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Abstract

General parametrization-discretization schemes for transforming
constrained optimal control problems into finite-dimensional nonlin-
ear programs are considered. Formulae for computing gradients of
the objective and constraints are derived via adjoint systems and dis-
cussed for linear multistep and Runge-Kutta discretization schemes.
These formulae require one integration of the state equation only.
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1 Introduction

In this paper we consider the following optimal control problem of a system
described by an ordinary differential equation (ode) for the state variables
and by constraints for controls and states. Find a control function v €
Leo([0,1]; IR™) and a design parameter v € R’ such that the objective

(1.1) F(v,u) := go(x(1),v)
* This research has partially been supported by the Schwerpunktprogramm ” Anwen-
dungsbezogene Optimierung und Steuerung” of the Deutsche Forschungsgemeinschaft.
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is minimized subject to the constraints

(1.2) &(t) = fla(t), u(t), v), ae. t€0,1], z(0) = 2p(v)
(1.3) gi(2(1),v) <0 (G=1,...,d1), j
(14)  gi(e(t),u(t),v) <0 ae. ¢ €0,1] G=dy+1,... d)
(1.5) ut)eU ae. te 0,1, ve V. o

Fo:1 the dat.a in (1.1) ~ (1.5) we assume that the functions g; (j =0, .., di)
;;n {(, %’(] =dd”12:1, Rr, d) are continuously differentiable on their domains
an X X IR", respectively Furthermore, we

4 ; ; assume that
the §ets UC .R’ anfi V C IR* are closed and convex, ;,nd that g is a
cont‘lnuously differentiable function from R* into R™
Optuna‘d control models involving an integral functional and (or) integral
Lons‘t}'cunts can be transformed into problem (1.1) - (1.5) by introducing
gddllt:.onal state variables and equations, Models with free initial and (or)
inal time can be converted into (L.1) - (1.5) by including them into the de-
s1§n’ vector after a transformation to a fixed time interval., Nonautonomous
ode’s (1.2) or constraints (1.4) are also converted into the autonomous case
by introducing a new state variable.

iCI;(t)?;;:::ai}iona[i rrlle‘i;l}ods for optimal control problems are usually subdivided

ect and indirect methods. Here ”djrect” means th -

j s. H at the optimal

ciln.;.ro,l,_mc‘)del is attacked as minimization problem in functional s};ace:

while indirect” refers t.o treating the nonlinear boundary value prob!ems:

arising as necessary optimality conditions for (L.1) - (L.5).

;Il‘sle zrtldzret?t apprloach turned out to be very successful by applying the mul

¢ shooting technique for solving the nonlinear b -

; . oundary value problem

é(‘.;(;f{)e.g. t[?], (10], [27], [32] and [12] for an impressive recent application to

: naull ics). In [34] the necessary optimality conditions are formulated

asl boundary Va!ue problems for differential-algebraic equations (dae) and
fo :Ed by a version of the multiple shooting method for dae’s
11 this paper, we are concerned with the direct

usually consist of a combination of St

(i) a finite-dimensjona] approximation, and
(ii) a minimization algorithm.

tl;i:;}:ee;zig?lmirlbuting.to (1) can be subdivided into bapers devoted to finjte-
methode; [;(;;]pr[g;lme;txons of {I-.outrols (control parametrization, Ritz
o a"d. - 20, ; 1, [ 8]., [Z?I], [f!.?], (48], [46]) and somtimes of states (eg.
e ,[31 iscrete approximations .(e.g. (1], [9), [13], [14], [15], [16] [17]

» [31], [33], [43]). Discrete approximations also include a discretiz‘ation’
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of the state equation by using an integration scheme or by collocation. The
finite-dimensional approximations are then solved by standard or adapted
nonlinear programming methods or by multiple shooting techniques (cf.
[7], [25]). A second stream of papers concerning the direct approach deals
with minimization algorithms in functional spaces (like gradient-type and
Newton-type methods in Banach spaces, see [37] for a modern survey and
e.g. [2) for a very promising recent contribution), which are followed by a
discretization step.

For solving complex real-world problems with high accuracy, a consensus
is apparently tending toward a combination of direct and indirect meth-
ods. The result of a direct method together with estimates for the adjoint
variables is then used to improve it by an accurate indirect method. This
combination and the transition from direct to indirect methods is discussed

in [25], [44].

