
1.1 Sets and Algebraic Structures

It is not possible to include here the foundations of set theory. The interested
reader is referred to the extensive literature, e.g., Kunen [106] and Hrbacek
and Jech [93]. So the approach taken here is näıve set theory.

We briefly recall some basics. Following Cantor we define a set to be any
collection of definite, distinct objects of our perception or of our thought.

The objects of a set are called elements. If M is a set and x belongs to M,
then we write x ∈M; if x does not belong to M, then we write x /∈M.

Note that this definition is not adequate for a formal development of set
theory. So, we have to be careful.

We shall define sets either extensionally, i.e., by listing all the elements in
the set; for example, M =df {a,b, c,d}, or intensionally, i.e., by providing a
particular property P that all the elements must fulfill; for example, we then
write M =df {x | x satisfies P}.

Furthermore, we shall use the following: By ∅ we denote the empty set,
i.e., the set which contains no elements.

Moreover, we need the following definition:

Chapter 1

Sets, Structures, Numbers

Abstract In this chapter we shall introduce most of the background needed
to develop the foundations of mathematical analysis. We start with sets and
algebraic structures. Then the real numbers are defined axiomatically. This
in turn allows one to define natural numbers, integers, rational numbers, and
irrational numbers as well as to derive fundamental properties of these num-
bers. Next, we study representations of real numbers. Then we turn our at-
tention to mappings and the numerosity of sets. In particular, it is shown that
there are many more real numbers than rational numbers. Furthermore, we
introduce linear spaces. The chapter is concluded by defining the complex
numbers.
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Definition 1.1. Let M and N be any sets. Then we write

(1) N ⊆M if x ∈ N implies that x ∈M (subset);
(2) N = M if N ⊆M and M ⊆ N, otherwise we write N 6= M;
(3) N ⊂M if N ⊆M and N 6= M (proper subset);
(4) M ∪N =df {x | x ∈M or x ∈ N} (union);
(5) M ∩N =df {x | x ∈M and x ∈ N} (intersection);
(6) M \N =df {x | x ∈M and x /∈ N} (difference);
(7) CM(N) =df M \ N (complement of N with respect to M), where we

have to assume that N ⊆M.

Example 1.1. Let M = {a,b, c,d} and let N = {b, c}. Then b ∈ N and b ∈M
as well as c ∈ N and c ∈ M. We conclude that N ⊆ M, i.e., N is a subset
of M. Since a ∈ M but a /∈ N, we see that N ⊂ M, i.e., N is a proper
subset of M. Consequently, M ⊆ N does not hold. If M ⊆ N is not true then
we write M 6⊆ N. Furthermore, it is easy to see that M ∪ N = {a,b, c,d},
M ∩N = {b, c}, M \N = {a,d}, and CM(N) = {a,d}.

Theorem 1.1. Let M,N, and S be any sets. Then the following properties
are satisfied:

(1) M ⊆M;
(2) M ⊆ N and N ⊆ S implies M ⊆ S;
(3) M ∩N ⊆M ⊆M ∪N;
(4) ∅ ⊆M, M \M = ∅, M \ ∅ = M, and M \N ⊆M;
(5) the union is associative and commutative, i.e., (M∪N)∪S = M∪ (N∪S)

and M ∪N = N ∪M, respectively;
(6) the intersection is associative and commutative, i.e.,

(M ∩N) ∩ S = M ∩ (N ∩ S) and M ∩N = N ∩M, respectively.

Theorem 1.2. Let M,N, and S be any sets. Then the following properties
are satisfied:

(1) M ∩ (N ∪ S) = (M ∩N) ∪ (M ∩ S), and
M ∪ (N ∩ S) = (M ∪N) ∩ (M ∪ S) (distributive laws);

(2) M ∩N = M \ (M \N);
(3) let N ⊆M and S ⊆M; then we have CM(N ∪ S) = CM(N) ∩ CM(S) and

CM(N ∩ S) = CM(N) ∪ CM(S) (De Morgan’s laws).

We do not prove Theorems 1.1 and 1.2 here but leave the proofs of these
theorems as an exercise.

Furthermore, we shall use the following notations: Let S be any finite or
infinite collection of sets; then we set⋃

S∈S

S =df {x | there is an S ∈ S such that x ∈ S} ,⋂
S∈S

S =df {x | for all S ∈ S we have x ∈ S} .
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If we have sets S1, S2, S3, . . . then we also use the notations
n⋃
i=1

Si, and
n⋂
i=1

Si,

as well as
∞⋃
i=1

Si, and
∞⋂
i=1

Si.

Let S be any set, then we write ℘(S) to denote the set of all subsets of S.
We call ℘(S) the power set of S.

Example 1.2. Let us consider the set S = {a,b, c}. Then

℘(S) = {∅, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c}} .

Exercise 1.1. Let S1 = {1, 2, 3, 4}, and let S2 = ∅. Compute ℘(S1) and ℘(S2).

Following Kuratowski [107] we define a set of two elements, where a first
element is determined, and call it an ordered pair ; that is, we set

(a,b) =df {{a}, {a,b}} .

Note that this definition is adequate, since it allows one to show the charac-
teristic property an ordered pair has to fulfill, i.e.,

(a,b) = (c,d) iff a = c and b = d .

The definition of an ordered pair can be easily generalized to ordered triples,
or more generally, ordered n-tuples, which we shall denote by (a,b, c) and
(x1, . . . , xn), respectively.

Let M and N be any sets. We define the product M×N of M and N by

M×N =df {(m,n) | m ∈M and n ∈ N} .

It is also called the Cartesian product of M and N. Note that M× ∅ = ∅ by
definition. Let S1, . . . ,Sn be any sets, then their n-fold product is the set

n×
i=1

Si =df {(s1, . . . , sn) | si ∈ Si for all i = 1, . . . ,n} .

Next, we turn our attention to algebraic structures. An algebraic structure
is a non-empty set on which one or more operations are defined along with
some axioms that must be satisfied.

Definition 1.2 (Group). Let G 6= ∅ be any set, and let ◦ : G × G → G be
any binary operation. We call (G, ◦) a group if

(1) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G (i.e., ◦ is associative);
(2) there is a neutral element e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G;
(3) for every element a ∈ G there exists an inverse element b ∈ G such

that a ◦ b = b ◦ a = e.
(4) A group is called an Abelian group if ◦ is also commutative, i.e., a◦b = b◦a

for all a, b ∈ G.
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Commutative groups are called Abelian groups in honor of Niels Henrik Abel.

Exercise 1.2. Show that the neutral element e and the inverse elements de-
fined above are uniquely determined.

Definition 1.3 (Field). Let F 6= ∅ be any set containing two distinguished
elements 0 and 1, where 0 6= 1, and let ◦, ∗ : F × F → F be two binary
operations. We call (F, ◦, ∗) a field if

(1) (F, ◦) is an Abelian group (with neutral element 0);
(2) (F \ {0}, ∗) is a group (with neutral element 1);
(3) the following distributive laws are satisfied:

a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ b),
(a ◦ b) ∗ c = (a ∗ c) ◦ (b ∗ c) .

(4) A field (F, ◦, ∗) is said to be Abelian (or commutative) if a ∗ b = b ∗ a for
all a, b ∈ F \ {0} holds.

We refer to 0 as the neutral element and to 1 as the identity element.
The following theorem provides some fundamental properties of fields:

Note that “iff” is used as an abbreviation for “if and only if.”

Theorem 1.3. Let (F, ◦, ∗) be any field. Then we have

(1) a ∗ 0 = 0 ∗ a = 0 for all a ∈ F;
(2) a ∗ b = 0 iff a = 0 or b = 0;
(3) for all a, b ∈ F, a 6= 0 there is precisely one x ∈ F such that a ∗ x = b.

Proof. First, we show that a ∗ 0 = 0. Let a ∈ F be arbitrarily fixed. Note
that a ◦ 0 = a (Property (2) of Definition 1.2) and consider

a ∗ a = a ∗ (a ◦ 0) = (a ∗ a) ◦ (a ∗ 0)

(a ∗ a) ◦ (a ∗ a)inv = (a ∗ a) ◦ (a ∗ 0) ◦ (a ∗ a)inv

0 = (a ∗ a) ◦ (a ∗ a)inv ◦ (a ∗ 0)

0 = (a ∗ 0) ,

where (a ∗ a)inv denotes the inverse of (a ∗ a) with respect to ◦.
The first equation above used the distributive law, the second line applied

the fact that every element in F has an inverse with respect to ◦, the third
line used that ◦ is commutative, and the last line the fact that 0 is the neutral
element.

The second part 0 ∗ a = 0 can be shown analogously.
The sufficiency of Property (2) follows from Property (1).
For the necessity assume that a ∗ b = 0 and a 6= 0. Let a be the inverse

of a with respect to ∗. Then we have
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a ∗ 0 = a ∗ (a ∗ b) = (a ∗ a) ∗ b
0 = 1 ∗ b = b ,

where we used Property (1), the associativity of ∗, and the fact that 1 is the
identity element.

To show Property (3) we note that x = (a ∗ b) is a solution of a ∗ x = b

(recall that a 6= 0). So, it remains to show that the solution is uniquely
determined.

Suppose that there are two solutions x1 and x2 in F. Then we have

a ∗ x1 = b = a ∗ x2

a ∗ (a ∗ x1) = a ∗ (a ∗ x2)

(a ∗ a) ∗ x1 = (a ∗ a) ∗ x2

1 ∗ x1 = 1 ∗ x2

x1 = x2 ,

where we again used the associativity of ∗ and the property of the identity
element that 1 ∗ x = x ∗ 1 = x for all x ∈ F.

Next we turn our attention to relations.

Definition 1.4 (Binary Relation). Let S 6= ∅ be any set. Then any subset
R ⊆ S× S is called a binary relation over S.

Definition 1.5 (Order Relation). Let S 6= 0 be any set, and let 6 be a
binary relation over S. We call 6 an order relation if the following axioms
are satisfied:

(1) x 6 x for all x ∈ S (reflexivity);
(2) x 6 y and y 6 z implies x 6 z for all x,y, z ∈ S (transitivity);
(3) x 6 y and y 6 x implies x = y for all x,y ∈ S (antisymmetry).

We call (S,6) an ordered set if 6 is an order relation.

Definition 1.6. Let (S,6) be any ordered set, and let A ⊆ S. We say that A
is bounded from above if there is a c ∈ S such that a 6 c for all a ∈ A. The
element c is said to be an upper bound of A.

The terms bounded from below and lower bound are similarly defined.

Let A be bounded from above and let

B =df {c | c ∈ S and c is an upper bound of A} .

If there is an s ∈ B such that s 6 c for all c ∈ B then we call s the least upper
bound of A or the supremum of A and denote it by supA. If s ∈ A then we
call it the maximum of A and write maxA.

The terms greatest lower bound, infimum, inf A, minimum, and minA are
similarly defined.
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1.2 The Real Numbers

We introduce real numbers by using an axiomatic approach.

Definition 1.7. A set R is called a set of the real numbers if there are two
operations +: R → R and · : R → R (called addition and multiplication,
respectively) and an order relation 6 over R such that the following axioms
are satisfied:

(1) (R,+, · ) is an Abelian field;
(2) (R,6) satisfies also the following properties:

(i) For all x,y ∈ R we have x 6 y or y 6 x;
(ii) for all x,y ∈ R with x 6 y we have x+ z 6 y+ z for all z ∈ R;
(iii) 0 6 x and 0 6 y implies 0 6 x · y for all x,y ∈ R.

(3) For all A ⊆ R, if A 6= ∅, and if A is bounded from above then supA ∈ R
exists.

We shall use these axioms given in Definition 1.7 to derive all the properties
of the real numbers that are relevant for the development of our theories.

It should be noted that we postulate the existence of a non-empty set R
that satisfies the axioms of Definition 1.7.

It should also be noted that R is not uniquely determined by the axioms
given. But the different models of R differ only in properties that are not
interesting for the analysis.

For example, let us consider the set R ′ =df {(r, 0) | r ∈ R} and let us
define + by setting (a, 0) + (b, 0) =df (a + b, 0) as well as · by setting
(a, 0) · (b, 0) =df (a ·b, 0). Then R ′ also satisfies the axioms of Definition 1.7
provided R does.

Note that one can derive the axioms of Definition 1.7 from axioms of
axiomatic set theory and from axioms for the natural numbers. This was done
by Cantor and Dedekind among others. This approach was fundamental for
the historical development of the analysis, but here it suffices to know that
it can be done. Below we shall also touch on the so-called Dedekind cuts.

