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Introduction

• Computational methods for solving stochastic variational problems require

(first) a discretization of the underlying probability distribution induced by

a numerical integration scheme for the approximate computation of expec-

tations and (second) an efficient solver for a (large scale) finite-dimensional

variational problem.

• Discretization means scenario or sample generation.

• Standard approach: Variants of Monte Carlo (MC) methods.

• Recent alternative approaches to scenario generation:

(a) Optimal quantization of probability distributions

(Pflug-Pichler 11).

(b) Quasi-Monte Carlo (QMC) methods

(Koivu-Pennanen 05, Pennanen 09, Homem-de-Mello 08, Heitsch-Leövey-Römisch 12).

(c) Sparse grid quadrature rules

(Chen-Mehrotra 08).



• Known convergence rates in terms of scenario or sample size n:

MC: ên(f ) = O(n−
1
2) if f ∈ L2,

(a): en(f ) = O(n−
1
d) if f ∈ Lip,

(b): classical: en(f ) = O(n−1(log n)d) if f ∈ BV,

recently: ên(f ) ≤ C(δ)n−1+δ (δ ∈ (0, 1
2]) if f ∈ W (1,...,1),

where C(δ) does not depend on d,

(c): en(f ) = O(n−r(log n)(d−1)(r+1)) if f ∈ W (r,...,r),

where d is the dimension of the random vector and en(f ) the quadrature

error for integrand f and sample size n, i.e.,

en(f ) =
∣∣∣ ∫

[0,1]d
f (ξ)dξ − 1

n

n∑
i=1

f (ξi)
∣∣∣

and ên(f ) denotes mean (square) quadrature error.

• Monte Carlo methods and (a) may be justified by available stability results

for stochastic programs, but there is almost no reasonable justification for

(b) and (c) in many cases.

• In applications of stochastic programming dimension d is often large.
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Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a QMC algorithm

Qn,d(f ) = 1
n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d.

We assume that f belongs to a linear normed space Fd of functions on [0, 1]d

with norm ‖ · ‖d and unit ball Bd.

Worst-case error of Qn,d over Bd:

e(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣



Koksma-Hlawka type inequalities: (Koksma-Hlawka 61)

en(f ) = |Id(f )−Qn,d(f )| ≤ ‖disc‖p,p′‖f‖q,q′ ,
where 1 ≤ p, p′, q, q′ ≤ ∞, 1

p + 1
q = 1, 1

p′ + 1
q′ = 1, and

‖disc‖p,p′ =
(∑
u⊆D

γu

(∫
[0,1]|u|

|disc(xu, 1)|p
′
dxu

) p
p′
)1
p

disc(x) =
d∏
j=1

xj − 1
n

n∑
i=1

1l[0,x)(ξ
i) (x ∈ [0.1)d)

‖f‖q,q′ =
(∑
u⊆D

γ−1
u

(∫
[0,1]|u|

∣∣∣∂|u|f
∂xu

(xu, 1)
∣∣∣q′dxu) q

q′
)1
q

with the obvious modifications if one or more of p, p′, q, q′ are infinite.
By (xu, 1) we mean the d-dimensional vector with the same components as x for indices in u and the rest of
the components replaced by 1.

In particular, the classical Koksma-Hlawka inequality essentially corresponds to

p = p′ = ∞ if f belongs to the tensor product Sobolev space W (1,...,1)
2,γ,mix([0, 1]d)

which is defined next.



The case of kernel reproducing Hilbert spaces

We assume that Fd is a kernel reproducing Hilbert space with inner product 〈·, ·〉
and kernel K : [0, 1]d × [0, 1]d → R, i.e.,

K(·, y) ∈ Fd and 〈f (·), K(·, y)〉 = f (y) (∀y ∈ [0, 1]d, f ∈ Fd).

If Id is a linear bounded functional on Fd, the quadrature error en(Qn,d) allows

the representation

en(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣ = sup

f∈Bd
|〈f, hn〉| = ‖hn‖d

according to Riesz’ theorem for linear bounded functionals.