The present paper contributes to the interplay of finite-dimensional approxi-
mations to (1.1) - (1.5) and their solution by nonlinear programming meth-
ods. An important question in this interplay consists in the appropriate
and efficient calculation of first order derivatives of the objective and con-
straints. Several proposals (e.g. divided differences, backward integration of
the adjoint equation, direct computation of derivatives from the discretized
model) were made during the last fifteen years (see e.g. [3], [7], [17], [18],
[20], [29], [36], [38], [43]) and used in several implementations (e.g. [4], [7],
[17], [21], [22], [28], [30], [35], [38], [43]). We discuss these approaches in
more detail in Section 3 and then extend the ”direct approach” or "internal
numerical differentiation”. For a general approximation scheme including
control parametrization and discretization of the state equation, we derive
first order derivatives via discrete adjoint systems (Theorem 3.1). The struc-
ture of the discrete adjoint systems is studied for linear multistep and for
Runge-Kutta discretizations of the state equation. Several parametrization
approaches are considered, including those containing grid (or switching)
points as parameters. We compare our results with more specific results
in this direction obtained earlier ([5], [7], [18], [22], [36]) and discuss the
approach and its complexity from the viewpoint of automatic differentia-
tion of algorithms (see [24] for a modern survey). The implementation of
the formulae for computing gradients together with the development of an
optimal control package including numerical results for a set of illustrative
test examples is described in the companion paper [4].
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2 The parametrization—discretization scheme

In this §qction, we (:lescribe a general approach for approximating the infinite-
dimensional optimization problem (1.1) - (1.5) by finite-dimensional nonlin-
ear programs. The approach combines a control parametrization technique
with a general discretization scheme for the initial value problem (1.2).
The idea of control parametrization consists in replacing the set of admis-
sible controls

Uad := {u € Loo([0,1]; R") : u(t) €U awe. te€ [0,1]}

by aset Upa C Loo([0, 1]; IR™) of functions determined by a finite-dimensional
parameter w belonging to some subset W of RL, i.e.

(2.1) Upa :={u(",w) ru(t,w) €U ae. t€[0,1), we W).
Typical examples of parametrizations are

(i) expansions of the control functions in terms of a finite number of

(given). basis functions (here w corresponds to the coefficients in the
expansion), and

(ii) a rer?resentation of control functions on a finite number of subintervals
by given basis functions (e.g. polynomials) depending on a finite set of
parameters (here w consists of parameters and (possibly) gridpoints).

To‘lllusl;rate these general examples we mention Spline [42] and Chebyshev
series [47] ap‘proxima.tions (for (1)), "smooth” piecewise interpolating poly-
nomlal§ (Sp‘lme or Hermite) [29], [30], [35] and piecewise smooth control
approximations [3], [20], [36], [38], [41], [45] (for (ii)).

[f the parametrization is complicated, the constraints on the controls in (2.1)
are oi: the same type as (1.4). However, they take a particularly simple fm:m
lfa piecewise constant/linear parametrization or a representation of splines
via the B-spline basis is used. These parametrizations are now described m
some more detail. |

Example 2.1
a) Piecewise constant parametrization:

Let MeNand{0=rp<m<...< T™M-1 < Tpr = 1} be a discretiza-

;1011 t?f the interval [0, 1]. Let x; ( = 1,..., M) denote the characteristic
unctions of the subintervals [ry, 7], (5-1,73], 3 = 2,..., M. The first

lU =UM [ .= Mr,

variant of the parametrization is to put W :=

X

w = (uy,...,up) and ’
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M
(2.2) u(-, w) 1= Zujxj.
j=1

In the second variant the switching points 7y,..., Tar—1 are cons1dered' as
parameters in addition to the function values u; in the subintervals, i.e.,

Li=Mr+M—-1,W:=UMxT,

T={(r, .., 7m-1):0<71<13<1,j=2,...; M-1},
w:=(u1,...,Upm;71,...,™m~1) and u(:, w) has the form (2.2).