Clearly, 0 and 1 are the neutral element and the identity element of R,
respectively. We write −a to denote the additive inverse of a for any a ∈ R.
The multiplicative inverse of a for any a ∈ R\{0} is denoted by a−1 (or 1/a).
We frequently omit the multiplication dot, i.e., we write ab instead of a · b.

Some further notations are needed. We write x < y if x 6 y and x 6= y.
For a,b ∈ R with a < b we use

[a,b] =df {x | x ∈ R and a 6 x 6 b} (closed interval);
]a,b[ =df {x | x ∈ R and a < x < b} (open interval);
[a,b[ =df {x | x ∈ R and a 6 x < b} (half-open interval);
]a,b] =df {x | x ∈ R and a < x 6 b} (half-open interval).
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We define the absolute value |x| of x ∈ R as follows:

|x| =df

{
x, if x > 0 ;

−x, if x < 0 . (1.1)

Note that −x 6 |x| 6 x for all x ∈ R. So, the absolute value is a function that
maps the real numbers to the non-negative numbers. Figure 1.1 shows the
graph of this function. For a formal definition of what is meant by a function,
we refer the reader to Section 1.6.

|x|

3

2

1

−4 −3 −2 −1 1 2 3 4 x

Fig. 1.1: The graph of the function |x|

We continue with some properties of the real numbers that can be derived
from the axioms given in Definition 1.7.

Proposition 1.1. For all a, b ∈ R the following properties are satisfied:

(1) ab > 0 iff (a > 0 and b > 0) or (a < 0 and b < 0);
(2) a < b implies a < 1

2 (a+ b) < b.
(3) For the absolute value we have

(i) |a| > 0 and |a| = 0 iff a = 0;
(ii) |ab| = |a| |b|;
(iii) |a+ b| 6 |a| + |b| (triangle inequality);
(iv) | |a| − |b| | 6 |a− b|.

Proof. Necessity. Let ab > 0 and suppose that a > 0 and b < 0. Taking into
account that −b = −b and b + (−b) = 0 (by the definition of the additive
inverse), we obtain 0 < −b.

By Theorem 1.3 we have a · 0 = 0 for all a ∈ R. Thus,

a(b+ (−b)) = 0
ab+ a(−b) = 0 (distributive law) .

Next, we add (−ab) on both sides and obtain
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ab+ a(−b) + (−ab) = 0 + (−ab)

ab+ (−ab) + a(−b) = −ab (commutative law)
a(−b) = −ab .

Since 0 < a, 0 < −b, and a(−b) = −ab, we therefore get by Axiom (2),
Part (iii) that 0 < a(−b) = −ab, and consequently ab < 0, a contradiction.

The sufficiency is a direct consequence of Axiom (2), Part (iii).
We show Property (2). Let a < b. Since 1 is the identity element, we

directly get a = 1 · a, and thus, by distributivity, a+ a = (1 + 1)a = 2a. By
Axiom (2), Part (ii) we conclude

a+ a < a+ b

2a < a+ b

0 < (a+ b) + (−2a)

0 <
1
2
((a+ b) + (−2a)) (Axiom (2), Part (iii))

0 <
1
2
(a+ b) + (−a)

a <
1
2
(a+ b) (Axiom (2), Part (ii)) .

The right-hand side is shown analogously.
Finally, we prove Property (3). We only show the triangle inequality here;

the rest is left as an exercise.
The definition of the absolute value gives a 6 |a| and b 6 |b| as well

as −a 6 |a| and −b 6 |b|. So by Axiom (2), Part (ii) we get

a+ b 6 |a| + |b| , (1.2)
(−a) + (−b) 6 |a| + |b| . (1.3)

Therefore, if a + b > 0, then the definition of the absolute value implies
that |a+ b| = a+ b 6 |a| + |b| by (1.2).

Furthermore, if a+ b < 0 then we use −(a+ b) = (−a) + (−b), and thus,
by Inequality (1.3) we obtain

0 < −(a+ b) 6 |a| + |b|

|a+ b| 6 |a| + |b| .

This completes the proof of Proposition 1.1.

Proposition 1.1 directly allows for the following corollary:

Corollary 1.1. For all a ∈ R with a 6= 0 we have

(1) aa > 0;
(2) in particular, 0 < 1 and a > 0 iff 1/a > 0.
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Proof. Property (1) is a direct consequence of Proposition 1.1, Property (1).
Since 1·1 = 1 and by definition 1 6= 0, we have 0 < 1. Finally, a·(1/a) = 1 > 0,
and so the rest is directly due to Proposition 1.1, Property (1).

We continue with further properties of the real numbers that can be derived
from the axioms given in Definition 1.7.

Theorem 1.4. Let A, B ⊆ R be non-empty sets such that a 6 b for all a ∈ A
and all b ∈ B. Then there is a c ∈ R such that a 6 c 6 b for all a ∈ A and
all b ∈ B.

Proof. By assumption, A 6= ∅ and bounded from above (every b ∈ B is an
upper bound). Thus, by Axiom (3) we know that c =df supA ∈ R exists.
Hence, a 6 c for all a ∈ A. Since supA is the least upper bound, we must
have c 6 b for all b ∈ B.

Theorem 1.4 allows for the following corollary:

Corollary 1.2. Let A, B ⊆ R be any non-empty sets such that a < b for
all a ∈ A and all b ∈ B and A ∪ B = R. Then there exists a uniquely
determined c ∈ R such that a 6 c 6 b for all a ∈ A and all b ∈ B.

Proof. By Theorem 1.4 the existence of a c with the desired properties is
clear. Suppose there are c1 and c2 such that a 6 ci 6 b, i = 1, 2, for all
a ∈ A and all b ∈ B.

Without loss of generality let c1 < c2.
Then supA 6 c1 < c2 6 b for all b ∈ B. Consequently, c1 /∈ B and c2 /∈ A.

Thus, we must have c1 ∈ A and c2 ∈ B.
Therefore, by Proposition 1.1, Property (2), we directly obtain

c1 = supA <
1
2
(c1 + c2) < c2 6 b for all b ∈ B

1
2
(c1 + c2) /∈ A ∪ B = R ,

a contradiction to Axiom (1) (R is a field).

Sets A,B fulfilling the assumptions of Corollary 1.2 are called a Dedekind
cut and usually written as (A|B). That is, for any two such sets A,B, there
is precisely one point c ∈ R, the so-called cut. That means the reals do not
have any “gap.”

In fact, Dedekind [43] used such cuts (A|B), where A,B ⊆ Q and A∪B = Q
(here Q denotes the set of all rational numbers), to introduce the real numbers
based on the axiomatic definition of the natural numbers.

Remarks. We shall proceed here in the opposite direction; i.e., we shall
define the set of all natural numbers N as a particular subset of the set of all
real numbers.

After having defined the natural numbers, it is easy to define the rational
numbers.
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1.3 Natural Numbers, Rational Numbers, and Real
Numbers

Next, we want to define the natural numbers and then the integers and ra-
tional numbers. We need the following:

Definition 1.8 (Inductive Set). A set M ⊆ R is said to be inductive if

(1) 1 ∈M;
(2) x ∈M implies x+ 1 ∈M.

Obviously, there are many inductive sets. In particular, the set R itself is
inductive.

Exercise 1.3. Prove that {x | x ∈ R, x = 1 or 2 6 x} is inductive.

Definition 1.9 (Natural Numbers). Let M be the family of all inductive
subsets of R, i.e., let M = {M | M ⊆ R, M is inductive}.

The set N =df
⋂
M∈MM is said to be the set of all natural numbers.

By its definition, N is the smallest inductive set contained in R. Also, by
definition, we have 0 /∈ N. We set N0 = N ∪ {0}.

Using the natural numbers, it is easy to define the following:

Definition 1.10 (Integers, Rational Numbers). We define the following
sets:

(1) The set Z =df {x | x ∈ N0 or − x ∈ N} is said to be the set of all integers;
(2) the set Q =df {x | there are p, q with p ∈ Z, q ∈ Z \ {0} and x = p/q}

is said to be the set of all rational numbers.

Note that by their definition we already know that Z and Q are subsets
of R.

Since N is the smallest inductive set, we directly get the principle of in-
duction. That is, if M ⊆ N and M is inductive, then M = N must hold.

So, if we want to show that an assertion A(n) is true for all numbers n ∈ N,
then we can proceed as follows:

1. Show A(1) holds.
2. Assume A(n) holds. Show that A(n) implies A(n+ 1).

The principle of induction is also very useful to define mathematical ob-
jects O(n). One defines O(1), and then one continues to define O(n + 1) by
using O(n).

We continue with some examples of inductive definitions.
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The factorial function

1! =df 1 , (1.4)
(n+ 1)! =df n!(n+ 1) . (1.5)

Finite sums

1∑
i=1

ai =df a1 , (1.6)

n+1∑
i=1

ai =df

n∑
i=1

ai + an+1 , where ai ∈ R , i = 1, . . . ,n+ 1 . (1.7)

Analogously, one defines
∏n
i=1 ai (finite products), where again ai ∈ R for

all i = 1, . . . ,n+ 1 or an (powers) for a ∈ R and exponents n ∈ N.
We continue with fundamental properties of natural numbers. First, we

show that they are closed with respect to addition and multiplication. Fur-
thermore, we prove that n+ 1 is the successor of n for all n ∈ N.

Theorem 1.5. The following properties hold:

(1) If m, n ∈ N then m+ n ∈ N and mn ∈ N;
(2) for all n ∈ N we have ]n,n+ 1[ ∩ N = ∅.

Proof. The proof of Assertion (1) is by induction. Let m ∈ N be arbitrarily
fixed and let A(n) be the assertion that m+ n ∈ N.

Then A(1) is true, since N is inductive.
Assume A(n) is true. We show A(n+ 1) holds.
Since A(n) is true, we have m + n ∈ N. Furthermore, N is inductive and

thus (m+ n) + 1 ∈ N. Since addition is associative, we conclude

(m+ n) + 1 = m+ (n+ 1) and so m+ (n+ 1) ∈ N .

Consequently, A(n+ 1) holds, and so A(n) is true for all n ∈ N.
The part mn ∈ N for all m, n ∈ N is left as an exercise.
We continue with Assertion (2). To prove Assertion (2), it suffices to show

that M =df {n | n ∈ N, ]n,n+ 1[ ∩ N = ∅} is inductive.
To see that 1 ∈M, consider

]1, 2[ ∩ N ⊆ ]1, 2[ ∩ {x | x ∈ R, x = 1 or 2 6 x}

= ]1, 2[ ∩ ({1} ∪ {x | x ∈ R, 2 6 x}) = ∅ .

Assume n ∈M. We have to show that n+1 ∈M. Suppose the converse, i.e.,
there is an m such that m ∈ ]n+ 1,n+ 2[ ∩ N. So,

n+ 1 < m < n+ 2 . (1.8)
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On the other hand, the set M̃ = {m | m ∈ N, m − 1 ∈ N0} is clearly
inductive, i.e., M̃ = N. Hence, m > 2 implies m − 1 ∈ N. But by (1.8) we
have n < m− 1 < n+ 1, implying that n /∈M, a contradiction.

Definition 1.9 and Theorem 1.5 justify the identification of N with the
set {1, 2, 3, . . .}. But we still do not know whether or not N is bounded from
above. The negative answer is given below.

Theorem 1.6 (Archimedes). The set N is not bounded from above.

Proof. Suppose the converse. Then, by Axiom (3) (cf. Definition 1.7), we
know that s =df sup N ∈ R exists.

Consider s− 1. Clearly, s− 1 is not an upper bound for N. But then there
must be an n ∈ N such that s− 1 < n, which in turn implies that s < n+ 1.
Since N is inductive, we have n+ 1 ∈ N, a contradiction to s = sup N.

Note that Property (2) of Corollary 1.3 is usually called the Archimedean
property or the axiom of Archimedes, while Property (1) is named after Eu-
doxus.

Corollary 1.3.

(1) For all ε > 0, ε ∈ R, there is an n ∈ N such that 1/n < ε.
(2) For all x, y ∈ R with x > 0 and y > 0 there is an n ∈ N such that y 6 n·x.
Proof. To show Assertion (1), suppose the converse. Then there is an ε0 such
that 1/n > ε0 for all n ∈ N. Hence, n 6 1/ε0 for all n ∈ N and so N is
bounded from above, a contradiction to Theorem 1.6.

Let x, y ∈ R be arbitrarily fixed such that the assumptions of Property (2)
hold. We consider y/x ∈ R. By Theorem 1.6 there is an n ∈ N with y/x 6 n

and consequently y 6 n · x.