The representer hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − 1
n

n∑
i=1

K(x, ξi) (∀x ∈ [0, 1]d),

and it holds

e2
n(Qn,d)=

∫
[0,1]2d

K(x, y)dx dy − 2
n

n∑
i=1

∫
[0,1]d

K(ξi, y)dy + 1
n2

n∑
i,j=1

K(ξi, ξj)

(Hickernell 98)



Example: Weighted tensor product Sobolev space

Fd =W (1,...,1)
2,γ,mix([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1])

equipped with the weighted norm ‖f‖2
γ = 〈f, f〉γ and inner product

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

∂|u|f

∂xu
(xu, 1)

∂|u|g

∂xu
(xu, 1)dxu ,

where γ1 ≥ γ2 ≥ · · · ≥ γd > 0, γu =
∏

j∈u γj, is a kernel reproducing Hilbert

space with the kernel

Kd,γ(x, y) =

d∏
j=1

(1 + γjµ(xj, yj)) (x, y ∈ [0, 1]d),

where

µ(t, s) =

{
min{|t− 1|, |s− 1|} , (t− 1)(s− 1) > 0,

0 , else.

Note that f ∈ Fd iff ∂|u|f
∂xu

(·, 1) ∈ L2([0, 1]|u|) for all u ⊆ D.



Theorem: (Sloan-Woźniakowski 98)

Let Fd =W (1,...,1)
2,γ,mix([0, 1]d). Then the worst-case error

e2(Qn,d)= sup
‖f‖γ≤1

|Id(f )−Qn,d(f )| =
∑
∅6=u⊆D

∏
j∈u

γj

∫
[0,1]|u|

disc2(xu, 1)dxu

is called weighted L2-discrepancy of ξ1, . . . , ξn.

Problem: Integrands of stochastic variational problems are typically piecewise

smooth and do not belong to Fd in general (piecewise linear convex functions are

even not of bounded variation (Owen 05)).

Typical integrands: f = g ◦h = g(h(·)), where g is piecewise linear-quadratic

(convex) and h is sufficiently smooth.

First results for g(t) = max{0, t} and h smooth via the ANOVA decomposition

(Griebel-Kuo-Sloan 10, 13)

Here: Integrands in linear two-stage stochastic programming, i.e., maximum of

linear-quadratic functions.



First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)

Let m, t ∈ Z+, m > t.

A set of bm points in [0, 1)d is a (t,m, d)-net in base b if every elementary

subinterval E =
∏d

j=1[
aj

b
dj
,
aj+1

b
dj

) in base b with λd(E) = bt−m contains bt points.

A sequence (ξi) in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ∈ Z+

and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}
is a (t,m, d)-net in base b.

There exist (t, d)-sequences (ξi) in [0, 1]d such that en(f ) = O(n−1(log n)d−1).

Specific sequences:
Faure, Sobol’, Niederreiter, Niederreiter-Xing sequences (Dick-Pillichshammer 10).

Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

Let g ∈ Zd and consider the lattice points{
ξi =

{
i
ng
}

: i = 1, . . . , n
}
,

where {z} = z−bzc ∈ [0, 1) is the componentwise fractional part. The generator

g is chosen such that the lattice rule has good convergence properties.





Recent development: Randomly scrambled (t,m, d)-nets (Owen 95) and

randomized lattice rules (Sloan-Kuo-Joe 02).

Randomly shifted lattice points:

With independent in [0, 1)d uniformly distributed 4i, i = 1, . . . , n, put

Qn,d(f ) = 1
n

n∑
i=1

f
(
i
ng +4i

)
.

Theorem:
Let n be prime, Fd = W (1,...,1)

2,γ,mix([0, 1]d) and g ∈ Zd be constructed componen-

twise. Then there exists for any δ ∈ (0, 1
2] a constant C(δ) > 0 such that the

mean quadrature error attains the optimal convergence rate

ê(Qn,d) ≤ C(δ)n−1+δ ,

where the constant C(δ) grows when δ decreases, but does not depend on the

dimension d if the sequence (γj) satisfies the condition
∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3
).

(Sloan-Kuo-Joe 02, Kuo 03)



ANOVA decomposition of multivariate functions

Idea: Use decompositions of f , where the terms are smooth or small.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd) with ρ(ξ) =
∏d

j=1 ρj(ξj), where for p ≥ 1

f ∈ Lp,ρ(Rd) iff

∫
Rd
|f (ξ)|pρ(ξ)dξ <∞ iff

∫
(0,1)d
|g(t)|pdt <∞

g = f ◦Φ−1, Φ−1 := (Φ−1
1 , . . . ,Φ−1

d ) and Φj(xj) :=

∫ xj

−∞
ρj(ξj)dξj, j ∈ D.