If U C IR" is convex polyhedral, this also holds for W as a subset of RM"
and RM(+10-1 respectively.

b) Piecewise linear parametrization with jumps:

Let M € IV and put W := U*¥" x T, where 7 is given as in a),

w.= (UT,U;,U;-,. ..,UL,U;J;Tl,.. ')TM-l) and
1

(2.3)  u(t,w):=) ;_T‘_—T_—l(uj_(t—ﬁ—l)‘l'uf(fj —))x;(t), t€0,1],
j=17 =

where x; are defined as in a). .
Since U is convex, u(t, w) belongs to U for any w € W and ¢ € [0,1]. ]

and u; are the right limit of u(:, w) at 7;_1 and the left limit of u(-, w) at 7},
respectively (j = 1,..., M), and it holds that u(7, w) = v, u(rj, w) = uy,
j=1,...,M. Wis a polyhedron in RM@r+1)=1if [ has this property in
IR". In the simplified variant of this parametrization the switching times
T1,...,TM-1 are considered to be fixed.

Example 2.2 Let Mk e N and {0 =1 <7 < ...< 7pr := 1} be a grid
in [0,1]. Assume that 2k additional grid points 7_j < T_p41 < ... < To and
™ < TM+41 < ...< Taryk are given and let By; denote the i-th B-spline of

k-th order, i.e.,
Bii(t) := (fipktr — )7, Tigns oy ][ — 85, t € R,
(i"—"—k)"')M—l),
where [7;,..., Tiyr+1] denotes the (k + 1)-th divided difference and [z]4 :=
M

-1 .
max{z, 0} (cf. [8]). For the parametrization we put W := x \ U=UMtk
j=-

L= (M4 Ry w = (umky . ugs) and
M-1

(2.4) u(',w) = Z ujBkj(-).

—_——
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(Note that w € W implies u(t,w) € U for all ¢ € [0, 1], since B-splines are
M

~1
nonnegative and 37 By;(t) = 1 for all t € [0, 1] (see [8).)
j==~k
Including the grid points m,...,7a—; into the set W of parameters we
obtain W ;= UMtk [ .= (M+k)r4+M~1, w:= (Uety ooy g7,
.-y T —1) and u(:, w) has the form (2.4). Values of u(:, w) can be computed
efficiently by using the recursion formulae for B-splines (cf. [8]).

Next we describe the discretization of the initial value problem (1.2). Sup-
pose that an arbitrary grid ry := 0 < T < ...< 1) = 1 of the interval
(0,1] is given. This grid is used for defining the control parametrization
and is either fixed or considered as a decision variable. For the integration
of (1.2), where the control function u(-) is replaced by the parametrization
u(:,w), we use a general variable multistep method of the form

ke

(2.5) Zazjl‘g_j = hegOe(:L‘g, B ..,:L‘g_.k[;v,w), £=1,. . N,
j=0

where 2o = 2o(v), k¢ < &, ago := 1, for all £ = L...,N, he =ty — 44,
£=1,...,N, denote the stepsizes and {to=0<ti<ty< ... <ty := 1}
forms a grid of [0, 1] such that 7 € {ty, ts, . cotvarli=1,00, M~ 1, fe.,
the grid for the integration of (1.2) is selected as a refinement of that for
the control parametrization. The variable orders ke € IN, (real) coefficients
agj (j =0,...,k) and functions pe (€= 1,...,N) define the integration
method (2.5). (2.5) includes a variety of numerical methods for solving
(1.2), e.g., linear multistep (multiderivative) methods and nonlinear one-
step methods (cf. e.g. [26]). For linear multistep methods the functions ¢,
are of the form

ke
(26) ez, .., Tempy;v,w) = D b f(wemg, ulte—j, w), v),

j=0

where bs; (7 =0,..., k) are real coefficients.

The variable orders k; are selected such that at each possible jump 7; of the
parametrized control the order is set to be equal to 1, i.e., i'cg(,-Hl = 1
Ti = tyiy (1 =1,...,M = 1). This means that at each 7i a restart of the
(self-starting) multistep method is organized to perform the integration of
(1.2) in the interval (7i) Ti41) where u(-, w) is "smooth”, and to avoid losses
of accuracy at the jumps. Of course, the value of u(,w) at ¢ = 73 in (2.5),
(2.6) has to be taken as its right limit u(ri+, w).

For a g-stage Runge-Kutta method, (2.5) takes the form
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q
e :ﬂfl—l'*'hlzbi]\/liy f:l,...,N,
i=1

(2.7) 9
Ko = f(ze—1 +he 3 i Kejy ulte—1 +cihe,w),v), i=1,...,q,
j=1

where A = (ajj), b = (b1,...,by), c=(c1,...,¢q) are the parameters of the
Runge-Kutta scheme. The method is called explicit if a;; = 0 whenever
i < j (implicit otherwise).
Of course, combinations of linear multistep methods with nonlinear one-step
methods (e.g. Runge-Kutta starters for multistep methods) also belong to
the general scheme (2.5).

