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Introduction

• Electricity portfolio optimization models often contain uncer-

tain parameters (e.g., electricity spot prices, electrical load,

wind speed, in�ows to reservoirs) for which statistical data is

available.

• The uncertain parameters may be represented approximatively

by a �nite number of scenarios and their probabilities.

• Scenarios become tree-structured if they appear in a process of

recursive observations and decisions,

• Advantages of such stochastic programming models:

- Decisions are robust with respect to random perturbations,

- The risk of decisions can be modeled properly and minimized,

- Simulation studies show the better performance.
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Mathematical Model

Let {ξt}T
t=1 be a discrete-time stochastic data process de�ned on

some probability space (Ω,F , IP ) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

{
IE

(
T∑

t=1

〈bt(ξt), xt〉

)∣∣∣∣xt ∈ Xt, xt is Ft-measurable, t = 1, . . . , T

At,0xt + At,1xt−1 = ht(ξt), t = 2, . . . , T

}
where the sets Xt, t = 1, . . . , T , are closed subsets of IRmt (con-

taining linear and (possibly) integrality constraints), the vectors

bt(·) and ht(·) depend a�ne linearly on ξt.

To have the model well de�ned as optimization problem in in�nite

dimensions one may assume, for example, that for some p ≥ 1

xt ∈ Lp(Ω,Ft, IP ; IRmt) (t = 1, . . . , T ).
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Data process approximation by scenario trees

The process {ξt}T
t=1 is approximated by a process whose scenarios

are tree-structured with nodes from a �nite set N ⊂ IN .
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Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,

scenario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model:

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N ,

At(n),0x
n + At(n),1x

n− =ht(n)(ξ
n), n > 1

}

How to solve that (mixed-integer) linear program ?

- Standard software (e.g., CPLEX, X-PRESS).

- Decomposition methods for (very) large scale programs.

- Implementation for general (�irregular�) scenario trees.
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Mathematical challenges

• Decomposition methods of the resulting large scale (mixed-

integer) linear programming models,

• Generation of scenarios from statistical models (e.g., simulation

from time series models, resampling techniques),

• Generation of scenario trees out of given scenarios and their

eventual reduction,

• Risk modeling and minimization.
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Decomposition methods

Dual decomposition approaches:

(i) Scenario decomposition by Lagrangian relaxation of nonantici-

pativity constraints,

(ii) nodal decomposition by Lagrangian relaxation of dynamic con-

straints,

(iii) geographical decomposition by Lagrangian relaxation of (deci-

sion) coupling constraints (for block separable models).

The dual can be solved by bundle subgradient methods followed by

branch-and-bound techniques or Lagrangian heuristics (in case of

small duality gaps).

Result: (Dentcheva-Rö 04)

Nodal decomposition leads to larger duality gaps than scenario as

well as geographical decomposition. The relation of the size of

duality gaps of the latter two decomposition schemes depends on

the structure of the stochastic programs.
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Geographical decomposition

In electricity optimization the tree representation of multistage stochas-

tic programs often has block separable structure

min


∑
n∈N

πn
k∑

i=1

〈bi
t(n)(ξ

n), xn
i 〉

∣∣∣∣∣∣∣∣∣
xn

i ∈ X i
t(n)∑k

i=1 Bi
t(n)(ξ

n)xn
i ≥ gt(n)(ξ

n)

Ai
t(n),0x

n
i + Ai

t(n),1x
n−
i =hi

t(n)(ξ
n)

i = 1, . . . , k, n ∈ N


Lagrange relaxation of coupling constraints: L(x, λ) =

∑
n∈N

πn

(
k∑

i=1

〈bi
t(n)(ξ

n), xn
i 〉 +

〈
λn, (gt(n)(ξ

n)−
k∑

i=1

Bi
t(n)(ξ

n)xn
i )

〉)
The dual problem

max
λ≥0

inf
x

L(x, λ)

decomposes into k geographical subproblems and is solved by bun-

dle subgradient methods. For nonconvex models the duality gap is

typically small allowing for Lagrangian heuristics.
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Generation of scenario trees

Some recent approaches:

(1) Bound-based approximation methods: Kuhn 05, Casey-Sen 05.

