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Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty

- subfield of Mathematical Programming (MSC 90C15)

Stochastic programs are optimization models

- having special properties and structures,

- depending on the underlying probability distribution,

- requiring specific approximation and numerical approaches,

- having close relations to practical applications.

Selected recent monographs:

P. Kall/S.W. Wallace 1994, A. Prekopa 1995,

J.R. Birge/F. Louveaux 1997, J. Mayer/P. Kall 2005

A. Ruszczynski/A. Shapiro (eds.), Stochastic Programming, Hand-

book, Elsevier, 2003

S.W. Wallace/W.T. Ziemba (eds.), Applications of Stochastic Pro-

gramming, MPS-SIAM Series on Optimization, 2005.
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Application: Electricity Portfolio Management
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We consider the yearly electricity portfolio management of a mu-

nicipal German power utility. Its portfolio consists of the following

positions:

• power production (based on utility-owned thermal units),

• (mid-term) contracts (provided by large utilities),

• (physical) spot market trading and

• (financial) trading of futures.

The yearly time horizon is discretized into hourly intervals. The

underlying stochasticity consists in a bivariate stochastic load and

price process that is approximately represented by a finite num-

ber of scenarios. The objective is to maximize the total expected

revenue. The portfolio management model is a large scale (mixed-

integer) multistage stochastic program.

Should the expected revenue be maximized exclusively or should

the risk of its production and trading decisions simultaneously be

bounded or even minimized ?
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Stochastic Programming Model

Let {ξt}T
t=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , IP ) and with ξt taking values in

IRd. The stochastic decision xt at period t varying in IRmt is as-

sumed to depend only on ξt := (ξ1, . . . , ξt) (nonanticipativity).

Let Ft ⊆ F denote the σ-algebra which is generated by ξt, i.e.,

Ft = σ{(ξ1, . . . , ξt)}. We haveFt ⊆ Ft+1 for t = 1, . . . , T−1 and

we assume that F1 = {∅, Ω} (i.e., ξ1 deterministic) and FT = F .

We consider the (linear) stochastic programming model:

min

IE[

T∑
t=1

〈bt(ξt), xt〉]

∣∣∣∣∣∣
xt ∈ Xt,

xt is Ft −measurable, t = 1, . . . , T,

At0xt + At1(ξt)xt−1 = ht(ξt), t = 2, . . . , T


where the sets Xt are nonempty and polyhedral, and At1(·), bt(·)
and ht(·) are affinely linear for each t = 2, . . . , T .
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To have the model well defined, we assume

xt ∈ Lr′(Ω,Ft, IP ; IRmt) and ξt ∈ Lr(Ω,Ft, IP ; IRd),

where r ≥ 1 and

r′ :=


r

r−1 , if only costs are random

r , if only right-hand sides are random

r = 2 , if only costs and right-hand sides are random

∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nna

Nna = {x ∈ ×T
t=1Lr′(Ω,F , IP ; IRmt) : xt = IE[xt|Ft] , ∀t},

i.e., as a subspace constraint, by using the conditional expectation

IE[·|Ft] with respect to the σ-algebra Ft.

For T = 2 we have Nna = IRm1 × Lr′(Ω,F , P ; IRm2).

→ infinite-dimensional optimization problem
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Scenario-based models

Let Ω be finite, i.e., Ω = {ωs}S
s=1, F power set of Ω.

ps := IP ({ωs}) (probability of scenario s), s = 1, . . . , S,

ξs
t := ξt(ωs) (data scenario s at stage t) and

xs
t (decision scenario s at t, s = 1, . . . , S, t = 1, . . . , T .

Let Et be a (finite) partition of Ω such that the smallest σ-algebra

containing Et is just Ft. Then

IE[xt|Ft] =
∑
C∈Et

1

P (C)

∫
C

xt(ω)P (dω)χC

=
∑
C∈Et

(

S∑
s=1

ωs∈C

ps)
−1(

S∑
s=1

ωs∈C

psx
s
t)χC

where χC denotes the characteristic function of C ∈ Et.
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The nonanticipativity condition (NA) is equivalent to

xσ
t = (IE[xt|Ft])

σ =
∑
C∈Et
ωσ∈C

S∑
s=1

ωs∈C

psx
s
t

S∑
s=1

ωs∈C

ps

, ∀σ = 1, . . . , S, ∀t.