Discretizing the control and state constraints (1.4) and (1.5) at each grid
point ¢ (£ = 1,..., N) of the state grid, we arrive altogether at the following
parametrization—discretization scheme for the approximate solution of (1.1)
- (1.5): Minimize

(2.8) F(v,w) = go(zn,v)

subject to the constraints

ke
(29) Zaljxl—j = hl‘Pl(fL’b ...,(L‘[_.kl;U,U)), L= 1) e
j=0
(2.10) gj(:L'N,v)SO (G=1,...,d1),
(2.11)  gj(ze,ulte,w),v) <0 (G=di+1,...,d;€=1,...,N),
(2.12) veV, weW.
(
s

2.8) - (2.12) represents a nonlinear program with many constraints and
+ L variables.

3 Computing gradients

Solving (2.8) — (2.12) by standard nonlinear programming methods requires
the (approximate) calculation of derivatives for both the objective and con-
straints. In this section, we discuss several knwon principles for the com-
putation of gradients and extend one of these approaches. To this end, we
consider the following function

(3.1) G(p) = g(ze.,p), p:=(v,w) € R*TL, where
ke

(3.2) Zagj:cz_j = hepe(ze, oo 2e—kp), £= 1,8, mo = zo(v)
j=0

_ .
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and & € {1,..., N} is fixed. The objective (2.8) and the functions in (2.10),
(2.11) are special cases of (3.1) - (3.2).

For the calculation of the gradient (partial derivatives) of G the following
general techniques have been used for the last two decades:

(1) Numerical calculation by finite differences (e.g. [7], [29));
(i) nu11"Lerical approximation of the ” continuous” gradient (in (1.1) - (1.4))
by integration of the dual equation (e.g. [20], [21], [38], (46]);

(ili) numerical integration of the enlarged ode (1.2) for the state z(-) and
the derivatives %’5(’) (i=1,...,s+ L) simultaneously;

(iv) co:npqtatian of the gradient of the diseretized problem or internal
numerical differentiation (e.g. [5], [6], [17], [18], (22], (36]).

Method (i) is easy to implement, but has the drawback that s + L + 1
high accuracy integrations of (1.2) have to be performed, (ii) requires the
numerical integration of two ode’s, namely the state equation (1.2) and the
dual (adjoint, costate) equation

(63 XO=-[5 e, utw, 0] 20, tepn, 20 = & (w1).p),

successively. The partial derivatives of (i can then be computed according
to l'.l}e f'o.rmulae in [20], [37], [38]. The essential drawback of this approach
consists in numerical difliculties during the automatic backward integration
of (3.3), since the state variables are only available at the nodes selected
duriug‘ for}vard integration of (1.2). Relations of this approach to internal
numerical integration (iv) using adjoint systems are discussed in Remark 3.7.
Method (iii) is again easy to implement, but suffers from the high dimension
((s + L + 1)m) of the ode. In contrast to the "external” differentiation
methods (i) - (iii) the basic idea of (iv) is to compute the derivatives of
the internally selected discretization in two modes. The first mode is the

direct computation of the partial derivatives %’Fﬁ (i=1,...,8+L) during

the (automatic) integration of (1.2) with varial;le. order and step (leading
to the scheme (3.2)). The partial derivatives are calculated by formulae
that follow from (3.2) by applying the chain rule. The second (indirect)
mode consists in the computation of gﬁ by using adjoint systems. The

underlying idea is similar to the use of the dual equation in (ii) and leads,

illl fact, to a certain "induced” discretization of the dual (3.3). The approach
(iv), although developed independently during the last 15 years, resembles
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the idea of automatic differentiation of algorithms (cf. [24] for a recent
state-of-the-art). Both modes (direct and indirect) are variants of the so-
called forward and reverse modes of automatic differentiation ([19], [24],
Section 4). Compared to the techniques (i) - (iii), the internal numerical
differentiation (iv) leads to a drastic reduction of computing time (60 - 80 %
are reported in [5], [6] compared to finite difference approximations), since
it requires the numerical integration of (1.2) only once.