(2) Monte Carlo-based schemes: Shapiro 03, 06.

(3) Quadrature formulae: Pennanen 05, 06 (Quasi Monte Carlo),

Chen-Mehrotra 07 (sparse grids).

(4) Moment-matching principle: Wallace et al. 01, 03.

(5) Stability-based approximations: P�ug 01, Hochreiter-P�ug 07,

Mirkov-P�ug 07, Heitsch-Rö 05.
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Stability of linear multistage models

Assumptions:

(A1) IE[|ξ|r] < ∞,

(A2) The optimization model has relatively complete recourse,

(A3) The objective function is level-bounded locally uniformly at ξ.

Theorem: (Heitsch-Rö-Strugarek 06)

Let (A1) � (A3) be satis�ed and X1 be bounded.

There exist constants L > 0 and δ > 0 such that the optimal value

function v(·) satis�es the calmness condition

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + df,r′(ξ, ξ̃))

for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

Here, df,p(ξ, ξ̃) denotes the �ltration distance of ξ and ξ̃ de�ned by

df,p(ξ, ξ̃) := sup
‖x‖p≤1

T−1∑
t=2

‖IE(xt|Ft(ξ))− IE(xt|Ft(ξ̃))‖r′

where r and r′ satisfy 1
r + 1

r′ = 1 and p ≥ 1.
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Constructing scenario trees:

Let ξ be the original stochastic process and ξ̂ be an approximate

stochastic process having (many) scenarios (paths) ξi = (ξi
1, . . . , ξ

i
T )

with probabilities πi, i = 1, . . . , N , which coincide at t = 1, i.e.,

ξ1
1 = . . . = ξN

1 =: ξ∗1 .

Idea: Recursive scenario reduction and bundling on [1, t], t =

2, . . . , T such that the scenario tree process ξtr satis�es

‖ξ̂ − ξtr‖r + df,r′(ξ̂, ξtr) ≤ ε

(Forward and backward tree construction algorithms (Heitsch-R�ö 05)).

(The algorithms are currently under implementation in GAMS-SCENRED.)

(Scenario reduction algorithms for mixed-integer models are available and allow for extensions.)

Reduction of scenario trees:

Let ξtr be a scenario tree process and determine a scenario tree

process ξred having less nodes than ξtr such that

‖ξtr − ξred‖r + df,∞(ξtr, ξred) ≤ ε
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree construction for an example including T=5 time periods starting

with a scenario fan containing N=58 scenarios

<Start Animation>

file:E:/anim05/animation.html
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Risk Functionals

A risk functional ρ assigns a real number to any (real) random vari-

able Y (possibly satisfying certain moment conditions). Recently,

it was suggested that ρ should satisfy the following axioms for all

random variables Y, Ỹ , r ∈ IR, λ ∈ [0, 1]:

(A1) ρ(Y + r) = ρ(Y )− r (translation-antivariance),

(A2) ρ(λY + (1− λ)Ỹ ) ≤ λρ(Y ) + (1− λ)ρ(Ỹ ) (convexity),

(A3) Y ≤ Ỹ implies ρ(Y ) ≥ ρ(Ỹ ) (monotonicity).

A risk functional ρ is called coherent if it is, in addition, positively

homogeneous, i.e., ρ(λY ) = λρ(Y ) for all λ ≥ 0 and random vari-

ables Y .

Given a risk functional ρ, the mapping D = IE + ρ is also called

deviation risk functional.