Let the projection Pk and P ?
k , k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

(P ?
k g)(t) :=

∫ 1

0

g(t1, . . . , tk−1, s, tk+1, . . . , td)ds (t ∈ (0, 1)d).

For u ⊆ D we write

Puf =
(∏
k∈u

Pk

)
(f ) and P ?

ug =
(∏
k∈u

P ?
k

)
(g),

where the product means composition, and note that the ordering within the

product is not important because of Fubini’s theorem.



The functions Puf and P ?
ug are constant with respect to all ξk and tk, k ∈ u.

ANOVA-decomposition of f :

f =
∑
u⊆D

fu , g =
∑
u⊆D

gu and gu(tu) = fu ◦Φ−1
u (tu) (tu ∈ (0, 1)|u|) ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊂u

fv and gu = P ?
−u(g)−

∑
v⊂u

gv

or according to (Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u and j ∈ u\v,

respectively. This motivates that fu is essentially as smooth as P−u(f ).

If f belongs to L2,ρ(Rd), its ANOVA terms {fu}u⊆D are orthogonal in L2,ρ(Rd).

We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .



Owen’s superposition (truncation) dimension distribution of f : Probability mea-

sure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Effective superposition (truncation) dimension dS(ε) (dT (ε)) of f is the (1− ε)-

quantile of νS (νT ):

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f ) ≥ (1− ε)σ2(f )

}
≤ dT (ε)

dT (ε) = min
{
s ∈ D :

∑
u⊆{1,...,s}

σ2
u(f ) ≥ (1− ε)σ2(f )

}
It holds

max
{∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
,
∥∥∥f − ∑

u⊆{1,...,dT (ε)}

fu

∥∥∥
2,ρ

}
≤
√
εσ(f ).

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



Two-stage linear stochastic programs

We consider the linear two-stage stochastic program

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

where f is extended real-valued defined on Rm × Rd given by

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x), (x, ξ) ∈ X × Ξ,

c ∈ Rm, X ⊆ Rm and Ξ ⊆ Rd are convex polyhedral, W is an (r,m)-matrix, P

is a Borel probability measure on Ξ, and the vectors q(ξ) ∈ Rm, h(ξ) ∈ Rr and

the (r,m)-matrix T (ξ) are affine functions of ξ, Φ is the second-stage optimal

value function on Rm × Rr

Φ(u, t) = inf{〈u, y〉 : Wy = t, y ≥ 0} = max{〈t, z〉 : W>z ≤ u},
Let posW = W (Rm

+), D ={u ∈ Rm :{z ∈ Rr : W>z ≤ u} 6= ∅}.

Assumptions:
(A1) h(ξ)− T (ξ)x ∈ posW and q(ξ) ∈ D for all (x, ξ) ∈ X × Ξ.

(A2)
∫

Ξ ‖ξ‖
2P (dξ) <∞.



Proposition:
(A1) and (A2) imply that the two-stage stochastic program represents a convex

minimization problem with respect to the first stage decision x with polyhedral

constraints.

Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)

Φ is finite, polyhedral and continuous on the (m + r)-dimensional polyhedral

cone D × posW and there exist (r,m)-matrices Cj and (m + r)-dimensional

polyhedral cones Kj, j = 1, ..., `, such that

⋃̀
j=1

Kj = D × posW and intKi ∩ intKj = ∅ , i 6= j,

Φ(u, t) = 〈Cju, t〉, for each (u, t) ∈ Kj, j = 1, ..., `.

The function Φ(u, ·) is convex on posW for each u ∈ D, and Φ(·, t) is concave

on D for each t ∈ posW . The intersection Ki ∩ Kj, i 6= j, is either equal to

{0} or contained in a (m+r−1)-dimensional subspace of Rm+r if the two cones

are adjacent.



ANOVA decomposition of two-stage integrands

Assumptions:
(A1), (A2) and

(A3) P has a density of the form ρ(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd) with continuous

marginal densities ρj, j ∈ D.