Special case t = 1: E1 = {Ω} and, hence, (NA) is equivalent to

xσ
1 =

∑S
s=1 psx

s
1 , σ = 1, . . . , S, i.e., to x1

1 = . . . = xS
1 .

Then the stochastic program takes the scenario form:

min {
S∑

s=1

T∑
t=1

psbt(ξ
s
t )x

s
t : x satisfies (NA), xs

t ∈ Xt , t = 1, . . . , T,

At0x
s
t + At1(ξ

s
t )x

s
t−1 = ht(ξ

s
t ), s = 1, . . . , S, t = 2, . . . , T}

Since Ft ⊆ Ft+1, every element of Et can be represented as the

union of certain elements of Et+1. Representing the elements of Et

by nodes and the above relations by arcs leads to a tree which is

called scenario tree.
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A scenario tree is based on a finite set N ⊂ IN of nodes where

s
n = 1
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Scenario tree with t1 = 2, T = 5, |N | = 23 and 11 leaves

n = 1 stands for the period root node,

n− is the unique predecessor of node n,

path(n):={1, . . . , n−, n}, t(n) := |path(n)|,
Nt := {n : t(n) = t}, nodes n ∈ NT are the leaves,

A scenario corresponds to path(n) for some n ∈ NT ,

N+(n) is the set of successors to node n.

We have {πn}n∈NT
:= {ps}S

s=1 and πn :=
∑

n+∈N+(n) πn+, n ∈ N .
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{ξn}n∈Nt are the realizations of ξt and {xn}n∈Nt the realizations

of xt.

Then the tree formulation of the model reads:

min {
∑
n∈N

πnbt(n)(ξ
n)xn : xn ∈ Xt(n)

At(n)0(ξ
n)xn + At(n)1(ξ

n)xn− = ht(n)(ξ
n), n ∈ N}

Note that it holds for the dimensions |N | << TS.
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Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)

Under weak assumptions the multistage stochastic program is

equivalent to the (first-stage) convex minimization problem

min {
∫

Ξ

f (x1, ξ)P (dξ) : x1 ∈ X1},

where f is an integrand on IRm1 × Ξ given by

f (x1, ξ):=〈b1(ξ1), x1〉 + Φ2(x1, ξ
2),

Φt(x1, . . . , xt−1, ξ
t):=inf {〈bt(ξt), xt〉+IE

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
:

xt ∈ Xt, At,0xt + At,1xt−1 = ht(ξt)}

for t = 2, . . . , T , where ΦT+1(x1, . . . , xT , ξT+1) := 0.

→The integrand f depends on the probability measure IP in a

nonlinear way !
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Stability

Let us introduce some notations. Let F denote the objective

function defined on Lr(Ω,F , IP ; IRs) × Lr′(Ω,F , IP ; IRm) → IR

by F (ξ, x) := IE[
∑T

t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ ×T
t=1Lr′(Ω,Ft, IP ; IRmt)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multistage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ)}.

Furthermore, let v(ξ) denote its optimal value and let, for any

α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + α}

denote the α-level set of the stochastic program with input ξ.
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The following conditions are imposed:

(A1) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , IP ; IRs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty

(relatively complete recourse locally around ξ).

(A2) The optimal value v(ξ) is finite and the objective function F

is level-bounded locally uniformly at ξ, i.e., for some α > 0 there

exists a δ > 0 and a bounded subset B of Lr′(Ω,F , IP ; IRm)

such that lα(F (ξ̃, ·)) is nonempty and contained in B for all

ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

(A3) ξ ∈ Lr(Ω,F , IP ; IRs) for some r ≥ 1.

Norms in Lr and Lr′:

‖ξ‖r :=

(
T∑

t=1

IE[‖ξt‖r]

)1
r

‖x‖r′ :=

(
T∑

t=1

IE[‖xt‖r′]

) 1
r′
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Theorem:

Let (A1), (A2) and (A3) be satisfied and X1 be bounded.