In what follows, we extend earlier results on the indirect mode for specific
integration schemes ([7], [18], [36]) to general variable multistep methods
(3.2) and discuss particular cases. We begin with stating a general result in
this direction.

Theorem 3.1 Let g, ¢ and he, ag; (viewed as a function of p) be contin-
uwously differentiable for each j=1,... kg, £=1,...,4,.

If the partial derivatives g%f—, £=1,...,¢, exist for somei € {1,...,s+L},
then 1t holds

G & dpe  Ohy day; dzg g
3.4 — = M he === + —¢; - 2P ME=E 4 25
G4 lzl‘(fapﬁa‘ ]Oap.-””“)”a.*ap,-'
whenever

_ (99T Ope \T

(3.5) Mo = (6—30) +hg_<-52;:> Xe,, and

Lo—2 lu—t 6@8 T
(36) D awjidr = Y hz+j( 5;’) Atti

Jétﬁo—j ié;c;z(lj

D ) 9
H the abbreviations ot = 9wy, .. 20 p;p), GE =
( ere we use the abbreviations 7 . (e, . Te—kys D), z;

d . dxg _ Oz dg _ g

Gel(er,- - menip) G2 = G0), gL = gz, v) ete.)

Proof: Let the partial derivatives g%_(‘ £=1,...,¢, exist. Then we obtain
from (3.2) by the chain rule,

ke

(3.7) 'ia-a““f—cb +he) Ope OTioj y_),...,0
| j=0 “op " ej:oa:!.'r.—j op: "
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oh g Y fa
dy = / LS £ i £=
where @y -61—)530@+ lga% j=0—653-m1_1,£ ) TR

Now, let A¢, £=0,...,4,, be given by (3.5), (3.6). Then we have by (3.7),
Z‘

£, k
Yo7 = 33 (o - hegpt) )

¢=1 3
)2} |5

L, [

= 2 [0 {awre- n( 2

r=0 {=1j=0

b—j=r
v 5 {ertsidras = b -(6“"” TA -}T‘%'
r=1 j=p Tty & Oz, il Op;
JSkrg;
C Hos ;
+ Z {ajj/\j —h; (%)T/\j}q‘%%g
j=1 '
Ik

S \T T Hz, dzy Og Oz 15}
— /\ .—’ . - /\ - — T—E‘=—y_“£.— Tﬂ'
{ e (au.) “J o Moy 3s op 0 op:

Hence, we obtain finally

G 89 Oy, 89 & dz0 &
— = s ) MY 2o T8%0. ¢
el R 3o ; To,+ M . +ap'_. o

Remark 3.2 The partial derivatives g‘%f t=1,...,6,i=1,...,s+ L)
exist and are continuous by the implicit function theorem if the matrices
I - ;"lg%%ﬁ (¢=1,...,4,) are nonsingular. This condition also implies that
.thz‘a (?iscr(?te adjoints A (€= 0,...,£4.) are well-defined by (3.5), (3.6), and
1t 1s implied if the maximal stepsize of the state grid is sufficiently small,

(3.5), (3.6) may be viewed as an "induced” discretization of the dual equa-

tion (3.3). Hence, we call the maximal number of the summation index J
in (3.6), i.e.,

(3.8) ki =max{j € {1,...,0u — €} : j < keyj},

the (variable) dual order instep £ (¢ = £, -1, .. ., 1) of the backward scheme
(3.5), (3.6). It turns out that for each index £ such that t¢ belongs to the
f:ontrol grid {71,...,7p—1}, we have ki_y = 1since k¢p1 = 1. Hence, the
induced backward scheme has the same behaviour as the forward scheme
(2.4) at those grid points.
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Remark 3.3 Since the stepsizes he and the coefficients ag; depend on con-
trol grid points only, the formula (3.4) for the partial derivatives 3— take
a particular form for a special choice of p;. We obtain from (3.4) for

6G = Taw 1020 8

(3.9) pi = — = E heAg Ao Bu; + ;97'
& d 0
(3.10) pi = wi :/:{Tl,” yTM — 1} ——— E hu\T ’PE 65).

(3.11) p; = 3,” —ZIM +r\e(.)¢z<)—Ae(.)+1¢e< 41—

L ke 8(15
=2 e

£=1j=0

where 7; =ty < y,.