References: Artzner-Delbaen-Eber-Heath 99, Föllmer-Schied 02, Fritelli-Rosazza Gianin 02
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Examples:

(a) Average Value-at-Risk AV@Rα:

AV@Rα(Y ) :=
1

α

∫ α

0

V@Ru(Y )(u)du

= inf

{
x +

1

α
IE([Y + x]−) : x ∈ IR

}
= sup

{
−IE(Y Z) : IE(Z) = 1, 0 ≤ Z ≤ 1

α

}
where α ∈ (0, 1], V@Rα := inf{y ∈ IR : IP (Y ≤ y) ≥ α} is

the Value-at-Risk and [a]− := −min{0, a}.
Reference: Rockafellar-Uryasev 02

(b) Lower semi standard deviation corrected expectation:

ρ(Y ) := −IE(Y ) + (IE([Y − IE(Y )]−)2)
1
2

Reference: Markowitz 52
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Multi-Period Risk Functionals

Let ξ = (ξ1, . . . , ξT ) be some input random vector. We assume

that all random vectors Y = (Y1, . . . , YT ) have the property that

Yt only depends on (ξ1, . . . , ξt).

A functional ρ that assigns to each such random vector Y =

(Y1, . . . , YT ) a real number is called a multi-period risk functional

if it satis�es the following conditions for all random vectors Y =

(Y1, . . . , YT ) and Ỹ = (Ỹ1, . . . , ỸT ):

(A1) ρ(Y1 + W1, . . . , YT + WT ) = −
∑T

t=1 IE(Wt) + ρ(Y1, . . . , YT )

for all W belonging to some convex subset of random vectors

W (possibly depending on ξ) (W-translation-antivariance),

(A2) ρ is convex (convexity),

(A3) Yt ≤ Ỹt, for all t, implies ρ(Y1, . . . , YT ) ≥ ρ(Ỹ1, . . . , ỸT )

(monotonicity).

The set W is related to the set of available �nancial instruments

for hedging the risk.

References: Artzner-Delbaen-Eber-Heath-Ku 07, Fritelli-Scandolo 06, P�ug-Rö 07
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Example: (for the set W)

(a) W = {(x, 0, . . . , 0) ∈ IRT : x ∈ IR} = IR× {0}T−1

(Artzner-Delbaen-Eber-Heath-Ku 07).

(b) W = IRT .

(c) W = {W = (W1, . . . ,WT ) :
∑T

t=1 Wt is deterministic}.
(Fritelli-Scandolo 06).

(d) W = {W = (W1, . . . ,WT ) :Wt depends only on (ξ1, . . . , ξt−1)}
(P�ug-Ruszczynski 04).

Polyhedral risk functionals:

Multi-period risk functionals are called polyhedral if they preserve

linearity structures (stability and decomposition properties) of stochas-

tic programming models (when inserted into them) although such

functionals are nonlinear by nature. They may be represented by

(classical) linear stochastic programs.

Reference (for polyhedral risk functionals): Eichhorn-Rö 05.
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Examples:

(a) Expectation of accumulated incomes
∑t

τ=1 Yτ at risk measuring

time steps tj, j = 1, . . . , J , with tJ = T :

ρ0(Yt1, . . . , YtJ ) :=
∑J

j=1
IE
(∑tj

t=1
Yt

)
(b) Sum of Average Value-at-Risk's at risk measuring time steps:

ρ1(Yt1, . . . , YtJ ) :=
1

J

∑J

j=1
AV@Rα

(∑tj

t=1
Yt

)
(c) Average Value-at-Risk of the average at risk measuring time

steps:

ρ4(Yt1, . . . , YtJ ) := AV@Rα

(
1

J

∑J

j=1

∑tj

t=1
Yt

)
(d) Average Value-at-Risk of the minimum at risk measuring time

steps:

ρ6(Yt1, . . . , YtJ ) := AV@Rα

(
min

j=1,...,J

∑tj

t=1
Yt

)
All examples are polyhedral risk functionals and satisfy IR×{0}T−1-

translation-antivariance.
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Stochastic programming problem with risk objective:

min
x

ρ(Y1, ..., YT )

∣∣∣∣∣∣∣∣∣
Yt = 〈bt(ξt), xt〉,
xt = xt(ξ1, ..., ξt) ∈ Xt,∑t−1

τ=0 At,τ (ξt)xt−τ = ht(ξt)

(t = 1, ..., T )