Next we show that every non-empty set of natural numbers possesses a
minimal element.

Theorem 1.7. Let ∅ 6= M ⊆ N; then M possesses a minimal element.

Proof. Suppose to the contrary that M does not contain a minimal element.
We consider the following set K defined as:

K =df {k | k ∈ N and k < n for all n ∈M} .

It suffices to show that K is inductive, since then we know that K = N, which
in turn implies M = ∅, a contradiction.

We indirectly show that 1 ∈ K. If 1 /∈ K then 1 ∈ M and 1 is minimal
for M.

Now, let k ∈ K. We have to show that k + 1 ∈ K. Suppose k + 1 /∈ K.
Then there is an m1 ∈ M such that m1 6 k + 1. But by our supposition
M does not have a minimal element. So there must be an m2 ∈ M with
m2 < m1 6 k + 1. By Theorem 1.5, Assertion (2), we conclude m2 6 k, a
contradiction to k ∈ K.
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We continue by showing that Q is dense in R.

Theorem 1.8. For every r ∈ R and every ε > 0 there exists a q ∈ Q such
that q ∈ ]r− ε, r+ ε[.

Proof. Let ε > 0 be arbitrarily fixed. We distinguish the following cases:
Case 1. r > 0.
By Corollary 1.3, Assertion (1), there is an n ∈ N such that 1/n < ε.

Consider the set M =df {m | m ∈ N, m > n · r}. By Corollary 1.3, As-
sertion (2), we know that M 6= ∅. By Theorem 1.7, M contains a minimal
element m ∈M. So,

m > n · r (definition of M) , (1.9)
m− 1 6 n · r (since m is minimal) . (1.10)

We define q =df m/n. Then by Inequalities (1.9) and (1.10) we obtain

m− 1
n

6 r <
m

n
, (1.11)

q−
1
n

6 r < q . (1.12)

Hence, r − ε < r < q because of ε > 0 and by the right-hand side of (1.12).
Moreover, q 6 r+1/n by the left-hand side of (1.12). So q 6 r+1/n < r+ε,
and we are done.

Case 2. r < 0.
Then −r > 0, and by Case 1, there is a q ∈ Q with −r− ε < q < −r+ ε.

Consequently, r− ε < −q < r+ ε, and the theorem is shown.

Our next goal is to show that Q ⊂ R (cf. Theorem 1.11). In order to
achieve this result and several related ones, we need some preparations. First,
it is sometimes useful to extend the domain of an inductive definition to the
set N0. Since 0 + 1 = 1, we see that 1 is the successor of 0. So this extension
is well in line with our previous inductive definitions. Let us exemplify this
for the factorial function (cf. (1.4) and (1.5)). We replace the induction basis
(cf. (1.4)) by defining 0! =df 1 and leave (1.5) unchanged. So we have to
check that 1! = 1. By the induction step now we have

1! = (0 + 1)! = 0!(0 + 1) = 1 · 1 = 1 ,

and thus our extension of the factorial function is well defined.
Furthermore, it is also very useful to extend the definition of powers to

all exponents n ∈ N0. So we set a0 =df 1 and an+1 = a · an. A quick
check shows that a1 = a and so this extension is also well defined for all
a ∈ R \ {0}. So this leaves the problem of whether or not it is meaningful
to define 00. We refer the reader to Knuth [103] for a short historical survey
concerning the debate around this question. After the debate stopped, there
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was apparently the general consensus around that 00 should be undefined.
Though we agree with this general conclusion, there are many places where it
is convenient to define 00 =df 1, including the setting here (see Theorem 1.9
below) and whenever one deals with series (see Chapter 2). Therefore, unless
stated otherwise, we shall assume that 00 = 1.

Next, we define for all k,n ∈ Z the so-called binomial coefficients, i.e.,(
n

k

)
=df

{
n(n− 1) · · · (n− k+ 1)

k!
, if k > 0 ;

0 , if k < 0 .
(1.13)

The symbol
(
n
k

)
is read “n choose k.” Note that

(
0
0

)
= 1, since for k = 0

we have the empty product, i.e., a product of no factors, in the numerator,
which is conventionally defined to be 1.

Also note that
(
n
n

)
= 1 for all n ∈ N0, but

(
n
n

)
= 0 for n ∈ Z \ N0. We

should memorize this fact.
It is useful to memorize the following formulae for all n ∈ Z:(

n

0

)
= 1 ,

(
n

1

)
= n ,

(
n

2

)
=
n(n− 1)

2
. (1.14)

Definition 1.13 can be recast for the case that k,n ∈ N0 and n > k. That
is, we can multiply the numerator and the denominator of (1.13) by (n− k)!
and obtain (

n

k

)
=

n!
k!(n− k)!

. (1.15)

This formula directly yields a nice symmetry property, i.e., we can change k
to n − k for k,n ∈ N0 and n > k. Looking again at Definition 1.13 we see
that this symmetry is also satisfied if n ∈ N0 and k ∈ Z. Therefore, for all
n ∈ N0 and k ∈ Z we have (

n

k

)
=

(
n

n− k

)
. (1.16)

Note that this symmetry fails for n ∈ Z \ N0. To see this, let us consider(
−1
k

)
=

(−1)(−2) · · · (−k)
k!

= (−1)k (1.17)

for all k ∈ N0. So for k = 0 we have
(
−1
0

)
= 1 but

(
−1

−1−0

)
= 0 by

Definition 1.13. If k ∈ Z \ N0 then
(
−1
k

)
= 0 (cf. Definition 1.13) and(

−1
−1−k

)
= (−1)−1−k 6= 0. Consequently, we have shown that(

−1
k

)
6=
(

−1
−1 − k

)
for all k ∈ Z . (1.18)
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We leave it as an exercise to show that (1.15) is also false for all other negative
integers.

Below we shall also need the so-called addition formula for binomial coef-
ficients, i.e., for all n ∈ N and all k ∈ Z we have(

n

k

)
=

(
n− 1
k

)
+

(
n− 1
k− 1

)
. (1.19)

Proof. We distinguish the following cases:
Case 1. k ∈ N.
By Definition 1.13, the definition of the factorial function, and by using

the identities n − 1 − k + 1 = n − k and n − 1 − (k − 1) + 1 = n − k + 1 we
directly obtain(

n− 1
k

)
+

(
n− 1
k− 1

)
=

(n− 1) · · · (n− k)

k!
+

(n− 1) · · · (n− k+ 1)

(k− 1)!

=
(n− 1) · · · (n− k+ 1)(n− k)

k!

+
(n− 1) · · · (n− k+ 1)k

k!

=
(n− 1) · · · (n− k+ 1)(n− k+ k)

k!

=
n(n− 1) · · · (n− k+ 1)

k!
=

(
n

k

)
,

and the addition formula is shown for k ∈ N.
Case 2. k ∈ Z \ N.
Then we have k 6 0. If k < 0 then, by Definition 1.13, we see that all

binomial coefficients in the addition formula are zero, and thus the addition
formula is shown. If k = 0 then

(
n−1

0

)
=
(
n
0

)
= 1 and

(
n−1
−1

)
= 0. Thus, the

addition formula is shown for k ∈ Z \ N.
Case 1 and 2 together imply the addition formula as stated in Equa-

tion (1.19).

Figure 1.2 shows some special values of the binomial coefficients. These
values are the beginning of Pascal’s triangle (named after Blaise Pascal, who
published it in 1655). In China this triangle is known as Yang-Hui’s triangle.
Yang Hui published it already in 1261. We refer the reader to Edwards [52]
for the history of Pascal’s triangle. This triangle is easily obtained. We write
the first and last entry as 1 in every row, then the addition formula tells us
that the remaining numbers in a row are obtained by adding the number just
above the desired number and the number to its left. The numbers in Pascal’s
triangle satisfy many identities. We refer the reader to Graham, Knuth, and
Patashnik [71] for further information.
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n

(
n

0

) (
n

1

) (
n

2

) (
n

3

) (
n

4

) (
n

5

) (
n

6

) (
n

7

)
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

Fig. 1.2: Pascal’s triangle

Assertion (1) of the following theorem explains where the name binomial
coefficient comes from: They get their name from the binomial theorem.

Theorem 1.9. The following assertions hold:

(1) For all a, b ∈ R and all n ∈ N we have

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk (binomial theorem) .

(2) For all a ∈ R, a > −1 and all n ∈ N we have (1 + a)n > 1 + na
(called Bernoulli’s inequality).1

(3) For all a ∈ [0, 1] and all n ∈ N we have (1 + a)n 6 1 + (2n − 1)a.

Proof. Assertion (1) is shown inductively. For the induction basis let us look
at the cases n = 0 and n = 1. We directly see that

(a+ b)0 = 1a0b0 = 1
(a+ b)1 = 1a1b0 + 1a0b1 = a+ b ,

and the induction basis is shown. Also, we have seen why our convention to
set a0 = 1 for all a ∈ R is really meaningful.

Next, we assume the induction hypothesis for n and perform the induction
step from n to n+ 1; that is, we have to show that

(a+ b)n+1 =

n+1∑
k=0

(
n+ 1
k

)
an+1−kbk .

This is done as follows: We use the inductive definition of powers, then we
apply the distributive law in lines three to six below. Thus, we obtain

1 Named after Jakob I. Bernoulli
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(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)

n∑
k=0

(
n

k

)
an−kbk (by the induction hypothesis)

= a

n∑
k=0

(
n

k

)
an−kbk + b

n∑
k=0

(
n

k

)
an−kbk (distributive law)

= an+1 +

n∑
k=1

(
n

k

)
an−k+1bk +

n−1∑
k=0

(
n

k

)
an−kbk+1 + bn+1

= an+1 +

n∑
k=1

(
n

k

)
an−k+1bk +

n∑
k=1

(
n

k− 1

)
an−k+1bk + bn+1

= an+1 +

n∑
k=1

[(
n

k

)
+

(
n

k− 1

)]
an−k+1bk + bn+1

= an+1 +

n∑
k=1

(
n+ 1
k

)
an−k+1bk + bn+1 (by (1.19))

=

n+1∑
k=0

(
n+ 1
k

)
an+1−kbk .

Therefore, we have shown Assertion (1).
We show Assertion (2) inductively. The case n = 1 is obvious. Assume the

inequality for n. For n+ 1 we obtain

(1 + a)n+1 = (1 + a)n(1 + a)

> (1 + na)(1 + a) (by the induction hypothesis
and Axiom 2, (iii)) .

Since a > −1, we have 1 + a > 0, and the distributive law gives

(1 + na)(1 + a) = 1 + na+ a+ na2 > 1 + (n+ 1)a ,

where we used that a2 > 0 and n > 0 and Axiom 2, (iii). Hence, Assertion (2)
is shown.

Assertion (3) is shown analogously. Let a ∈ [0, 1]. Assertion (3) is obviously
true for n = 1. We assume that (1 + a)n 6 1 + (2n − 1)a.

For the induction step consider

(1 + a)n+1 = (1 + a)n(1 + a)

6 (1 + (2n − 1)a)(1 + a)

6 1 + 2na+ (2n − 1)a2

6 1 + (2 · 2n − 1)a ,

where the last step holds, since a2 6 a.
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The binomial theorem also provides a combinatorial meaning of the bino-
mial coefficients. If we expand the power (a + b)n in its n factors then the
distributive law tells us that we have to take from each factor either a or b.
So the number of terms with n−k factors of a and k factors of b is given by
the coefficient of an−kbk; i.e., it is

(
n
k

)
.

Exercise 1.4. Prove the following: For all n ∈ N0 we have

n∑
k=0

(
n

k

)
= 2n ,

n∑
k=0

(−1)k
(
n

k

)
= 0n .

Exercise 1.5. Show the following identity for the binomial coefficients holds:
For all k,n ∈ Z we have(

n

k

)
= (−1)k

(
k− n− 1

k

)
.

1.4 Roots

This is a good place to show the following theorem which establishes the
existence and uniqueness of solutions of equations having the form xn = a,
where the right-hand side is any positive real number:

Theorem 1.10. Let a ∈ R, a > 0 and n ∈ N. Then there exists a unique
number x ∈ R such that x > 0 and xn = a.

Proof. Let a ∈ R, a > 0, and let n ∈ N be arbitrarily fixed. We consider the
set Sa =df {y | y ∈ R, y > 0, yn 6 a}. Clearly, 0 ∈ Sa and so Sa 6= ∅.