For the parametrizations considered in Example 2.1, the summands in (3.10)
and (3.11) vanish for £ ¢ {€(),...,£(i + 1)} if 7y = tyyy and wi = w4y (or

w; € {u.+1: |+1})'

Next we turn to the particular case that (3.2) is a (self-starting) linear
multistep method, i.e., that ¢, takes the form (2.6).

Corollary 3.4 Under the assumptions of Theorem 3.1, we have for (3.5),
(3.6) in case of linear multistep methods:

(3.12) A = (%)%m.m.d%t )T)u.
o g K
(3.13) Z At jAei = <%§ t) Y hewiberiiress,
J<kt+: iéftow'

j=4.—=1,...,0, ho:=0,

where kj is the dual order (3.8).
Furthermore, the following formulae for the partial derivatives of oy in (3.9)

- (3.11) hold:

Opu i Ope o, Of | Oultej,w)
— = bpj —— = = i bl o o e
E}u‘- ; ti 31),' t—j, aw,' J;o bt] Ou t—j 611); !
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i ke
dpe Oby; f Qulte—;, w
Ao S (ze—j, ute—j, v)+b ————-—E“J’u)
ar; ]zzg < ary ~j2 ulte-j, 0),v) + by 5= ou o )
(£=1,...,4).

(Here we denote Hil =
etc.)

:Ez,U(tz, w), v ),%'e_j:%(xl—j)u(tl—jvw)'v)

Proof: Since
keqs
Qe (Tersse oo Z begjif(Zeqj—i, u(tesj—i, w),v), we ob-

. 0Pty
tain _5er = byyyj gi(xz,u(tg,w) v) whenever 0 < j < < key;.

mulae for the partial derivatives of ; are immediate. O

Letj—kep;sP)

The for-

Remark 3.5 If the self-starting linear multistep method has the property
that the order of the method at each step is increased at most by one (i.e.
ke Ske—y +1, = +»N), the constraint j < keys on the sums in (3. 13)
Is redundant.

Example 3.6 Let us consider the piecewise constant parametrization in
Example 2.1 (i.e. w = (uy, ..., upi71, ..., T 1)) and an Adams-ype vari-
able linear mullistep scheme (i.e. ag :=1, az; 1= —1 and ag; := 0 for all
J=2,...,key £ = 1,...,4,). Then the partla.l derivatives of (¢ have the
followmg form

35‘:0 6g

oG r
o Zhg/\ Zb,, (u i (tg_j,w),v)+)\g‘—3-;+% G=1,...,s),
H 1
oG “‘*”
— T . .
dui —,_ %4,1 hede Zb‘fa Temjy ¥irv), M u(,w) = wiin (b, o)),
(i=1,...,M),
le ey b
- = T U0
O e%;)hl/\ ,Zo G, (Bemss ulte=o ), V)4 Moy ety = Ay 11 ety

ke
where 1; = Le(iy, pe = ,Eobljf(”i—ja”(tl—j’w)» v), L€ {f(z),f(z) + 1},
J=

A, = (g-i)T+Izg_bg_()(g{—(:ct_,u(tg_,w),v))T)\g,
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k.
8 g
(3.14) A = /\g+1+(5£(:u,u(tg,w),v)) S hepiberiiMeds, ho =0
1 =0
J'%km‘

(=4 -1,...,0)

When a particular implementation of variable stepsize multistep methods
is used (e.g. in [11] based on the Nordsieck representation, cf. also [26],
p. 417-419), the computation of derivatives has to be adapted, of course, to
this implementation.

Remark 3.7 The formulae for the partial derivatives of G in Example 3.6
are discrete analogues of the formulae derived e.g. in [38]. The discrete
adjoint equations (3.12), (3.13) or (3.14) show that they are different from
discretized dual variables obtained by applying the same linear multistep
method to integrate the dual equation (3.3). Even for linear one-step meth-
ods

er = xe-1 + he{bf(ze, u(te, w),v) + (1 — b) f(@e—1, u(te-1, W), v)},
we obtain, by specifying (3.14), the scheme

of T
(3.15) At = Aeg1 + (a(l‘g, ’u(t[, ’U)), ’U)) (hgb/\g + hg.H(l - b)/\[.H)

and observe the mentioned difference. For the explicit Euler method (i.e.
b := 0), (3.15) appears in several papers (e.g. [16], [18]). For the implicit
Euler scheme (b := 1), (3.15) was used in [28].