Then there exist positive constants L, α and δ such that the

estimate

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

Here, Df(ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined

by

Df(ξ, ξ̃) := sup
ε∈(0,α]

inf
x∈lε(F (ξ,·))
x̃∈lε(F (ξ̃,·))

T−1∑
t=2

max{‖xt − IE[xt|F̃t]‖r′, ‖x̃t − IE[x̃t|Ft]‖r′},

where Ft and F̃t denote the σ-fields generated by ξt and ξ̃t,

t = 1, . . . , T .
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The filtration distance of two stochastic processes vanishes if their

filtrations coincide, in particular, if the model is two-stage. If

solutions exist, the filtration distance is of the simplified form

Df(ξ, ξ̃) = inf
x∈l0(F (ξ,·))
x̃∈l0(F (ξ̃,·))

T−1∑
t=2

max{‖xt−IE[xt|F̃t]‖r′, ‖x̃t−IE[x̃t|Ft]‖r′}.

For example, solutions exist if Ω is finite or if 1 < r′ < ∞ imply-

ing that the spaces Lr′ are finite-dimensional or reflexive Banach

spaces (hence, the level sets are compact or weakly sequentially

compact).
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The following example shows that the filtration distance Df is in-

dispensable for the stability result to hold.

Example: (Optimal purchase under uncertainty)

The decisions xt correspond to the amounts to be purchased at

each time period with uncertain prices are ξt, t = 1, . . . , T , and

such that a prescribed amount a is achieved at the end of a given

time horizon. The problem is of the form

min

IE

[
T∑

t=1

ξtxt

] ∣∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = IR2

+,

(xt, st) is (ξ1, . . . , ξt)-measurable,

st − st−1 = xt, t = 2, . . . , T,

s1 = 0, sT = a.

 ,

where the state variable st corresponds to the amount at time t.

Let T := 3 and ξε denote the stochastic price process having the

two scenarios ξ1
ε = (3, 2 + ε, 3) (ε ∈ (0, 1)) and ξ2

ε = (3, 2, 1) each

endowed with probability 1
2. Let ξ̃ denote the approximation of

ξε given by the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with

the same probabilities 1
2.
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3

12

2+ε 3

1

233

Scenario trees for ξε (left) and ξ̃

We obtain

v(ξε) =
1

2
((2 + ε)a + a) =

3 + ε

2
a

v(ξ̃) = 2a , but

‖ξε − ξ̃‖1 ≤ 1

2
(0 + ε + 0) +

1

2
(0 + 0 + 0) =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable

with respect to ‖ · ‖1.

However, the estimate for |v(ξ)− v(ξ̃)| in the stability theorem is

valid with L = 1 since Df(ξ, ξ̃) = a
2 .
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Scenario tree approximations for ξ

Reference: Dupačová/Consigli/Wallace 2000

All known approaches consist of two steps:

(a) Simulation of (sufficiently many) scenarios of the stochastic

data process ξ;

(b) construction of scenario trees from simulation scenarios or

probability distribution information.

(a) Methods:

- Identifying and fitting statistical models to historical data (e.g.

(multivariate) time series models).

- sampling or resampling historical data as scenarios.

(b) Methods:

(b1) Construction based on distribution information:

- barycentric tree constructions;

- EVPI-based sampling methods;

- Regression fit to given (higher order) moments.
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(b2) Construction from simulation scenarios:

Given: N individual scenarios ξi with probabilities pi and fixed

starting point ξ∗1 , i.e., forming a fan.
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t = 1

q q q
t = T

Figure 1: Example of a fan of individual scenarios with T = 4 and N = 7

Cluster-analysis-based methods:

- Studying the similarity of scenarios for t = T, . . . , 2;

- “Bundling” scenarios in a cluster and definition of succesors and

predecessor, respectively, e.g., using the Lr-norm.
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Numerical methods for tree construction

Forward and backward algorithms have been developed for con-

structing a scenario tree ξtr to approximate a fan ξ of scenarios,

i.e., such that ‖ξ − ξtr‖r ≤ ε and Df(ξ, ξtr) ≤ Const · εf .