Now, let y ∈ Sa. Then, by the definition of Sa we have

yn 6 a < a+ 1 6 (1 + a)n ,

and thus y 6 1 + a. Consequently, Sa is also bounded from above. By Ax-
iom (3) we conclude that x =df supSa ∈ R exists. Since min {1,a} ∈ Sa, we
also have x > 0.

Claim 1. xn = a.
Suppose that xn < a. Let η =df a− xn > 0 and

ε =df min
{
x,

η

(2n − 1)xn−1

}
.

Then we have
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(x+ ε)n = xn
(
1 +

ε

x

)n
6 xn

(
1 + (2n − 1) · ε

x

)
(Theorem 1.9, Ass. (3))

= xn + (2n − 1)εxn−1 6 xn + η = a .

But this implies that (x+ ε) ∈ Sa, a contradiction to x = supSa.
So, we must have xn > a.
Next, suppose that xn > a. By Corollary 1.3 there exists an m ∈ N such

that 1/x < m. This implies that −1/(mx) > −1, and hence Theorem 1.9,
Assertion (2) is applicable. We obtain(

x−
1
m

)n
= xn

(
1 −

1
mx

)n
> xn

(
1 −

n

mx

)
(Theorem 1.9, Ass. (2)) .

Now, we choose m large enough such that m > max
{

1
x
,
nxn−1

xn − a

}
. Thus,

(
x−

1
m

)n
> xn

(
1 −

n

mx

)
> xn

(
1 −

xn − a

xn

)
= a .

Consequently, for any y ∈ Sa we have yn 6 a 6 (x − 1/m)n. Therefore, we
conclude that y 6 x− 1/m.

But this means that x− 1/m is an upper bound for Sa, and so we have a
contradiction to x = supSa.

Putting this all together, we must have xn = a.

We call the x satisfying the properties of Theorem 1.10 the nth root of a.
It is denoted by n

√
a or a1/n.

Note that we have just proved the existence of nth roots. So far, we have
no idea how to compute them.

On the positive side, Theorem 1.10 allows us to define powers of positive
real numbers a for rational exponents. This is done as follows: We have
already defined an for n ∈ N0. Now, we extend this definition as follows:

a−n =df
1
an

for all n ∈ N .

So, ap is defined for all p ∈ Z.
Next, let r ∈ Q. Then there are p, q ∈ Z, q 6= 0, such that r = p/q.

Without loss of generality, we can assume q ∈ N. We define

ar =df
q
√
ap . (1.20)
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Exercise 1.6. Show the definition of ar to be independent of the choice of
the representation of r.

Now we are ready to show the desired separation result, i.e., Q ⊂ R.

Theorem 1.11. The rational numbers are a proper subset of the real num-
bers. In particular,

√
2 /∈ Q.

Proof. It suffices to show
√

2 /∈ Q. Suppose the converse, i.e.,
√

2 ∈ Q. Then
we can directly conclude that M = {m | m ∈ N, m ·

√
2 ∈ N} 6= ∅.

By Theorem 1.7 there exists anm0 ∈M such thatm0 6 m for allm ∈M.
Therefore, we know that m0

√
2 ∈ N and because of 1 <

√
2 < 2, we also have

`0 =df m0

√
2 −m0 ∈ N and `0 < m0 (note that

√
2 < 2 implies

√
2 − 1 < 1).

On the other hand, `0
√

2 = 2m0 −m0

√
2 ∈ N. So, `0 ∈M and `0 < m0, a

contradiction to the choice of m0.
Consequently, M = ∅ and thus

√
2 /∈ Q.

The elements of R \ Q are called irrational numbers.
Theorem 1.11 directly allows for the following corollary:

Corollary 1.4. The following assertions hold:

(1) Between any two different (rational) real numbers there is always a (ratio-
nal) real number;

(2) between any two different (rational) real numbers there is always an (irra-
tional) rational number.

Proof. Assertion (1) follows from Proposition 1.1 (Assertion (2)).
To show Assertion (2), let a, b ∈ R, a < b. Now, we apply Theorem 1.8

to (a+ b)/2 for ε = (b− a)/8. Thus, there is a q ∈ Q such that a < q < b.
Finally, let a, b ∈ Q, a < b. Then (1/

√
2)a < (1/

√
2)b. As just shown,

there exists a q ∈ Q such that (1/
√

2)a < q < (1/
√

2)b. Without loss of
generality let q 6= 0. Hence, a <

√
2q < b, and as in the proof of Theorem 1.11

one easily verifies that
√

2q /∈ Q.

1.5 Representations of the Real Numbers

Next we ask how we may represent the real numbers. The following lemma
is needed to prepare the corresponding result: It introduces the technique of
nested intervals.

Lemma 1.1. Let k ∈ N0, m ∈ N, m > 2, and zi ∈ {0, . . . ,m − 1} for
all i ∈ N. Then there exists a uniquely determined x ∈ R, x > 0 such that
x ∈

⋂
n∈N[an,bn], where an =

∑n
i=1 zim

k−i and bn = an + mk−n for
all n ∈ N.
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Proof. By definition we have 0 6 an < bn for all n ∈ N. Furthermore, by
construction we know that an 6 an+1 and

bn+1 =

n+1∑
i=1

zim
k−i +mk−(n+1) = an + (zn+1 + 1)mk−(n+1)

6 an +m ·mk−(n+1) = bn for all n ∈ N .

Consequently, {an | n ∈ N} is bounded from above by b1. We define

x =df sup {an | n ∈ N} .

Therefore, we already have x > 0 and an 6 x for all n ∈ N.
Claim 1. x 6 bn for all n ∈ N.
Suppose the converse, i.e., there exists an n∗ such that bn∗ < x. Then

we have an < bn 6 bn∗ < x for all n > n∗. Consequently, we conclude
that an < bn∗ <

1
2 (x+ bn∗) < x for all n > n∗, and so x cannot be the least

upper bound of {an | n ∈ N}, a contradiction. This shows Claim 1.
We conclude that x ∈

⋂
n∈N[an,bn].

Claim 2. x is uniquely determined.
Suppose the converse, i.e., there are x, y ∈

⋂
n∈N[an,bn] with x 6= y,

where without loss of generality, x < y. So an 6 x < y 6 an +mk−n and
thus 0 < y − x 6 bn − an = mk−n for all n ∈ N. By Corollary 1.3 there is
an n0 > 2 such that 1

n0
< y− x. Now, let n > k+ n0. Then we have

1
2n0

<
1
n0

< y− x 6 mk−n

=
1

mn−k
6

1
2n−k

6
1

2n0
,

a contradiction.

Theorem 1.12. Let m ∈ N, m > 2, and x ∈ R, x > 0. Then there exist
k ∈ N0 and zi ∈ {0, . . . ,m − 1} for all i ∈ N such that x ∈

⋂
n∈N[an,bn],

where an =df
∑n
i=1 zim

k−i and bn =df an +mk−n for all n ∈ N.

Proof. Let x ∈ R, x > 0, and m ∈ N, m > 2, be arbitrarily fixed. Consider
the set K =df {n | n ∈ N, x < mn}. Theorem 1.7 implies that k =df minK
exists.

Let n ∈ N be any natural number such that x
m−1 < n. Then we know

that x < n(m− 1). Using Theorem 1.9, Assertion (2), we obtain

mn = (m− 1 + 1)n = (1 +m− 1)n

> 1 + n(m− 1) > 1 + x > x .

Hence, we can conclude that n ∈ K.
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We define `1 =df min
{
n | n ∈ N,

x

mk−1
< n

}
and z1 =df `1 − 1. By

construction we have z1 ∈ N0 and

z1 = `1 − 1 6
x

mk−1
< `1 = z1 + 1 .

Note that x/mk−1 < m. Consequently, z1 < m and

z1m
k−1 = a1 6 x < (z1 + 1)mk−1 = b1 ,

and so x ∈ [a1,b1] (and the first interval has been constructed).
So it suffices to iterate the construction. Consider (x−z1m

k−1)/mk−2 ∈ R.
Then there is a z2 such that

0 6 z2 6
x− z1m

k−1

mk−2
< z2 + 1 , and z2 6 m− 1 .

Consequently, an easy calculation gives

a2 = z1m
k−1 + z2m

k−2 6 x < z1m
k−1 + z2m

k−2 +mk−2 = b2 ,

and therefore x ∈ [a2,b2].
Let us perform the induction step formally. Then we define

`j=dfmin

{
1

mk−j

(
x−

j−1∑
i=1

zim
k−i

)}
and zj =df `j − 1 .

As above, we directly obtain

zj 6
1

mk−j

(
x−

j−1∑
i=1

zim
k−i

)
< zj + 1 and thus

zjm
k−j 6

(
x−

j−1∑
i=1

zim
k−i

)
< zjm

k−j +mk−j , and so

aj 6 x < aj +mk−j = bj .

By the induction hypothesis, aj−1 6 x < bj, and therefore

zj 6
1

mk−j
(x− aj−1) <

1
mk−j

(bj−1 − aj−1) = m .

Hence, the theorem is shown.

As the proof of Theorem 1.12 shows, k and all zi ∈ {0, . . . ,m− 1}, i ∈ N, are
uniquely determined. By Lemma 1.1 and its proof, we can express x as

x = z1 · · · zk.zk+1zk+2 · · ·
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i.e., we obtain the so-called m-representation of x.
In our proof of Theorem 1.12 we have always ensured that aj 6 x < bj.

We should note that the proof goes through mutatis mutandis if we always
ensure that aj < x 6 bj. Lemma 1.1 guarantees that we obtain the same x.

If m = 10 and m = 2 then we refer to the resulting representation as
decimal representation and binary representation, respectively. Interestingly,
in the first case we obtain for x = 1/2 and m = 10 the representation 0.50 · · ·
and in the second case 0.4999 · · · . So, the m-representation of x is in this
sense not uniquely determined.

Note that in the second case we have a representation which is called
a repeating decimal (or recurring decimal), since at some point it becomes
periodic. Here by periodic we mean that there is some finite sequence of
digits that is repeated indefinitely. In the case of 0.4999 · · · this sequence has
length 1 and is 9 and we then write 0.49. Another example is 1/3 = 0.3 (read
as 0.3 repeating) and a more complicated one is 1/7 = 0.142857. A decimal
representation with repeating final 0 is called terminating before these zeros,
e.g., we just write 0.5 in the first case. Note that terminating representations
and repeating decimal representations represent rational numbers. Of course,
these considerations generalize to m-representations. For example, if we have
a terminating decimal representation, e.g., 0.125, then we can directly write
this number as a fraction, i.e., we have 0.125 = 125/1000. So, while this case
is clear, it may be less obvious to find integers p,q, q 6= 0, if a repeating
decimal is given. For example, assume we are given 0.125 and we want to
express it as p/q. The reader is encouraged to think about this problem. We
shall solve it in Section 2.10 (see Example 2.19).

Exercise 1.7. Determine the two decimal representations of 1.

Exercise 1.8. Determine a binary representation of 1/7. Find out whether
or not it is uniquely determined.

1.6 Mappings and Numerosity of Sets

Let X and Y be any sets. The notion of a mapping is central for mathematical
analysis and many other branches of mathematics. Thus, we continue by
defining it.

Definition 1.11. Let X and Y be any sets.
(1) We call any F ⊆ X× Y a mapping on X into Y.
(2) For every x ∈ X we call F(x) =df {y | y ∈ Y, (x,y) ∈ F} the value of F in x.
(3) We call dom(F) =df {x | x ∈ X, F(x) 6= ∅} the domain of F.
(4) We call range(F) =df {y | y ∈ Y, there is an x ∈ X with (x,y) ∈ F} the

range of F.
(5) If (x,y) ∈ F then we call x the preimage of y and y the image of x under F.
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Of particular importance are mappings that assign to every x ∈ X pre-
cisely one element y ∈ Y. We call such mappings definite. Note that we shall
mainly deal with definite mappings. Thus we refer to them frequently just
as mappings, or functions, and sometimes call them operators or functionals.
Roughly speaking, in this book, functions map numbers or tuples of num-
bers to numbers and/or to tuples of numbers. Operators map functions to
functions and functionals map functions to numbers.

For definite mappings we often use the following notations:
F : dom(F) → Y and Fx = y provided (x,y) ∈ F.
If dom(F) = X then we say that F is a mapping from X into Y.
If range(F) = Y then we say that F is a mapping on X to (or onto) Y.
By F(X,Y) we denote the set of definite mappings from X into Y.
For the sake of illustration we include some examples.

Example 1.3. Let X be any set, Y = X, and IX =df {(x, x) | x ∈ X}. Then we
call IX the identity mapping. Note that dom(IX) = X and that range(IX) = X.