For general one-step methods (k¢ := 1 in (3.2)) Theorem 3.1 immediately
yields the following specification, which was stated, in parts, already in [36].

Corollary 3.8 Under the assumptions of Theorem 3.1, we have for (3.5),
(3.6) in case of one-step methods:

(3.16) Ae, = (a—i)T+ht.(§-&>T/\t.

T 8 T
(BAT)  Ae=dep1r = he ) et hegr (=) Aegr,
Oz, dxp

|

In addition, the formulae (3.9), (3.10) are valid and (3.11) specifies io

£(i)+1
G _ bl
O = t:?(.-) h,)\f?;% + ’\tT(i)‘f’l(i) - AeT(i)+1<Pt(i)+1 (where 7 = tys)).
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Example 3.9 For ezplicit Runge-Kulta methods (2.7) the function ¢, has
the form

g i-1
pe(e-1) = Zl biKeiy Koo = f(ze-1 + he Y aijKej, u(temr + cihe, w), v),
i= j=1

q i-1
i=1,...,¢, and .zlbi =1, Yaj=c,i=1,...,q qis the number of
= j=1

1
stages. From Corollary 3.8 we obtain the following discrete adjoint system:

- ()

g
Att1 + by (Zbiygf.l,,-)/\ul, t=t6.-1,...,0,

i=1

(3.18) At

where '
5, = i-1
Yep1,i = g (@ethes _Zlainzﬂ,j,u(tz+cz'hz+1,w),v)(1+h£+1 S0 Yer15)
7= j=1
i=1,...,q. Similar expressions arise for th tial derivati Opr O
p e partial derivatives -5%, Bﬁ—i,

oy, . )
—a%. For specific Runge-Kutta schemes (with ¢ = 2, ¢ = 4 stages) discrete

adjoint schemes of the form (3.18) are derived already in [7], [17], [18], [22].
For the Heun scheme

h
Ty = g1+ %{f(ml—lyu(tﬁ—lvw))v)
+f<$e-1 + shef(mem1, u(te—1, w),v), u(te~ + %hz,w)ﬂ))}

we obtain for instance the following discrete adjoints:
hetr
Ae = Mg+ —2—{n+1,1 +Yer12} Aeq1, £=4,—1,...,0, where

of
}/l-}-l,l = a_z(zla U(t[, U)), 'U),
of
Yegr,2 1= 9z (mz + Lhepr fze, u(te, w), v), u(te + %hz+1,w), U) '
(I + Fhes1Yeq1,1)
Remark 3.10 Formulae for the gradients and the discrete adjoints can

be derived from Corollary 3.8 for implicit Runge-Kutta and extrapolation
methods, too. For example, we obtain for the implicit midpoint rule

Ty =241+ hlf(%(ml—l + Z’Z))u(%(tl—-l + tl)yw)a ’l)), L= 1) e )Z*)
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the following discrete adjoint systeni:
h[ af 1 T

At = A1+ ?<3; (%(-’vt-l + z¢), u(3(te-1 + te), w), U)) Ae

heyr (OF T
+ - (5; (%(we + zet1), u(z(te + tega) w), ”)) Aet1,

£=£,-1,...,0.

Since extrapolation methods represent explicit Runge-Kutta schemes ([26],
Chapt. I1.9), the formulae in Example 3.9 are also relevant to these methods.

However, the adjoint systern for extrapolation methods (e.g. for the Gragg-
Bulirsch-Stoer algorithm) can also be derived in a direct way, of course.

Remark 3.11 A comparison of the discrete adjoint systems (3.14) and
(3.18) (for linear multistep and Runge-Kutta methods, respectively) shows
the somewhat surprising effect that one backward step in (3.14) requires

only one evaluation of the Jacobian %, whereas the number of evaluations

of Of in (3.18) corresponds to the number of stages. This effect might
indicate that linear multistep schemes are more advantageous compared to

nonlinear methods in this context.