Algorithm (forward tree construction)

Step 1: Select εt such that
∑T

t=2 εt ≤ ε.

Step 2: Choose the stochastic process ξ̂2 with index set I2 of

scenarios and scenario bundles I2,i, i ∈ I2, such that the condition∑
i∈I2

∑
j∈I2,i

pj‖ξj − ξi‖r′ < min{ε2, εf}r′

is satified. Hence, I2 and I2,i are relatively large.

Step t: Determine disjoint index sets Ik
t and Jk

t , where Jk
t =⋃

i∈Ik
t
Jk

t,i, such that Ik
t ∪ Jk

t = It−1,k, and a stochastic process ξ̂t

having N scenarios ξ̂t,i with probabilities pi and such that

‖ξ̂t − ξ̂t−1‖r,t ≤ εt.

Set It = ∪kI
k
t and It,i = {i} ∪ Jk

t,i, i ∈ Ik
t , for some k.
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Example:

Recursive construction of a bivariate load-price scenario tree start-

ing with N = 58 scenarios (illustration, time period: 1 year)

<Start Animation>

file:C:/anim/animation.html


Home Page

Title Page

Contents

JJ II

J I

Page 22 of 40

Go Back

Full Screen

Close

Quit

Decomposition of convex stochastic programs

Reference: Ruszczynski 03

First idea: Use of standard software for solving the stochastic pro-

gram in scenario tree form !

But: Models are huge even for small trees and, in addition, special

structures are not exploited !

⇒ Decomposition is a successful alternative in many (practical)

situations.

Direct or primal decomposition approaches:

- starting point: Benders decomposition based on both feasibility

and objective cuts;

- variants: regularization to avoid an explosion of the number of

cuts and to delete inactive cuts; nesting when applied to solve the

dynamic programming equations on subtrees recursively; stochas-

tic cuts.
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Dual decomposition approaches:

(i) Scenario decomposition by Lagrangian dualization of nonan-

ticipativity constraints (solving the dual by bundle subgradient

methods, augmented Lagrangian decomposition, variable or oper-

ator splitting methods);

(ii) nodal decomposition by Lagrangian dualization of dynamic

constraints (same variants as in (i));

(iii) geographical decomposition by Lagrangian relaxation of cou-

pling constraints (same variants as in (i)).

Presently, nested Benders decomposition, stochastic decomposi-

tion and scenario decomposition (based on augmented Lagrangians

and on operator splitting) are mostly used for convex models !
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Expected costs versus risk

Often minimizing expected costs is not the only objective; deci-

sions should also enjoy minimal or bounded risk.

→mean-risk objective

Classical risk measure from financial mathematics:

Value-at-Risk (p ∈ (0, 1)):

V aRp(z) := −min{r ∈ IR : IP (z ≤ r) ≥ p}

V aRp(z) does not enjoy pleasant properties !

Is there a general concept of risk measures ?
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Axiomatic characterization of risk

Let Z denote a linear space of real random variables on some

probability space (Ω,F , IP ). We assume that Z contains the

constants. A functional ρ : Z → IR is called a risk measure if it

satisfies the following two conditions for all z, z̃ ∈ Z :

(i) If z ≤ z̃, then ρ(z) ≥ ρ(z̃) (monotonicity).

(ii) For each r ∈ IR we have ρ(z + r) = ρ(z)− r

(translation invariance).

A risk measure ρ is called convex if it satisfies the condition

ρ(λz + (1− λ)z̃) ≤ λρ(z) + (1− λ)ρ(z̃)

for all z, z̃ ∈ Z and λ ∈ [0, 1].

A convex risk measure is called coherent if it is positively homo-

geneous, i.e., ρ(λz) = λρ(z) for all λ ≥ 0 and z ∈ Z .

References: Artzner/Delbaen/Eber/Heath 99, Föllmer/Schied 02
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Examples:

(a) No convex risk measure: Value-at-Risk, standard deviation.