Example 1.4. Let X and Y be any sets. We call the mappings
pr1 : X×Y → X , pr1(x,y) =df x and pr2 : X×Y → Y , pr2(x,y) =df y
the first and second projection of X× Y.

Exercise 1.9. Consider the following mapping F : N → N defined as:

F =df {(n, 2n) | n ∈ N} .

Determine dom(F) and range(F).

Next, we define important properties of mappings.

Definition 1.12. Let X and Y be any sets, and let F : X→ Y be any mapping.

(1) We call F injective if F is definite and if Fx1 = Fx2 implies that x1 = x2 for
all x1, x2 ∈ dom(F).

(2) We call F surjective if range(F) = Y.
(3) We call F bijective if F is injective and surjective.
(4) Let A ⊆ X; then we call F(A) =df

⋃
x∈A F(x) the image of A with respect

to F.
(5) We call F−1 =df {(y, x) | (y, x) ∈ Y × X, (x,y) ∈ F} the inverse mapping

of F.
(6) Let B ⊆ Y; then F−1(B) =df {x | x ∈ X, there is a y ∈ B with (x,y) ∈ F} is

called the preimage of B with respect to F.

Exercise 1.10. Consider again the mapping F defined in Exercise 1.9.

(1) Determine whether or not F is injective;
(2) determine whether or not F is surjective.

Note that IX is bijective for every non-empty set X. The projection func-
tions pr1 and pr2 (see Example 1.4) are surjective but not injective.
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Definition 1.13 (Restriction, Continuation). Let X and Y be any sets,
and let F : X→ Y be any mapping.

(1) Let A ⊆ X; then we call F|A =df {(x,y) | (x,y) ∈ F, x ∈ A} the restriction
of F to A.

(2) A mapping F̂ ⊆ X×Y is said to be a continuation of F if dom(F) ⊆ dom(F̂)

and F(x) = F̂(x) for all x ∈ dom(F).

For example, our definition of the binomial coefficients (1.13) provides a
mapping

( ·
·
)
: Z × Z → N0, i.e., X = Z × Z, Y = N0, and F(n,k) =

(
n
k

)
.

Consequently, our recast Equation (1.15) is a restriction of this mapping
to A = {(n,k) | n, k ∈ N0, n > k}.

The following exercise summarizes several properties that are occasionally
needed:

Exercise 1.11. Let X and Y be any sets, let F : X→ Y be any mapping from X

into Y, and let A, Ã ⊆ X and B ⊆ Y. Then the following properties are
satisfied:

(1) A 6= ∅ iff F(A) 6= ∅;
(2) A ⊆ Ã implies F(A) ⊆ F(Ã);
(3) F(A ∩ Ã) ⊆ F(A) ∩ F(Ã) (equality holds if F−1 is definite);
(4) F(A ∪ Ã) = F(A) ∪ F(Ã);
(5) F(A) = pr2(F ∩ (A× Y)) and F−1(B) = pr1(F ∩ (X× B));
(6) dom(F) = range(F−1) and dom(F−1) = range(F);
(7) if F is definite then F(F−1(B)) = B ∩ range(F);
(8) if F is injective then F−1(F(A)) = A;
(9) pr−1

1 (A) = A× Y and pr−1
2 (B) = X× B;

(10) Z ⊆ pr1(Z)× pr2(Z) for every Z ⊆ X× Y.

Definition 1.14 (Composition). Let X, Y, Z be any sets and let F ⊆ X×Y
and G ⊆ Y × Z be any mappings. The mapping

G ◦ F =df GF =df {(x, z) | (x, z) ∈ X× Z, there is a y ∈ Y
such that (x,y) ∈ F, (y, z) ∈ G}

is called the composition of F and G.

The following proposition establishes fundamental basic properties of the
composition of mappings:

Proposition 1.2. Let X, Y, Z, U be any sets and let F ⊆ X× Y, G ⊆ Y × Z,
and H ⊆ Z×U be any mappings. Then we have:

(1) (G ◦ F)(A) = G(F(A)) for every A ⊆ X;
(2) dom(G ◦ F) ⊆ dom(F) and equality holds if range(F) ⊆ dom(G);
(3) H ◦ (G ◦ F) = (H ◦G) ◦ F;
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(4) (G ◦ F)−1 = F−1 ◦G−1.

Proof. To show Property (1) we consider any A ⊆ X. Then

(G ◦ F)(A) = {z | z ∈ Z, there is an x ∈ A with (x, z) ∈ G ◦ F}
= {z | z ∈ Z, there are x ∈ A, y ∈ Y with

(x,y) ∈ F, (y, z) ∈ G}

= {z | z ∈ Z, there is a y ∈ F(A) with (y, z) ∈ G}

= G(F(A)) ,

and Property (1) is shown.
The proof of Properties (2) and (3) is left as an exercise.
To show Property (4) consider any (z, x) ∈ (G ◦ F)−1. Then (x, z) ∈ G ◦ F,

and thus there is a y with (x,y) ∈ F and (y, z) ∈ G. Consequently, (y, x) ∈ F−1

and (z,y) ∈ G−1. But this means that (z, x) ∈ F−1 ◦ G−1 and therefore we
have (G ◦ F)−1 ⊆ F−1 ◦G−1.

The opposite inclusion is shown analogously.

Definition 1.15 (Family, Sequence). Let L and X be non-empty sets. A
(definite) mapping F : L → X is often called a family of elements of X with
the index set L. We denote it by F = (xλ)λ∈L or just by (xλ)λ∈L.

If L ⊆ N0 then we call the family (xλ)λ∈L a sequence.
Let L ′ ⊆ L; then we call the restriction of F : L→ X to L ′ a subfamily of F.

In the case of sequences we then speak about a subsequence.

Remark. Note that we clearly distinguish between the family F = (xλ)λ∈L
and the range of it, i.e., range(F) = {xλ | λ ∈ L}.

The notion of a family emphasizes the order and frequency of the elements.
Now we are in a position to deal with the numerosity of sets.

Definition 1.16 (Cantor [29]). Let X and Y be any sets.

(1) We say that X and Y are equinumerous (or have the same cardinality) if
there is a bijection from X to Y. Then we write X ∼ Y.

(2) A set X is said to be finite if X = ∅ or there is an n ∈ N such that
X ∼ {m | m ∈ N, m 6 n}.

(3) A set X is said to be countable if X ∼ N.
(4) A set X is said to be at most countable if X is finite or countable.
(5) A set X is said to be uncountable if it is not countable and not finite.

If a set is not finite then we also say it is infinite.

Note that equinumerosity is an equivalence relation. Let S be any non-
empty set. Then a binary relation ∼ is said to be an equivalence relation if it
is reflexive, transitive, and symmetric. We say that ∼ is symmetric if a ∼ b

implies b ∼ a for all a,b ∈ S.
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Proposition 1.3.

(1) For every non-empty finite set X there is precisely one m ∈ N such that
X ∼ {n | n ∈ N, n 6 m}.

(2) Every infinite set contains a countable subset.
(3) A set X is infinite iff there is a set Y ⊂ X such that Y ∼ X.
(4) Every countable set is not finite.

Proof. We leave the proof of Property (1) as an exercise.
To show Property (2), let X be an infinite set. Then there is an x1 ∈ X

such that X \ {x1} 6= ∅. We continue inductively. So for n ∈ N there must
be an xn+1 ∈ X \ {x1, . . . , xn} with X \ {x1, . . . , xn+1} 6= ∅, since otherwise X
would be finite. Consequently, for X̃ =df {xn | n ∈ N} we have X̃ ⊆ X and X̃
is countable.

We continue with Property (3). For the sufficiency, assume that there is
a Y ⊂ X such that Y ∼ X. Then, by Property (1) we conclude that X is not
finite.

For the necessity, we distinguish the following cases:
Case 1. X is countable.
Then the set X = {xn | n ∈ N} is equinumerous to Y = {xn | n ∈ N, n > 2},

since the mapping xi 7→ xi+1, i ∈ N, is a bijection.
Case 2. X is not finite and uncountable.
By Property (2) we know that X contains a countable subset, and we are

back to Case 1. The details are left as an exercise.
To show Property (4), we suppose the converse. Then N would be finite.

Hence there must be an m ∈ N such that N ∼ {n | n ∈ N, n 6 m}, a
contradiction to (3) and Theorem 1.6 (Archimedes).

Lemma 1.2. Let X ⊆ R be any non-empty and finite set. Then there are
uniquely determined a, b ∈ X such that a 6 x 6 b for all x ∈ X.

Proof. We show the existence of a and b by induction on n ∈ N, where we
may assume X ∼ {m | m ∈ N, m 6 n} (cf. Definition 1.16).

For n = 1 we have X = {x1} and so a = b =df x1 satisfy the lemma.
The induction step is from n to n+1. Assume X ∼ {m | m ∈ N, m 6 n+1}

then X = {x1, . . . , xn, xn+1}. We apply the induction hypothesis to X\{xn+1}.
Hence, there are uniquely determined ã, b̃ ∈ X \ {xn+1} with ã 6 x 6 b̃ for
all x ∈ X \ {xn+1}. We set a =df min {ã, xn+1} and b =df max

{
b̃, xn+1

}
, and

the lemma is shown.

Next we ask whether or not the set of all rational numbers is countable. To
answer this question some preparations are necessary. In particular, we shall
prove that N×N is countable. To establish this result we need the Gaussian
summation formula. It says that
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n∑
i=1

i =
n(n+ 1)

2
. (1.21)

This is shown inductively. The induction basis is for n = 1. We thus have

1∑
i=1

i = 1 (by (1.6))

=
1(1 + 1)

2
,

and the induction basis is shown.
Next, we assume the induction hypothesis for n, i.e.,

n∑
i=1

i =
n(n+1)

2 , and

have to perform the induction step from n to n+ 1. We obtain

n+1∑
i=1

i =

n∑
i=1

i+ (n+ 1) ( by (1.7))

=
n(n+ 1)

2
+ (n+ 1) (by the induction hypothesis)

=
n(n+ 1)

2
+

2(n+ 1)

2
=
n2 + n+ 2n+ 2

2

=
(n+ 1)(n+ 2)

2
,

where the last two steps have been performed by using the distributive laws
(cf. Definition 1.3, Part (3)).

It should be noted that the inductive proof given above is formally correct
and sufficient to establish the Gaussian summation formula. However, the
proof does not tell us anything about how the Formula (1.21) might have
been found. So let us elaborate this point. We may write the numbers to
be summed up in two ways, i.e., in increasing order and in decreasing order
(cf. Figure 1.3). Then we take the sum in each column which is always n+ 1.

1 2 . . . n− 1 n
n n− 1 . . . 2 1

n+ 1 n+ 1 . . . n+ 1 n+ 1

Fig. 1.3: The numbers from 1 to n in increasing order and in decreasing order

Since we have n columns, the sum of the two rows is therefore n(n+1). Taking
into account that every number appears exactly twice, the desired sum is
just n(n+ 1)/2. However, this formula was known long before Carl Friedrich
Gauss rediscovered it at the age of nine by using the technique displayed in
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Figure 1.3 when his teacher requested all pupils to sum the numbers from 1 to
100 as reported by Wolfgang Sartorius von Waltershausen [154, Page 12, 13].

If one has made such a discovery, one should try to figure out whether or
not the technique used generalizes to related problems. Thus the reader is
encouraged to determine the sum of the first n odd numbers and the sum of
the first n even numbers, i.e., to solve the following exercise:

Exercise 1.12. Determine the following sums and prove inductively the re-
sults obtained:

(1)
n∑
i=1

(2i− 1), and

(2)
n∑
i=1

2i .

A more challenging problem is to add consecutive powers. A flavor of this
problem is provided by the following exercise:

Exercise 1.13. Prove inductively the following formulae:

(1)
n∑
i=0

i2 = n(n+ 1)(2n+ 1)/6, and

(2)
n∑
i=0

i3 =

(
n∑
k=0

k

)2

.

Theorem 1.13 (Cantor [28, 29]).

(1) Every subset of N is at most countable.
(2) The set N × N is countable.

Proof. Let X ⊆ N be an infinite set. We show that X is countable. Therefore,
we define a mapping f : N → X by setting f(n) =df xn for all n ∈ N, where
x1 =df minX and xn+1 =df min(X \ {x1, . . . , xn}). By Theorem 1.7, this
definition is admissible. It remains to prove f is bijective.

By the inductive definition of f we have xi < xi+1 for all i ∈ N. Thus, f is
injective.