Proposition:
(A1) implies that the function f (x, ·), where

fx(ξ) := f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) (x ∈ X, ξ ∈ Ξ)

is the two-stage integrand, is continuous and piecewise linear-quadratic.

For each x ∈ X , f (x, ·) is linear-quadratic on each polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(ξ)− T (ξ)x) ∈ Kj} (j = 1, . . . , `).

It holds int Ξj(x) 6= ∅, int Ξj(x) ∩ int Ξi(x) = ∅, i 6= j, and the sets Ξj(x),

j = 1, . . . , `, decompose Ξ. Furthermore, the intersection of two adjacent sets

Ξi(x) and Ξj(x), i 6= j, is contained in some (d−1)-dimensional affine subspace.



To compute projections Pkf for k ∈ D, let ξi ∈ R, i = 1, . . . , d, i 6= k, be

given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξk(s) = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd (s ∈ R).

We fix x ∈ X and consider the one-dimensional affine subspace {ξk(s) : s ∈ R}:

@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�

Ξ2(x) Ξ1(x)

Ξ3(x)

0

ξ1(s) q q
s1 s2

Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets Ξi(x) and

Ξj(x), i 6= j, at finitely many points si, i = 1, . . . , p if all (d − 1)-dimensional

subspaces containing the intersections do not parallel the kth coordinate axis.



The si = si(ξ
k), i = 1, . . . , p, are affine functions of ξk. It holds

si = −
p∑

l=1,l 6=k

gil
gik
ξl + ai (i = 1, . . . , p)

for some ai ∈ R and gi ∈ Rd belonging to an intersection of polyhedral sets.

Proposition:
Let k ∈ D, x ∈ X . Assume (A1)–(A3) and that all (d − 1)-dimensional affine

subspaces containing nontrivial intersections of adjacent sets Ξi(x) and Ξj(x) do

not parallel the kth coordinate axis.

Then the kth projection Pkf has the explicit representation

Pkf (ξk) =

p+1∑
i=1

2∑
j=0

pij(ξ
k;x)

∫ si

si−1

sjρk(s)ds,

where s0 = −∞, sp+1 = +∞ and pij(·;x) are polynomials in ξk of degree 2− j,

j = 0, 1, 2, with coefficients depending on x, and is continuously differentiable.

Pkf is infinitely differentiable if the marginal density ρk belongs to C∞(R).



Theorem:
Let x ∈ X , assume (A1)–(A3) and that the following geometric condition (GC)

be satisfied: All (d− 1)-dimensional affine subspaces containing nontrivial inter-

sections of adjacent sets Ξi(x) and Ξj(x) do not parallel any coordinate axis.

Then the ANOVA approximation

fd−1 :=
∑
|u|≤d−1

fu i.e. f = fd−1 + fD

of f is infinitely differentiable if all densities ρk, k ∈ D, belong to C∞b (R).

Here, the subscript b means that all derivatives of functions belonging to that

space are bounded on R.



Example: Let m̄ = 3, d = 2, P denote the two-dimensional standard normal

distribution, h(ξ) = ξ, q and W be given such that (A1) is satisfied and the dual

feasible set is

{z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0}.

@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�

qq
q

q�
�
�
�@

@
@
@

K2 K1

K3

0

v3

v2 v1

Dual feasible set, its vertices vj and the normal cones Kj to its vertices

The function Φ and the integrand are of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

f (ξ) = 〈c, x〉 + Φ(ξ − Tx) = 〈c, x〉 + max{|ξ1− [Tx]1|, ξ2 − [Tx]2}

and the convex polyhedral sets are Ξj(x) = Tx +Kj, j = 1, 2, 3.

The ANOVA projection P1f is in C∞, but P2f is not differentiable.



QMC quadrature error estimates

If the assumptions of the theorem are satisfied, the two-stage integrand f = fx
(for fixed x ∈ X) allows the representation f = fd−1 + fD with fd−1 belonging

to Fd. This implies∣∣∣ ∫
[0,1]d

f (ξ)dξ − 1
n

n∑
j=1

f (ξj)
∣∣∣ ≤ e(Qn,d)‖fd−1‖γ +

∣∣∣ ∫
[0,1]d

fD(ξ)dξ − 1
n

n∑
j=1

fD(ξj)
∣∣∣

≤ e(Qn,d)‖fd−1‖γ + ‖fD‖L2 +
(

1
n

n∑
j=1

|fD(ξj)|2
)1

2

where ‖ · ‖γ is the weighted tensor product Sobolev space norm.