Polyhedral risk functional (evaluated at risk measuring time steps):

ρ(Y ) = inf


IE

 J∑
j=0

〈cj, vj〉


∣∣∣∣∣∣∣∣∣∣∣

vj = vj(ξ1, ..., ξtj) ∈ Vj,∑j
k=0 Bj,kvj−k = rj

(j = 0, ..., J),∑j
k=0〈aj,k, vj−k〉 =

∑tj
t=1 Yt

(j = 1, ..., J)


Equivalent linear stochastic programming model:

min
(v,x)


IE

 J∑
j=0

〈cj, vj〉


∣∣∣∣∣∣∣∣∣∣∣

xt = xt(ξ1, ..., ξt) ∈ Xt,

vj = vj(ξ1, ..., ξtj) ∈ Vj,∑t−1
s=0 At,s(ξt)xt−s = ht(ξt),∑j
k=0 Bj,kvj−k = rj,∑j
k=0〈aj,k, vj−k〉 =

∑tj
t=1〈bt(ξt), xt〉


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Mean-Risk Electricity Portfolio Management



Home Page

Title Page

Contents

JJ II

J I

Page 20 of 31

Go Back

Full Screen

Close

Quit

We consider the electricity portfolio management of a German mu-

nicipal electric power company. Its portfolio consists of the follow-

ing positions:

• power production (based on company-owned thermal units),

• bilateral contracts,

• (physical) (day-ahead) spot market trading (e.g., European En-

ergy Exchange (EEX)) and

• (�nancial) trading of futures.

The time horizon is discretized into hourly intervals. The underlying

stochasticity consists in a multivariate stochastic load and price

process that is approximately represented by a �nite number of

scenarios. The objective is to maximize the total expected revenue

and to minimize the risk. The portfolio management model is a

large scale (mixed-integer) multi-stage stochastic program.
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Electricity portfolio management: statistical models

and scenario trees

For the stochastic input data of the optimization model (here yearly

electricity and heat demand, and electricity spot prices), a statistical

model is employed. It is adapted to historical data in the following

way:

- cluster classi�cation for the intra-day (demand and price) pro�les,

- 3-dimensional time series model for the daily average values (de-

terministic trend functions, a trivariate ARMA model for the (sta-

tionary) residual time series),

- simulation of an arbitrary number of three dimensional sample

paths (scenarios) by sampling the white noise processes for the

ARMA model and by adding on the trend functions and matched

intra-day pro�les from the clusters afterwards,

- generation of scenario trees (Heitsch-Rö 05).
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Electricity portfolio management: Results

Test runs were performed on real-life data of a German munici-

pal power company leading to a linear program containing T =

365 · 24 = 8760 time steps, a scenario tree with 40 demand-price

scenarios (see below) with about 150.000 nodes. The objective

function is of the form

Minimize γρ(Y )− (1− γ)IE

(∑T

t=1
Yt

)
with a (multiperiod) risk functional ρ with risk aversion parameter

γ ∈ [0, 1] (γ = 0 corresponds to no risk).

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
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Single-period and multi-period risk functionals are computed for

the accumulated income at t = T and at the risk time steps tj,

j = 1, . . . , J = 52, respectively. The latter correspond to 11 pm

at the last trading day of each week.

It turns out that the numerical results for the expected maximal

revenue and minimal risk

IE

(∑T

t=1
Y γ∗

t

)
and ρ(Y γ∗

t1
, . . . , Y γ∗

tJ
)

with the optimal income process Y γ∗ are identical for γ ∈ [0.15, 0.95]

and all risk functionals used in the test runs.

The e�cient frontier

γ 7→
(

ρ(Y γ∗
t1

, . . . , Y γ∗
tJ

), IE

(∑T

t=1
Y γ∗

t

))
is concave for γ ∈ [0, 1].

Risk aversion costs less than 1% of the expected overall revenue.
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The LP is solved by CPLEX 9.1 in about 1 h running time on a 2 GHz Linux PC with 1 GB RAM.
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