In order to see that f is surjective, let a ∈ X be arbitrarily fixed.
If a = x1 then f(1) = a. Let a > x1, and m =df max {n | n ∈ N, xn < a}

(cf. Lemma 1.2). Then f(m+1) = a and so for every a ∈ X there is an n ∈ N
such that f(n) = a, and Property (1) is shown.

To show Property (2) let us arrange N × N in an array as shown in Fig-
ure 1.4, where row x contains all pairs (x,y), i.e., having x in the first com-
ponent and y = 1, 2, 3 . . ..

The resulting bijection c is shown in Figure 1.5; that is, we arrange all
these pairs in a sequence starting

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), . . . . (1.22)
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) . . .
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) . . .
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) . . .
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) . . .
(5, 1) . . .

. . . . . .

Fig. 1.4: A two-dimensional array representing N × N

m\n 1 2 3 4 5 6. . .
1 1 2 4 7 11 ↙
2 3 5 8 12 ↙
3 6 9 13 ↙
4 10 14 ↙
5 15 ↙
6 ↙
·
·
·

Fig. 1.5: The bijection c

In this order, all pairs (m,n) appear before all pairs (m ′,n ′) if and only
if m + n < m ′ + n ′. So they are arranged in order of incrementally growing
component sums. The pairs with the same component sum are ordered by
the first component, starting with the smallest one. That is, pair (1, 1) is the
only one in the first segment, and pair (m,n), m + n > 2, is located in the
segment

(1,m+ n− 1), (2,m+ n− 2), . . . , (m,n), . . . , (m+ n− 1, 1) . (1.23)

Note that there are m+n− 1 many pairs having the component sum m+n.
Thus, in front of pair (1,m+n− 1) in the Sequence 1.22 we have m+n− 2
many segments containing a total of 1 + · · ·+ (m+n− 2) many pairs. Using
Equation (1.21) we formally define the desired bijection c : N × N → N as

c(m,n) = m+

m+n−2∑
i=1

i = x+
(m+ n− 2)(m+ n− 1)

2
(by (1.21))

=
(m+ n)2 −m− 3n+ 2

2
. (1.24)

Note that we start counting with 1 in the Sequence (1.22), since otherwise we
would not obtain a bijection (see Figure 1.5). Consequently, we have shown
that N × N is countable.
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The bijection c is called Cantor’s pairing function. For more information
concerning this pairing function we refer the reader to [196].

Theorem 1.13 allows for several further results. The first one is recom-
mended as an exercise.

Exercise 1.14. Show that for every fixed k ∈ N, k > 2, there is a bijection
ck : Nk → N, where Nk =×k

i=1
N.

Furthermore, now we are in a position to show the following result:

Theorem 1.14.

(1) Let X and Y be at most countable sets. Then X ∪ Y is at most countable.
(2) If X is a countable set and f a mapping from X onto Y then the set Y is at

most countable.
(3) Let L be an index set which is at most countable. Furthermore, assume that

for all λ ∈ L the sets Xλ are at most countable. Then the set X̃ =
⋃
λ∈L Xλ

is at most countable.
(4) Let X be any uncountable set and let Y ⊆ X be at most countable. Then X

and X \ Y are equinumerous.

Proof. Property (1) is obvious if both X and Y are finite or if one set is finite
and the other set is countable. So, it remains to consider the case where both
sets X and Y are countable. Now, if X \ Y is finite then we are again done.
Otherwise, it is easy to see that X \ Y is countable, too.

Therefore, let X \ Y = {x1, x2, x3, . . .} and Y = {y1,y2,y3, . . .}. Then we
define f(2n) = yn and f(2n − 1) = xn for all n ∈ N. Clearly, f is a bijection
between N and X ∪ Y, and Property (1) is shown.

Property (2) is shown as follows: Since the set X is countable, we can
write the set X as X = {x1, x2, x3, . . .}. Consider the mapping g : N → Y

defined as g(n) =df f(xn) for all n ∈ N. By assumption we conclude that g
is surjective. Hence, we can define the following mapping h : Y → N, where

h(y) =df min {n | n ∈ N, g(n) = y} for all y ∈ Y .

Note that by construction we have Sy =df {n | n ∈ N, g(n) = y} 6= ∅ for
every y ∈ Y. Therefore, by Theorem 1.7 we know that Sy possesses a minimal
element for every y ∈ Y and so h is well defined. Furthermore, by construction
we have g(h(y)) = y for all y ∈ Y and we know that h is definite.

We claim that the mapping h is injective. Let y1,y2 ∈ Y be any elements
such that h(y1) = h(y2). We have to show that y1 = y2. Suppose to the
contrary that y1 6= y2. Without loss of generality we can assume that y1 < y2.
Let ni =df h(yi), i = 1, 2, then we directly obtain that

y1 = g(n1) < y2 = g(n2) .

Since h(y1) = h(y2), we also have g(n1) = g(h(y1)) = g(h(y2)) = g(n2), a
contradiction. Consequently, h is injective and thus a bijection from Y to h(Y).
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Since h(Y) ⊆ N we conclude that h(Y) is at most countable (cf. Theorem 1.13,
Assertion (1)). Therefore, Y is at most countable, too, and Property (2) is
shown.

We continue with Property (3). If L is finite then we can directly apply
Property (1) a finite amount of times and thus X̃ is at most countable. If L
is countable then we can write L = {λ1, λ2, λ3, . . .}. By assumption we know
that for every λn ∈ L the set Xλn

is either finite or countable. Hence, there
is a surjective mapping m 7→ x

(m)
λn

such that Xλn
= {x

(1)
λn

, . . . , x(m)
λn

, . . .}. So
we define a mapping F : N × N → X̃ by setting

F(m,n) =df x
(m)
λn

for all m,n ∈ N .

By construction the mapping F is surjective. Since N×N is countable (cf. The-
orem 1.13, Assertion (2)), we conclude by Assertion (1) of Theorem 1.13
that X̃ is at most countable.

Finally, we show Property (4). If Y is finite, the assertion is obvious. So
let Y be countable. Then X \ Y must be uncountable, since otherwise, by
Property (1), we would directly obtain that (X \ Y) ∪ Y = X is countable, a
contradiction.

By Proposition 1.3, Assertion (2), there is a countable subset Y1 of X \ Y.
We set Z =df (X \ Y) \ Y1 and obtain

X = Z ∪ (Y ∪ Y1) and X \ Y = Z ∪ Y1.

We define a mapping f : X → X \ Y by setting f(x) = x for all x ∈ Z and
such that f|Y∪Y1 : Y ∪ Y1 → Y1 is bijective. This is possible, since both Y ∪ Y1

and Y1 are countable.
Consequently, f is bijective by construction, and so X ∼ X \ Y.

Theorems 1.13 and 1.14 directly allow for the following corollary:

Corollary 1.5. The set of all rational numbers is countable.

Proof. First, we consider the set {r | r ∈ Q, r > 0} and the following mapping
f : N×N → {r | r ∈ Q, r > 0} defined as f(m,n) =df m/n for allm,n ∈ N. By
the definition of Q we conclude that f is surjective. Since N×N is countable
(cf. Theorem 1.13, Assertion (2)), we know by Assertion (1) of Theorem 1.13
that {r | r ∈ Q, r > 0} is at most countable. Since N ⊆ {r | r ∈ Q, r > 0} the
set {r | r ∈ Q, r > 0} must be countable.

Analogously one shows that {r | r ∈ Q, r < 0} is countable. Thus, we can
apply Theorem 1.14, Assertion (1), twice and see that

Q = {r | r ∈ Q, r > 0} ∪ {0} ∪ {r | r ∈ Q, r < 0}

is countable.
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So it remains to clarify whether or not the set of all real numbers and the
set of all irrational numbers are countable.

Theorem 1.15 (Cantor [28, 29]). The set ]0, 1[ ⊂ R is uncountable.

Proof. Note that ]0, 1[ is not finite, since 1/n ∈ ]0, 1[ for every n ∈ N. Suppose
the converse, i.e., ]0, 1[ is countable. Then we can write ]0, 1[= {x1, x2, x3, . . .}.
In accordance with Theorem 1.12 we take for every xi, i ∈ N, its decimal
representation and obtain xi = .zi1zi2zi3 · · · , where zij ∈ {0, 1, . . . , 9} for
all j ∈ N.

Next, we chose for all i ∈ N numbers zi, where zi ∈ {1, 2, . . . , 8} \ {zii}.
For k = 1 and m = 10 and the chosen zi we know by Lemma 1.1 that there
exists a uniquely determined x ∈ R, x > 0, such that x ∈

⋃
n∈N[an,bn],

namely x = sup
{∑n

i=1 zi10k−i | n ∈ N}. By Theorem 1.12 this x has the
decimal representation .z1z2z3 · · · .

Due to our construction we conclude that x ∈ ]0, 1[ (this is the reason we
excluded 0 and 9 as possible choices for zi). Furthermore, x 6= xi for all i ∈ N,
since the decimal representation is unique for every real number x > 0. But
this is a contradiction to our supposition.

Theorems 1.15 and 1.14 directly yield the following corollary:

Corollary 1.6. The sets R and R \ Q are equinumerous.

So, there are many more irrational numbers than rational ones, since the
rational numbers are countable and the irrational numbers are uncountable.

Exercise 1.15. Generalize Theorem 1.13 as follows. If A1 and A2 are at
most countable then A1 ×A2 is at most countable.

Exercise 1.16. Show that ℘(N) is uncountable.

Note that Theorem 1.15 is in some sense much deeper than Theorem 1.13.
Of course, it is very important to ask whether or not N×N is still countable.
But once asked, it is not too difficult to establish the countability of N × N.
On the other hand, it is Theorem 1.15 that makes the subject of countability
interesting, since it establishes the existence of a well-defined set which is
not countable. This came as a big surprise. Furthermore, the proof technique
used in the demonstration of Theorem 1.15 turned out to be of major im-
portance and has found numerous applications. It is usually referred to as a
diagonalization argument or the diagonal method. In the form used above it
was invented by Cantor [31].

Exercise 1.17. Provide a bijection b : N0 × N0 → N0.
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1.7 Linear Spaces

Next, we introduce further sets that are important for the further develop-
ment of mathematical analysis.

We set Rm =df R × · · · × R︸ ︷︷ ︸
m times

for every m ∈ N.

So, every x ∈ Rm can be written as (x1, . . . , xm), and we refer to xi as the
ith component of x.

Next, we define addition for elements of Rm, i.e., +: Rm × Rm → Rm,
where

x+ y =df (x1 + y1, . . . , xm + ym) for all x, y ∈ Rm .

Note that the addition of the ith components, i.e., xi + yi, i = 1, . . . ,m, is
the usual addition in R.

Furthermore, we define a multiplication · : R × Rm → Rm as follows:
Let α ∈ R, and let x ∈ Rm; then we set

α · x =df (αx1, . . . ,αxm) .

Note that the multiplication of the ith components, i.e., αxi, is the usual
multiplication in R.

The following proposition summarizes basic properties:

Proposition 1.4. Let m ∈ N be arbitrarily fixed.

(1) (Rm,+) is an Abelian group with neutral element (0, . . . , 0);
(2) 1 · x = x for all x ∈ Rm;
(3) (α+ β)x = α · x+ β · x for all α,β ∈ R and all x ∈ Rm;
(4) α · (x+ y) = α · x+ α · y for all α ∈ R and all x, y ∈ Rm;
(5) α · (β · x) = (αβ) · x for all α,β ∈ R and all x ∈ Rm.

The proof of Proposition 1.4 is left as an exercise.
Note that in the following we shall usually omit the multiplication dot,

i.e., we shortly write αx instead of α · x.

Now we are in a position to define the fundamental notions of a vector
space, also called a linear space and related notions such as the scalar product,
Euclidean norm, and Euclidean distance.

Formally, this is done as follows:

Definition 1.17 (m-Dimensional Linear Space).

(1) We call (Rm,+, · ) them-dimensional linear space orm-dimensional vector
space.

(2) The mapping 〈 · , · 〉 : Rm × Rm → R defined as

〈x,y〉 =df

m∑
i=1

xiyi
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for all x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . ,ym) ∈ Rm is called the
scalar product on Rm.

(3) The mapping ‖ · ‖ : Rm → R defined as ‖x‖ =df 〈x, x〉1/2 for all x ∈ Rm is
said to be the Euclidean norm on Rm.

(4) The number ‖x− y‖ is called the Euclidean distance of x and y in Rm.
(5) We call (Rm, ‖ · ‖) the m-dimensional Euclidean space.

We shall generalize the notion of a linear space later by using any Abelian
group (X,+) and by defining a multiplication of the elements of X with the
elements of a field F in a way such that the Assertions (2) through (5) of
Proposition 1.4 are satisfied.