(b)Semideviation of order p (α ∈ (0, 1], r ≥ 1):

ρ(z) := −IE[z] + α (IE[(max{0, IE[z]− z})r])
1
r

(c) Conditional Value-at-Risk (p ∈ (0, 1)):

CV aRp(z) := min{r +
1

1− p
IE[max{0,−z − r}] : r ∈ IR}

= V aRp(z) +
1

1− p
IE[max{0,−z − V aRp(z)}]

Advantage of CV aRp: linearity properties are preserved.

(Rockafellar/Uryasev 02)

CV aRp(z) := mean of the tail distribution function Fp

where Fp(t) :=

{
1 t ≥ −V aRp(z),

F (t)
p t < −V aRp(z)

and

F (t) := IP ({z ≤ t}) is the distribution function of z.
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-CVaR -VaR
0

1

p

V aRp(z) and CV aRp(z) for a continuously distributed z
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Polyhedral risk measures: One-period case

Definition:

A risk measure ρ on Z will be called polyhedral if there exist

k, l ∈ IN , a, c ∈ IRk, q, w ∈ IRl, a polyhedral set X ⊆ IRk and a

polyhedral cone Y ⊆ IRl such that

ρ(z) = inf {〈c, x〉 + IE[〈q, y〉] : 〈a, x〉 + 〈w, y〉 = z, x ∈ X, y ∈ Y }

for each z ∈ Z . Here, IE denotes the expectation on (Ω,F , IP )

and 〈·, ·〉 the scalar product on IRk.

The notion polyhedral risk measure is motivated by the polyhe-

drality of ρ(z) as a function of the scenarios of z if z is discrete.

Origin: Properties of the Conditional value-at-risk CVaR.

How to generalize this concept to the multiperiod case ?
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Multiperiod polyhedral risk measures

When (real) random variables z1, ..., zT with zt ∈ Lp(Ω,Ft, IP ),

1 ≤ p ≤ +∞, are considered that evolve over time and unveil

the available information with the passing of time, it may become

necessary to use multiperiod risk measures. We assume that a

filtration of σ-fields Ft, t = 1, ..., T , is given, i.e. Ft ⊆ Ft+1 ⊆ F ,

and that F1 = {∅, Ω}, i.e. that z1 is always deterministic.

Definition: (Artzner et al. 01, 02)

A functional ρ on×T
t=1Lp(Ω,Ft, IP ) is called multiperiod risk mea-

sure if

(i) If zt ≤ z̃t a.s., t = 1, ..., T , then ρ(z1, ..., zT ) ≥ ρ(z̃1, ..., z̃T )

(monotonicity),

(ii) For each r ∈ IR we have ρ(z1 + r, ..., zT + r) = ρ(z) − r

(translation invariance),

are satisfied. It is called a multiperiod coherent risk measure, if

ρ is convex and positively homogeneous on ×T
t=1Lp(Ω,Ft, IP ) in

addition.
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It is a natural idea to introduce risk measures as optimal values

of certain multistage stochastic programs.

Definition: A multiperiod risk measure ρ on ×T
t=1Lp(Ω,Ft, IP )

is called multiperiod polyhedral if there are kt ∈ IN , ct ∈ IRkt,

t = 1, . . . , T , wtτ ∈ IRkt−τ , t = 1, . . . , T , τ = 0, ..., t − 1, and

polyhedral cones Yt ⊂ IRkt, t = 1, . . . , T , such that

ρ(z) = inf

{
IE

[
T∑

t=1

〈ct, yt〉

]∣∣∣∣ yt ∈ Lp(Ω,Ft, IP ; IRkt), yt ∈ Yt∑t−1
τ=0〈wt,τ , yt−τ〉 = zt, t = 1, . . . , T

}
.

Remark: A convex combination of (negative) expectation and

of a multiperiod polyhedral risk measure is again a multiperiod

polyhedral risk measure.

Our original multistage stochastic program then reads

min {(1− γ)IE[F (ξ, x)]− γρ(F (ξ, x)) : x ∈ X (ξ)}

(mean-risk objective)
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Theorem:

Let ρ be a functional on ×T
t=1Lp(Ω,Ft, IP ) having the form in the

previous definition. Assume

(i) complete recourse: 〈wt,0, Yt〉 = IR (t = 1, ..., T ),

(ii) dual feasibility:

{
u ∈ IRT : ct +

T∑
ν=t

uνwν,ν−t ∈ −Y ∗
t

}
6= ∅,

where the sets Y ∗
t are the (polyhedral) polar cones of Yt.