Remark 3.12 The methodology of this section applies to parameterinden-
tification in ode’s, too. In order to illustrate this, let us consider the follow-

ing problem:

|l2(7) — yx||? subject to p € P C IR*,

M=

Minimize F(p) := %
k=1

where 2'(t) = f(z(t),p), t € [0,1], 2(0) = zo(p), and
yi are observations at the data points 7 € 0,1, k=1,..., M.
If the ode is solved by the general variable multistep (3.2) and the data

points 7 are included into the underlying grid (i.e. 7 = tex), k =
1,..., M), we obtain from Theorem 3.1 the following formulae for partial
derivatives of F':
M Kk)
oF r Ope  \p Oxo .
a_p:—;[;htkk’t%-lp)‘k'ogﬁ; (1—1,...,8)
where

Oee\T
Aeeky = (2(76) —ye) + hz(k)<awtik;) Ak e(k)

-~ —
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k: £

D Wiy = Zl: hey, (220)T

¢ 2 R 45 8_’,‘; ’\k,l-{—j;
=0 j=0 ¢
J<keys j<keq

£=4(k)-1,,..,0, hg:=0 (k=1,...,M).

4 Conclusions

A general‘approximation scheme for nonlinear constrained optimal control
problems is considered, where the controls are suitably parametrized (”sim-
ple”) functions and the state equation is replaced by a discretization scheme
These schemes lead to finite-dimensional nonlinear programs (NLP) wlllich‘
can be solved numerically by standard methods. An important p’roblem
for apPIyitlg NLP-solvers consists in the efficient computation of first (and
sometimes also higher) order derivatives of the objective and constraints
Th'e.present baper' contributes to the direct development of the discrete.
adjoint system from the discretized model, which is called ” internal numer-
ic,al. differentiation via adjoint systems” in [7]. This approach represents a
variant of the "reverse mode of automatic differentiation” (cf. [24]). Its un-
dferlym'g idea consists in saving information (on the discrete states and the
c{;scretlza:tion scheme) during the (forward) integration of the state equa-
tion. This information is then used to compute discrete adjoint variables
?,nq, after that, first oder derivatives. The results in Section 3 provide some
?ns1ght ir.lto the way in which discrete adjoints can be computed from the
information obtained during the forward integration. Although the reverse
mode of automatic differentiation enjoys an excellent temporal complexit
'result (cf. [23], [24]), its practical applicability seemed to be limited by ar);
Increase of the memory requirement, which is proportial to the run time T
of the function evaluation program (i.e. of the forward ode solver). How-
ever, a.recently developed recursive checkpointing scheme ([23)]) a’chieves
a logarithmic growth of temporal and spatial complexity relative to T in
reverse automatic differentiation.

Finally, we mention that a system for solving constrained optimal con-
Frol problems has been developed and described in (3], [4]. This system
is based on an implementation of the piecewise constant and piecewise lin-
ear parametrization in Example 2.1, the integration of the state equation
b)f Adams. methods or backward differentiation formulae (in the nonstiff or
stiff case) in the implementation from [11] and on solving the nonlinear pro-
grz:m§ by'SQP-met.hn.ads ([39], [40]). The computation of gradients is carried
ut via discrete adjoint systems according to the formulae in Corollary 3.4,
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Example 3.6. First test runs of the system have been performed on a set of
small but illustrative examples (control of a point mass moving [21], mixed
catalyst problem [38], rocket start [18], moon landing of a spacecraft [4])
with or without including grid points into the optimization process. The
results in [3], [4] show the reliability and efficiency of the technique for
computing gradients described in this paper.
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The moment problem associated with
the Cowen tridiagonal
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Abstract

In this paper we solve the hermitian moment problem associated
to a non-symmetric tridiagonal matrix depending on two parameters.
The problem has a solution when the operator on ¢* defined by this
matrix is subnormal. We analyze the spectrum of the operator and
also the spectrum of its normal extension for several values of the
parameters. We get the support of the measure, and the distribution
in some case.

1 Introduction

Let us consider an infinite positive definite hermitian matrix M = (¢i1)55=0
generated by c;; =< D'eq, Deg > with e} = (1,0,0,...), D is the tridiag-
onal operator D =T + AT*, where

0 0 0 0 0

1 0 0 0 0

0 Vits 0 0 0
T=190 o VI+s+ 82 0 0 i

0 0 0

0 VIits+sl+s0

with A € € and 0 < s < I. Cowen proved [6] that D is a subnormal
operator if and only if A = 0 or |A| = s*/2 with k € {0,1,2,...}.

We know [2] that if the right-shift operator associated to a bounded
h}(:,rmitian moment problem is subnormal, the problem to find u and Q such
that