Occasionally we shall use the canonical basis of Rm, which we define as
follows: For i = 1, . . . ,m, let ei =df (0, . . . , 0, 1, 0, . . . , 0), where the ith com-
ponent is 1. We refer to the ei as canonical unit vectors. Then for all x ∈ Rm
we have

x =

m∑
i=1

xiei . (1.25)

Note that we use 0 to denote the neutral element in R and in Rm. So, in the
first case, 0 denotes 0, while in the second case it stands for (0, . . . , 0) ∈ Rm.
This is a notational overload, but it will be clear from the context what is
meant.

Next we show a famous and very helpful inequality found by Cauchy [32]
and in a more general form by Bunyakovsky [23]. Schwarz [166] rediscovered
it without being aware of Bunyakovsky’s work. It is widely known as the
Cauchy–Schwarz inequality.

Theorem 1.16 (Cauchy–Schwarz Inequality). For all x, y ∈ Rm we
have |〈x,y〉| 6 ‖x‖ ‖y‖. Equality holds if and only if there are α,β ∈ R with
(α,β) 6= (0, 0) such that αx+ βy = 0.

Proof. For all x ∈ Rm, if ‖x‖ = 0 then
∑m
i=1 x

2
i = 0. But this can only

happen iff xi = 0 for i = 1, . . . ,m (cf. Corollary 1.1). Consequently, we see
that

∑m
i=1 xiyi = 0, and thus 〈x,y〉 = 0. This proves the case that ‖x‖ = 0.

Next, let ‖x‖ 6= 0, and let α,β ∈ R. By Corollary 1.1 we obtain

0 6
m∑
i=1

(αxi + βyi)
2 (1.26)

= α2
m∑
i=1

x2
i + 2αβ

m∑
i=1

xiyi + β2
m∑
i=1

y2
i

= α2 ‖x‖2
+ 2αβ〈x,y〉+ β2 ‖y‖2 . (1.27)

We set α =df −〈x,y〉/ ‖x‖ and β = ‖x‖. Then (1.26) and (1.27) directly yield
that
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0 6 〈x,y〉2 − 2〈x,y〉2 + ‖x‖2 ‖y‖2 , (1.28)

i.e., the desired inequality.
Finally, let 〈x,y〉2 = ‖x‖2 ‖y‖2. The equality is trivial if x = 0 or y = 0

and then we can choose any α,β ∈ R with (α,β) 6= (0, 0).
So let x 6= 0 6= y. Then we have ‖x‖ 6= 0 6= ‖y‖. By (1.26), we see that

equality holds iff

0 =

m∑
i=1

(αxi + βyi)
2 iff

0 =

m∑
i=1

(
−
〈x,y〉
‖x‖

xi + ‖x‖yi
)2

iff

0 =

m∑
i=1

(
−〈x,y〉xi + ‖x‖2

yi

)2

.

Since this is a sum of squares, each summand must be 0; i.e., we must have
−〈x,y〉xi + ‖x‖2

yi = 0. Thus, αx+ βy = 0 with α = −〈x,y〉 and β = ‖x‖2,
and so (α,β) 6= (0, 0).

Now we are ready to establish the fundamental properties of the Euclidean
norm in Rm.

Theorem 1.17. Let m ∈ N be arbitrarily fixed. Then for all x, y ∈ Rm and
all α ∈ R we have:

(1) ‖x‖ > 0 and ‖x‖ = 0 iff x = 0;
(2) ‖αx‖ = |α| ‖x‖;
(3) ‖x+ y‖ 6 ‖x‖+ ‖y‖;
(4) |‖x‖− ‖y‖| 6 ‖x− y‖.

Note that Property (3) is called the triangle inequality or Minkowski’s
inequality in honor of Hermann Minkowski [124], who primarily pushed the
study of norms other than the Euclidean one in finite-dimensional spaces.

Proof. By definition we have ‖x‖ =
(∑m

i=1 x
2
i

)1/2, and thus Properties (1)
and (2) obviously hold.

Let x, y ∈ Rm, then Property (3) is shown as follows:

‖x+ y‖2
=

m∑
i=1

(xi + yi)
2 =

m∑
i=1

x2
i + 2

m∑
i=1

xiyi +

m∑
i=1

y2
i

= ‖x‖2
+ 2〈x,y〉+ ‖y‖2

6 ‖x‖2
+ 2 |〈x,y〉| + ‖y‖2

6 ‖x‖2
+ 2 ‖x‖ ‖y‖+ ‖y‖2 (by Theorem 1.16)

= (‖x‖+ ‖y‖)2 ,
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and Property (3) is proved.
By Property (3) we have ‖x‖ = ‖x− y+ y‖ 6 ‖x− y‖+ ‖y‖. Hence,

|‖x‖− ‖y‖| 6 |‖x− y‖+ ‖y‖− ‖y‖|
= |‖x− y‖| = ‖x− y‖ ,

where the last line holds because of Property (1) and the definition of the
absolute value.

Definition 1.18 (Norm). Any functional ‖ · ‖ : Rm → R satisfying Proper-
ties (1) through (3) of Theorem 1.17 is called a norm.

On Rm one can define many more functionals ‖ · ‖ : Rm → R satisfying
the conditions of Definition 1.18. We mention here some famous examples.

Let p ∈ R, p > 1; then we define for all x ∈ Rm the so-called p-norm by

‖x‖p =df

(
m∑
i=1

|xi|
p

)1/p

. (1.29)

Note that the so far considered Euclidean norm is then ‖ · ‖2.
For p = 1 we obtain ‖x‖1 =

∑m
i=1 |xi| (the sum norm).

Another important example is ‖x‖∞ =df maxi=1,...,m |xi|, the so-called
maximum norm.

Note that for m = 1, i.e., in R, all these norms coincide and are equal to
the absolute value (cf. Proposition 1.1).

Exercise 1.18. Show that the conditions of Definition 1.18 are satisfied for
the functionals ‖ · ‖∞ and ‖ · ‖1 defined above.

Figure 1.6 and Figure 1.7 show the set U1 and U∞ of all points in x ∈ R2

such that ‖x‖1 = 1 and ‖x‖∞ = 1, respectively. We refer to these sets as the
unit circle.

Of course, the definition of the unit circle generalizes to any norm ‖ · ‖;
i.e., we then define U =df {x | x ∈ R2 , ‖x‖ = 1}.

1−1 x1

x2

1

−1

Fig. 1.6: The unit circle U1

x1

x2

−1

1

1

−1

Fig. 1.7: The unit circle U∞
Exercise 1.19. Draw the unit circle for the Euclidean norm.
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1.8 Complex Numbers

Historically, the complex numbers were introduced to extend the root func-
tion to all real numbers.

From an algebraic point of view it is interesting to ask whether or not we
can define on R×R addition and multiplication in a way such that we obtain
a field. The affirmative answer is provided below.

We define +, · : (R × R)× (R × R) → R × R, i.e., the operations addition
and multiplication, respectively, as follows: For all (a,b), (c,d) ∈ R × R let

(a,b) + (c,d) =df (a+ c,b+ d) , (1.30)
(a,b) · (c,d) =df (ac− bd,ad+ bc) . (1.31)

Note that addition is defined as before (cf. Section 1.7).
We set C =df ({(x,y) | x, y ∈ R},+, · ).

Theorem 1.18. The structure C is an Abelian field with neutral element
(0, 0) and identity element (1, 0).

Proof. By Proposition 1.4, we already know that ({(x,y) | x, y ∈ R},+) is an
Abelian group with neutral element (0, 0).

By its definition, the operation · is commutative. An easy calculation
shows that it is also associative.

Furthermore, by (1.31) we directly obtain that

(x,y) · (1, 0) = (x− 0, 0 + y) = (x,y) for all x,y ∈ R .

Thus, (1, 0) is the identity element.
If z = (x,y) 6= (0, 0) then

(x,y) ·
(

x

x2 + y2
,

−y

x2 + y2

)
=

(
x2

x2 + y2
+

y2

x2 + y2
,

−xy

x2 + y2
+

xy

x2 + y2

)
= (1, 0) ,

and thus the inverse element 1/z of z exists.
It remains to show the distributive laws. Let (x,y), (u, v), and (w, z) be

arbitrarily fixed. Then we have

(x,y) · ((u, v) + (w, z)) = (x,y) · (u+w, v+ z)

= (x(u+w) − y(v+ z), x(v+ z) + y(u+w))

= (xu− yv, xv+ yu) + (xw− yz, xz+ yw)

= (x,y) · (u, v) + (x,y) · (w, z) .

The remaining distributive law is shown analogously.
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We call C the field of the complex numbers.

Remarks.

(a) All calculation rules for real numbers that result directly from the field
properties of (R,+, · ) can be translated to C. Whenever order is involved,
special care has to be taken, since the relation 6 is not defined for complex
numbers.

(b) Consider the subset {(x, 0) | x ∈ R} of C. By definition we have

(x, 0) + (y, 0) = (x+ y, 0) ,
(x, 0) · (y, 0) = (xy, 0) .

Thus, from the viewpoint of algebraic structures, x ∈ R and (x, 0) ∈ C
can be identified and so can R and {(x, 0) | x ∈ R}. In this sense, C is an
extension of R.

(c) Euler (1777) introduced i =df (0, 1) (imaginary unit). Using i we can
represent every z = (x,y) ∈ C as

z = (x,y) = (x, 0) + (0,y) = (x, 0) + y(0, 1)

= (x, 0) + (y, 0) · (0, 1) = (x, 0) + (y, 0) · i
= x+ yi (cf. (b)) . (1.32)

We call x the real part and y the imaginary part of z, denoted by <(z)
and =(z), respectively. Note that for x = 0 and y 6= 0 we shall shortly write
z = yi instead of z = 0 + yi. Furthermore, we shall use −z = (−x,−y) to
denote the inverse of z with respect to addition, since z+ (−z) = (0, 0).
We define the complex conjugate z of z; let z = (x,y) then z =df (x,−y);
i.e., the complex conjugate of x+ yi is x− yi.

We continue with further definitions that will be needed later.
Inequality of complex numbers z1, z2 is defined as follows: Let z1 = (x1,y1)

and z2 = (x2,y2), then we say that z1 6= z2 if x1 6= x2 or y1 6= y2.
Consequently, for all z1, z2 ∈ C we have either z1 = z2 or z1 6= z2. Note that

the inequality relation is symmetric, but it is neither transitive nor reflexive.
Furthermore, we define powers of complex numbers with integer exponents

as follows: For all z ∈ C and all n ∈ N we set z1 =df z and zn+1 =df z · zn.
For z ∈ C such that z 6= 0 we define z−n =df 1/zn for all n ∈ N as well
as z0 = 1.

For example, by the definition just made we see that i−1 is the inverse of i.
By the proof of Theorem 1.18 we already know how to compute the inverse
of i; i.e., recalling that i = (0, 1), we have

1
i

=

(
0

02 + 12
,

−1
02 + 12

)
= (0,−1) = −i ,
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where we used the second convention made in Part (c) of the remarks above.
Let us also compute i2 by using (1.31). We directly obtain

i2 = (0, 1) · (0, 1) = (−1, 0) = −1 , (1.33)

where we used the first convention made in Part (c) of the remarks above.
Now, it is easy to see that i3 = −i and i4 = 1.

Moreover, having the imaginary unit allows for a convenient way to per-
form multiplication and division of complex numbers. In order to see this,
let z1 = x1 + y1i and z2 = x2 + y2i. Then we have

z1 · z2 = (x1 + y1i)(x2 + y2i)

= x1x2 + x1y2i+ y1y2i
2 + y1x2i

= x1x2 − y1y2 + (x1y2 + x2y1)i , (1.34)

and for z2 6= 0 we obtain

z1

z2
=
x1 + y1i

x2 + y2i
=

(x1 + y1i)(x2 − y2i)

(x2 + y2i)(x2 − y2i)

=
x1x2 + y1y2 + (x2y1 − x1y2)i

x2
2 + y2

2

. (1.35)

The real number |z| =df |(x,y)| =
(
x2 + y2

)1/2 (cf. Definition 1.17) is
called the absolute value of z.

In order to show our next theorem, it is very helpful to show the equality

wz = wz for all w, z ∈ C . (1.36)

Using (1.34) we directly have

wz = ux+ vy+ (vx− uy)i .