As fD is (Lipschitz) continuous and if the ξj, j = 1, . . . , n are properly selected,

the last term in the above estimate may be assumed to be bounded by 2‖fD‖L2.

Hence, if the effective superposition dimension satisfies dS(ε) ≤ d − 1, i.e.,

‖fD‖L2 ≤
√
εσ(f ) holds for some small ε > 0, the first term e(Qn,d)‖fd−1‖γ

dominates and the convergence rate of e(Qn,d) becomes most important.



Question: How important is the geometric condition (GC) ?

Partial answer: If P is normal with nonsingular covariance matrix, (GC) is

satisfied for almost all covariance matrices. Namely, it holds

Proposition: Let x ∈ X , (A1), (A2) be satisfied, dom Φ = Rr and P be

a normal distribution with nonsingular covariance matrix Σ. Then the infinite

differentiability of the ANOVA approximation fd−1 of f is a generic property,

i.e., it holds in a residual set (countable intersection of open dense subsets)

in the metric space of orthogonal (d, d)-matrices Q (endowed with the norm

topology) appearing in the spectral decomposition Σ = Q>DQ of Σ (with a

diagonal matrix D containing the eigenvalues of Σ).

Question: For which two-stage stochastic programs is ‖fD‖L2,ρ small, i.e., the

effective superposition dimension dS(ε) of f is less than d−1 or even much less?

Partial answer: In case of a (log)normal probability distribution P the effective

dimension depends on the mode of decomposition of the covariance matrix into

a diagonal one.



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean µ and nonsingular covariance matrix

Σ. Let A be a matrix satisfying Σ = AA>. Then η defined by ξ = Aη + µ is

standard normal.

A universal principle is principal component analysis (PCA). Here, one uses

A = (
√
λ1u1, . . . ,

√
λdud), where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues

of Σ in decreasing order and the corresponding orthonormal eigenvectors ui,

i = 1, . . . , d. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the effec-

tive truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence prin-

ciple (Papageorgiou 02, Wang-Sloan 11).

Proposition: Let A be a fixed d×d matrix such that AA> = Σ. Then it holds

Σ = BB> if and only if B is of the form B = AQ with some orthogonal d× d
matrix Q.

Idea: Determine Q for given A such that the effective truncation dimension is

minimized (Wang-Sloan 11).



Some computational experience

We considered a two-stage production planning problem for maximizing the ex-

pected revenue while satisfying a fixed demand in a time horizon with d = T =

100 time periods and stochastic prices for the second-stage decisions. It is as-

sumed that the probability distribution of the prices ξ is log-normal. The model

is of the form

max
{ T∑

t=1

(
c>t xt +

∫
RT
qt(ξ)>ytP (dξ)

)
: Wy + V x = h, y ≥ 0, x ∈ X

}
The use of PCA for decomposing the covariance matrix has led to effective trun-

cation dimension dT (0.01) = 2. As QMC methods we used a randomly scram-

bled Sobol sequence (SSobol)(Owen, Hickernell) with n = 27, 29, 211 and a randomly

shifted lattice rule (Sloan-Kuo-Joe) with n = 127, 509, 2039, weights γj = 1
j2

and for

MC the Mersenne-Twister. 10 runs were performed for the error estimates and

30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n−0.9) and O(n−0.8).
Instead of n = 27 SSobol samples one would need n = 104 MC samples to achieve a similar accuracy as SSobol.



log10 of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol’ points)



Conclusions

• Our analysis provides a theoretical basis for applying QMC methods accom-

panied by dimension reduction techniques to two-stage stochastic programs.

• The analysis also applies to sparse grid quadrature techniques.

Sparse grids in the unit cube [0, 1]d



• The results are extendable and will be extended to mixed-integer two-stage

models, multi-stage models, and to other stochastic variational problems.

Second-stage optimal value function of an integer program (van der Vlerk)
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