Then ρ is Lipschitz continuous on ×T
t=1Lp(Ω,Ft, IP ) and the fol-

lowing dual representation holds whenever p ∈ (1, +∞) and 1
p +

1
p′ = 1:

ρ(z) = sup

−IE

[
T∑

t=1

λtzt

] ∣∣∣∣∣∣
λt ∈ Lp′(Ω,Ft, IP ), t = 1, . . . , T

ct +
T∑

ν=t
IE [λν|Ft] wν,ν−t ∈ −Y ∗

t
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Corollary:

Let ρ be a functional on ×T
t=1Lp(Ω,Ft, IP ), p ∈ (1,∞), having

the form of a polyhedral risk measure. Let the above conditions

(i) and (ii) be satisfied and assume that the set

Λρ :=

{
λ ∈ ×T

t=1Lp′(Ω,Ft, IP )

∣∣∣∣∣ct +

T∑
ν=t

IE [λν|Ft] wν,ν−t ∈ −Y ∗
t

}
is contained in

DT :=

{
λ ∈ ×T

t=1L1(Ω,Ft, IP )

∣∣∣∣∣λt ≥ 0,
T∑

t=1

IE [λt] = 1

}
.

Then ρ is a multiperiod polyhedral and coherent risk measure.
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Example: (Naive multiperiod extensions of CVaR)

A first idea is to incorporate the Conditional-Value-at-Risk at all

time periods and to consider the weighted sum

ρ1(z) :=

T∑
t=2

γtCV aRαt(zt) =

T∑
t=2

γt inf
r∈IR

{
r +

1

αt
IE
[
(r + z)−

]}
with some weights γt ≥ 0,

∑T
t=1 γt = 1, and some confidence

levels α2, α3, ..., αT ∈ (0, 1). Here, a− = max {0,−a}.
Then ρ is a multiperiod polyhedral and coherent risk measure and

the corresponding dual feasible set is of the form

Λ1 =

λ ∈ ×T
t=1Lp

′(Ω,Ft, IP )

∣∣∣∣∣∣∣
λ1 = 0

0 ≤ λt ≤ γt
αt

(t = 2, ..., T )

IE [λt] = γt

 .

By interchanging sum and minimization one arrives at the variant

ρ2(z) = inf
r∈IR

{
r +

T∑
t=2

βtIE
[
(zt + r)−

]}



Home Page

Title Page

Contents

JJ II

J I

Page 34 of 40

Go Back

Full Screen

Close

Quit

of the above risk measure. Its dual representation is

Λ2 =

{
λ ∈ ×T

t=1Lp
′(Ω,Ft, IP )

∣∣∣∣ λ1 = 0 ,
∑T

t=1 IE[λt] = 1,

0 ≤ λt ≤ βt (t = 2, ..., T )

}
.

However, both multiperiod coherent risk measures do not depend

on the filtration, i.e. on the information flow.

Example:

Multiperiod risk measure ρ4 depending on the filtration

Λ4 =

λ ∈ ×T
t=1Lp

′(Ω,Ft, IP )

∣∣∣∣∣∣∣∣∣
λ1 ≡ 0

0 ≤ λt ≤ 1
(T−1)αt

(t = 2, ..., T )

λt = IE [λt+1|Ft] (t = 2, ..., T − 1)

IE [λ2] = ... = IE [λT ] = 1
T−1
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Electricity portfolio management (continued)

Test runs were performed on real-life data of the utility DREWAG

Stadtwerke Dresden GmbH leading to a MIP containing about 2.4

million variables in case of 21 load-price scenarios. The objective

function consists in a convex combination of expectation and (mul-

tiperiod) risk functional with a coefficient γ ∈ [0, 1], where γ = 0

corresponds to no risk.

2 4 6 8 10 12
t
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Total revenue and γ = 0
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