Therefore, we conclude that

wz = ux+ vy− (vx− uy)i = ux+ vy+ (uy− vx)i

= (u− vi) · (x+ yi) = wz ,

and the Equality (1.36) is shown.
The following theorem summarizes the important properties of the abso-

lute value of complex numbers:

Theorem 1.19. For all w, z ∈ C the following properties are satisfied:

(1) |z| > 0 and |z| = 0 iff z = 0;
(2) |z|

2
= z · z;

(3) |wz| = |w| |z|;
(4) |w+ z| 6 |w| + |z|, and
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(5) ||w| − |z|| 6 |w− z|.

Proof. By Corollary 1.1, Property (1) is obvious.
To show Property (2), let z = x+ yi. Then we obtain

z · z = (x+ yi) · (x− yi)

= x2 + x(−yi) + yxi+ yi(−yi)

= x2 − xyi+ xyi− y2i2

= x2 + y2 = |z|
2 ,

and Property (2) is shown.
We continue with Property (3). Let w = u + vi and let z = x + iy. Then

by (1.34) and the definition of the absolute value we have

|wz|
2

= (ux− vy)2 + (vx+ uy)2

= u2x2 − 2uxvy+ v2y2 + v2x2 + 2uxvy+ u2y2

= u2x2 + v2y2 + v2x2 + u2y2

= (u2 + v2) · (x2 + y2) = |w|
2 · |z|2 .

Thus, we conclude that |wz| = |w| |z|, and Property (3) is proved.
It remains to show the triangle inequality. First, we note that 2x = 2

√
x2

for all x ∈ R. By Corollary 1.1 we also know that y2 > 0 for all y ∈ R. Hence,
we conclude that 2x 6 2

√
x2 + y2. Using the latter inequality we directly see

that for all z ∈ C, where z = x+ yi the following holds:

z+ z = (x+ yi) + (x− yi) = 2x 6 2
√
x2 + y2 = 2 |z| . (1.37)

Now, we apply Property (2) of Theorem 1.19 and the equality w+ z = w+ z
(cf. Exercise 1.21 below), and obtain

|w+ z|
2

= (w+ z) · (w+ z) = (w+ z) · (w+ z)

= ww+ zw+wz+ zz

= |w|
2

+wz+wz+ |z|
2

(by Eq. (1.36))
6 |w|

2
+ 2 |wz| + |z|

2
(by Eq. (1.37))

= |w|
2

+ 2 |w| |z| + |z|
2

(by Property (3))
= |w|

2
+ 2 |w| |z| + |z|

2
(since |z| = |z|)

= (|w| + |z|)2 .

Thus, taking the root on both sides yields |w+ z| 6 |w|+ |z|, and Property (4)
is shown.

Finally, Property (5) is shown as in the real case (cf. Proposition 1.1).

Moreover, the complex numbers can be represented as points of the com-
plex plane (see Figure 1.8). It should be noted that ϕ is given in radians.
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i

x

y

=

1

|z|

ϕ and y = |z| sinϕ.

<

z = x+ yi

= |z|

(
x

|z|
+
y

|z|
i

)
= |z|(cosϕ+ i sinϕ),

where x = |z| cosϕ

Fig. 1.8: The complex plane

We include Figure 1.8 at this time for the sake of illustration, since we have
not defined yet what the functions sine and cosine are. This will be done
later. Then we shall also see why this representation has several benefits.
Note that ϕ and |z| uniquely determine the represented complex number
provided −π < ϕ 6 π and z 6= 0. Then we use arg(z) to refer to ϕ.

Finally, Definition 1.17 suggests to ask whether or not we can also define
an m-dimensional complex linear space. The affirmative answer is provided
below, but as we shall see some modifications are necessary.

We define Cm in analogue to Rm. Addition for elements of Cm, i.e.,
+: Cm × Cm → Cm is also defined analogously; that is, we set

w+ z =df (w1 + z1, . . . ,wm + zm) for all w, z ∈ Cm .

The addition of the ith components, i.e., wi + zi, i = 1, . . . ,m, is the usual
addition in C.

Multiplication · : C × Cm → Cm is defined canonically as follows:
Let α ∈ C, and let z ∈ Cm; then we set

α · z =df (αz1, . . . ,αzm) .

Note that the multiplication of the ith components, i.e., αzi, is the usual
multiplication in C.

It is easy to see that the properties stated in Proposition 1.4 directly
translate to the complex case. But now, it becomes more complicated, since
we have to define the complex analogue for a scalar product. Recalling that
the scalar product for Rm has been used to induce the Euclidean norm we
see that a new idea is needed. Theorem 1.19, Assertion (2), hints that one
should define
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〈w, z〉 =df

m∑
i=1

wizi (1.38)

for all w = (w1, . . . ,wm) ∈ Cm and z = (z1, . . . , zm) ∈ Cm. Now, it is easy
to see that 〈 · , · 〉 : Cm×Cm → C. The product 〈 · , · 〉 is called the Hermitian
form in honor of Charles Hermite.

The following definition provides the remaining parts:

Definition 1.19 (m-Dimensional Complex Linear Space).

(1) We call (Cm,+, · ) the m-dimensional complex linear space or m-dimen-
sional complex vector space.

(2) The mapping ‖ · ‖ : Cm → R defined as ‖z‖ =df 〈z, z〉1/2 for all z ∈ Cm is
said to be the complex Euclidean norm on Cm.

(3) The number ‖w− z‖ is called the complex Euclidean distance of w and z
in Cm.

(5) We call (Cm, ‖ · ‖) the m-dimensional complex Euclidean space.

Further properties of the m-dimensional complex Euclidean space are given
in the problem set for this chapter. There we shall also point out similarities
and differences between the scalar product and the Hermitian form.

Exercise 1.20. Prove the following identities:

(1) ((1 + i)/2))
4

= −1/4 ;
(2) 5/(1 − 2i) = 1 + 2i .

Exercise 1.21. Show the following:

(1) i4n+1 = i, i4n+2 = −1, i4n+3 = −i, and i4n+4 = 1 for all n ∈ N0;
(2) z1 + z2 = z1 + z2, z1 · z2 = z1 · z2 , and z = z for all z, z1, z2 ∈ C;
(3) < (z1/z2) = <(z1 · z2)/ |z2|

2 and = (z1/z2) = =(z1 · z2)/ |z2|
2;

(4) z ∈ R if and only if z = z.

Exercise 1.22. Determine all complex numbers z such that the condition
=(2z+ z) = 1 is satisfied.

Problems for Chapter 1

1.1. Show that for all a,b ∈ R the following assertions hold:

(1) If 0 < a and 0 < b then a/b+ b/a > 2;
(2) if 0 < a and 0 < b such that ab > 1 then a+ b > 2.
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1.2. Show that for all a,b, c ∈ R, a,b, c > 0 the inequalities

√
ab 6

a+ b

2
and

3
√
abc 6

a+ b+ c

3
.

are satisfied.
Prove or disprove that the following generalization holds: Let n ∈ N and

let ai ∈ R, ai > 0, i = 1, . . . ,n, then we have

n

√√√√ n∏
i=1

ai 6
1
n
·
n∑
i=1

ai . (1.39)

If the answer is affirmative then determine under what conditions equality
holds. Note that the left-hand side of Inequality (1.39) is called the geometric
mean and the right-hand side is called the arithmetic mean.

1.3. Let n ∈ N, and let ai ∈ R, ai > 0 for all i = 1, . . . ,n. Prove or disprove
the following inequality:

n∑n
i=1(1/ai)

6 n

√√√√ n∏
i=1

ai . (1.40)

Note that the left-hand side of Inequality (1.40) is called the harmonic mean.

1.4. Show that
(
2n
n

)
> 2n for all n ∈ N0.

1.5. Show that
n∏
k=1

(2k− 1)/(2k) 6 1/
√

3n+ 1 for all n ∈ N.

1.6. Prove or disprove that

1√
n
<
√
n+ 1 −

√
n− 1 for all n ∈ N .

1.7. Let N∗ be the set of all finite tuples of natural numbers, i.e., de-
fine N∗ =df

⋃
n∈N Nn. Prove or disprove that N∗ is countable.

1.8. Prove or disprove that {f | f : N0 → {0, 1}} is countable.

1.9. Let n ∈ N be arbitrarily fixed, and let ak ∈ R for all k ∈ {1, . . . ,n}.
Prove or disprove that(

n∑
k=1

ak

k

)2

6

(
n∑
k=1

k3a2
k

)(
n∑
k=1

k−5

)
.
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1.10. Show that for all x,y, z ∈ Rm and all α ∈ R the following properties
are satisfied:

(i) 〈x,y〉 = 〈y, x〉 (symmetry);
(ii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;
(iii) 〈x,y+ z〉 = 〈x,y〉+ 〈x, z〉;
(iv) 〈αx,y〉 = α〈x,y〉 = 〈x,αy〉;
(v) 〈x, x〉 > 0 and 〈x, x〉 = 0 iff x = 0 (positive-definiteness).

Note that Properties (ii) through (iv) establish the bilinearity of the scalar
product.

1.11. Show that for the Hermitian form the following properties are satisfied
for w, w̃, z ∈ Cm and all α ∈ C:

(i) 〈w, z〉 = 〈z,w〉 (Hermitian symmetry);
(ii) 〈w+ w̃, z〉 = 〈w, z〉+ 〈w̃, z〉;
(iii) 〈w, w̃+ z〉 = 〈w, w̃〉+ 〈w, z〉;
(iv) 〈αw, z〉 = α〈w, z〉 and 〈w,αz〉 = α〈w, z〉;
(v) 〈z, z〉 > 0 and 〈z, z〉 = 0 iff z = 0 (positive-definiteness).

Note that Properties (ii) through (iv) establish the sesquilinearity of the
Hermitian form.

1.12. Show the Cauchy–Schwarz inequality for the complex case, i.e., for
all w, z ∈ Cm we have |〈w, z〉| 6 ‖w‖ ‖z‖. Determine under what conditions
equality holds.

1.13. Prove that for all z, z1, z2 ∈ C \ {0}, and m,n ∈ Z the following asser-
tions are satisfied:

(i) zm+n = zn · zn;
(ii) (zm)n = zmn;
(iii) (z1 · z2)n = zn1 · zn2 .

1.14. Prove or disprove that

1√
2

(|x| + |y|) 6 |z| 6 |x| + |y|

for all z ∈ C, where z = x + yi. Determine under what conditions equality
holds.

1.15. Determine the set of all complex numbers z for which z ·(1+z2)−1 ∈ R.

1.16. Prove the binomial theorem for complex numbers.

1.17. Let f,g : R → R be defined as f(x) =df x
2 + 2x and g(x) =df x+ 1 for

all x ∈ R. Prove that f ◦ g 6= g ◦ f.
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1.18. Let M 6= ∅ be any set, and let S(M) =df {f | f : M → M is bijective}.
Furthermore, let ◦ : S(M) → S(M) be the composition (cf. Definition 1.14).
Prove or disprove that (S(M), ◦) is a group.

1.19. Provide a function f : R → R such that

(i) the function f is neither injective nor surjective;
(ii) the function f is injective but not surjective;
(iii) the function f is not injective but surjective;
(iv) the function f is injective and surjective.

1.20. Let M,N, and K be arbitrary sets. Prove or disprove the following
distributive laws:

(i) M× (N ∪ K) = (M×N) ∪ (M× K);
(ii) M× (N ∩ K) = (M×N) ∩ (M× K).

1.21. Let M be any set, and let f : ℘(M) → ℘(M) be any mapping such that
for all A, B ⊆M the condition if A ⊆ B then f(A) ⊆ f(B) is satisfied. Prove
that there must exist a set C such that C = f(C).

1.22. Prove or disprove the following: For every countable set X the set ℘(X)
is uncountable.

1.23. Let A 6= ∅ be any set, and let R,L ⊆ A × A be any binary relations
over A. We define

L ◦ R =df {(a, c) | there is a b ∈ A such that (a,b) ∈ L and (b, c) ∈ R} .

We set R0 =df {(a,a) | a ∈ A} and define inductively Rn+1 =df R
n ◦ R

for all n ∈ N0. Furthermore, we set 〈R〉 =df
⋃
n∈N0

Rn. Prove or disprove the
following:

(i) 〈R〉 is a binary relation over A;
(ii) 〈R〉 is reflexive;
(iii) 〈R〉 is transitive;
(iv) 〈R〉 = 〈〈R〉〉.

1.24. Determine the set of all x ∈ R such that the inequality 4
√
x 6 3/8 + 2x

is satisfied.

1.25. Let M 6= ∅ be any set. Prove or disprove that (℘(M),⊆) is an ordered
set.

1.26. Consider the set S =df {z | z ∈ C, |z| = 1}. Prove that S is a group with
respect to multiplication.
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