligor weights expressed as multiples of current holdings

— 2) Future values without credit migration, i.e. the benchmark
scenario
— 3) Future scenario dependent values with credit migration

— 4) Portfolio loss due to credit migration

(Instrument positions) x = (X, X,,..., X;) (1)
(Future values without credit migration) b =(b,b,,...,b.) (2)
(Future values with credit migration) y =(VY,, Y,,.--,¥,) (3)
(Portfolio loss) f(x,y)=(b-y) x (4)




OPTIMIZATION PROBLEM

Minimize
1
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SINGLE - INSTRUMENT OPTIMIZATION

Obligor Best Hedge | VaR (M USD) | VaR (%) | CvaR (M USD) CVaR (%)
Brazil -5.72 612 40 767 42
Russia -9.55 667 35 863 35
Venezuela -4.29 683 33 880 33
Argentina -10.30 751 27 990 25
Peru -7.35 740 28 980 26
Colombia -45.07 808 21 1040 21
Morocco -88.29 792 23 1035 22
Russialan -21.25 77 24 989 25
MoscowTel -610.14 727 29 941 29
Romania -294.23 124 29 937 29
Mexico -3.75 998 3 1292 2
Philippines -3.24 1015 1 1309 1




VaR and CVaR (millions of USD)

MULTIPLE - INSTRUMENT OPTIMIZATION
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Marginal CVaR (%)

RISK CONTRIBUTION (original portfolio)
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Marginal risk (%)

RISK CONTRIBUTION (optimized portfolio)
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CONDITIONAL DRAWDOWN-AT-RISK (CDaR)

CDaR?!is a new risk measure closely related to CVaR

Drawdown is defined as a drop in the portfolio value compared to
the previous maximum

CDaR is the average of the worst z% portfolio drawdowns observed
In the past (e.q., 5% of worst drawdowns). Similar to CVaR,
averaging is done using a-tail distribution.

Notations:

w(X,t) = uncompounded portfolio value

t= time

X = (Xq,...X,) = portfolio weights

f(x,t) =maX;g<r <) [w(x,T)] - w(x,t) = drawdown
Formal definition:

CDaR is CVaR with drawdown loss function f (x,t) .

CDaR can be controlled and optimized using linear programming
similar to CVvaR

Detail discussion of CDaR is beyond the scope of this presentation

1Chekhlov, A., Uryasev, S., and M. Zabarankin. Portfolio Optimization with Drawdown
Constraints. Research Report 2000-5. ISE Dept., University of Florida, April 2000.



CDaR: EXAMPLE GRAPH
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CONCLUSION

CVaR is a new risk measure with significant advantages compared
to VaR

- can quantify risks beyond VaR

- coherent risk measure

- consistent for various confidence levels a (smooth w.r.t a)
- relatively stable statistical estimates (integral characteristics)

CVaR is an excellent tool for risk management and portfolio
optimization

- optimization with linear programming: very large dimensions and stable
numerical implementations

- shaping distributions: multiple risk constraints with different
confidence levels at different times

- fast algorithms which can be used in online applications, such as active
portfolio management

CVaR methodology is consistent with mean-variance
methodology under normality assumption

- CVaR minimal portfolio (with return constraint) is also variance minimal
for normal loss distributions



CONCLUSION (Cont’d)

Various case studies demonstrated high efficiency and
stability of of the approach (papers can be downloaded:
www.ise.ufl.edu/uryasev)

- optimization of a portfolio of stocks

- hedging of a portfolio of options

- credit risk management (bond portfolio optimization)
- asset and liability modeling

- portfolio replication

- optimal position closing strategies

CVaR has a great potential for further development. It stimulated
several areas of applied research, such as Conditional Drawdown-
at-Risk and specialized optimization algorithms for risk
management

Risk Management and Financial Engineering Lab at UF
(www.ise.ufl.edu/rmfe) leads research in CVaR methodology and
Is interested in applied collaborative projects
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