

Introduction

- Standard approach for solving stochastic programs are variants of Monte Carlo (MC) for generating scenarios (i.e., samples).
- Recent alternative approaches to scenario generation in stochastic programming besides MC:
 - (a) Optimal quantization of probability distributions (Pflug-Pichler 2010).
 - (b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05, Homemde-Mello 06).
 - (c) Sparse grid quadrature rules (Chen-Mehrotra 08).
- While the justification of MC and (a) may be based on available stability results for stochastic programs, there is almost no reasonable justification of applying (b) and (c).
- Known convergence rates: MC O(n^{-1/2}), (a) O(n^{-1/d})
 (b) O(n⁻¹(log n)^d), recently: O(n^{-1+δ}) (δ small)
 (d dimension of random vector, n number of scenarios).

Home Page
Title Page
Contents
••
Page 2 of 17
Go Back
Full Screen
Close
Quit

Two-stage linear stochastic programs

Two-stage stochastic programs arise as deterministic equivalents of improperly posed random linear programs

 $\min\{\langle c, x \rangle : x \in X, \, Tx = \xi\},\$

where X is a convex polyhedral subset of \mathbb{R}^m , T a matrix, ξ is a d-dimensional random vector.

A possible deviation $\xi - Tx$ is compensated by additional costs $\Phi(x,\xi)$ whose mean with respect to the probability distribution P of ξ is added to the objective. We assume that the additional costs represent the optimal value of a *second-stage program*, namely,

 $\Phi(x,\xi) = \inf\{\langle q, y \rangle : y \in \mathbb{R}^{\bar{m}}, Wy = \xi - Tx, y \ge 0\},\$

where $q \in \mathbb{R}^{\bar{m}}$, W a (d, \bar{m}) -matrix (having rank d). The *deterministic equivalent* then is of the form

$$\min\Big\{\langle c, x\rangle + \int_{\mathbb{R}^d} \Phi(x,\xi) P(d\xi) : x \in X\Big\}.$$

Home Page
Title Page
Contents
••
•
Page 3 of 17
Go Back
Full Screen
Close
Quit

We assume that the additional costs are of the form

 $\Phi(x,\xi) = \varphi(\xi - Tx)$

with the second-stage optimal value function

$$\begin{aligned} \varphi(t) &= \inf\{\langle q, y \rangle : Wy = t, y \ge 0\} \quad (t \in W(\mathbb{R}^{\bar{m}}_+)) \\ &= \sup\{\langle t, z \rangle : W^\top z \le q\} = \sup_{z \in \mathcal{D}} \langle t, z \rangle \,, \end{aligned}$$

There exist vertices v^j of the dual feasible set \mathcal{D} and polyhedral cones \mathcal{K}_j , $j = 1, \ldots, \ell$, decomposing dom φ such that

$$\varphi(t) = \langle v^j, t \rangle, \, \forall t \in \mathcal{K}_j, \quad \text{and} \quad \varphi(t) = \max_{j=1,\dots,\ell} \langle v^j, t \rangle.$$

Hence, the integrands are of the form

$$f(\xi) = \max_{j=1,\dots,\ell} \langle v^j, \xi - Tx \rangle \quad \text{if} \quad \xi - Tx \in W(\mathbb{R}^{\bar{m}}_+).$$

Home Page
Title Page
Contents
•• ••
Page 4 of 17
Go Back
Full Screen
Close

Quasi-Monte Carlo methods

We consider the approximate computation of

$$I_d(f) = \int_{[0,1]^d} f(\xi) d\xi \quad \text{or} \quad I_d(f) = \int_{\mathbb{R}^d} f(\xi) \rho_d(\xi) d\xi$$

by a QMC algorithm

$$Q_{n,d}(f) = \frac{1}{n} \sum_{i=1}^{n} f(\xi^{i}) \quad \text{or} \quad Q_{n,d}(f) = \frac{1}{n} \sum_{i=1}^{n} f(\xi^{i}) \rho_{d}(\xi^{i})$$

with (non-random) points ξ^i , i = 1, ..., n, from $[0, 1]^d$ or \mathbb{R}^d .

We assume that f belongs to a linear normed space \mathbb{F}_d with norm $\|\cdot\|_d$ and unit ball \mathbb{B}_d . Worst-case error of $Q_{n,d}$ over \mathbb{B}_d :

$$e(Q_{n,d}) = \sup_{f \in \mathbb{B}_d} |I_d(f) - Q_{n,d}(f)|$$

Example: F_d is a weighted tensor product Sobolev space, a particular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in F_d .

Home Page
Title Page
Contents
•• >>
•
Page 5 of 17
Go Back
Full Screen
Close
Quit

ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth, but hopefully only some of them relevant.

Let $D = \{1, \ldots, d\}$ and $f \in L_{1,\rho_d}(\mathbb{R}^d)$ with $\rho_d(\xi) = \prod_{j=1}^d \rho_j(\xi_j)$, where

$$f \in L_{p,\rho_d}(\mathbb{R}^d)$$
 iff $\int_{\mathbb{R}^d} |f(\xi)|^p \rho_d(\xi) d\xi < \infty \quad (p \ge 1).$

Let the projection P_k , $k \in D$, be defined by

$$(P_k f)(\xi) := \int_{-\infty}^{\infty} f(\xi_1, \dots, \xi_{k-1}, s, \xi_{k+1}, \dots, \xi_d) \rho_k(s) ds \quad (\xi \in \mathbb{R}^d)$$

Clearly, $P_k f$ is constant with respect to ξ_k . For $u \subseteq D$ we write

$$P_u f = \Big(\prod_{k \in u} P_k\Big)(f),$$

where the product means composition, and note that the ordering within the product is not important because of Fubini's theorem. The function $P_u f$ is constant with respect to all x_k , $k \in u$.

ANOVA-decomposition of f:

$$f = \sum_{u \subseteq D} f_u \,,$$

where $f_{\emptyset} = I_d(f) = P_D(f)$ and recursively

$$f_u = P_{-u}(f) - \sum_{v \subseteq u} f_v$$

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

$$f_{u} = \sum_{v \subseteq u} (-1)^{|u| - |v|} P_{-v} f = P_{-u}(f) + \sum_{v \subset u} (-1)^{|u| - |v|} P_{u-v}(P_{-u}(f)),$$

where P_{-u} and P_{u-v} mean integration with respect to ξ_j , $j \in D \setminus u$ and $j \in u \setminus v$, respectively. The second representation motivates that f_u is essentially as smooth as $P_{-u}(f)$.

If f belongs to $L_{2,\rho_d}(\mathbb{R}^d)$, the ANOVA functions $\{f_u\}_{u\subseteq D}$ are orthogonal in $L_{2,\rho_d}(\mathbb{R}^d)$.

Home Page Title Page Contents Page 7 of 17 Go Back Full Screen Close

We set $\sigma^2(f) = ||f - I_d(f)||_{L_2}^2$ and $\sigma_u^2(f) = ||f_u||_{L_2}^2$, and have $\sigma^2(f) = ||f||_{L_2}^2 - (I_d(f))^2 = \sum_{\emptyset \neq u \subseteq D} \sigma_u^2(f)$.

Sobol's global sensitivity indices of f:

$$\bar{S}_u = \frac{1}{\sigma^2(f)} \sum_{v \cap u \neq \emptyset} \sigma_v^2(f).$$

Owen's dimension distribution (superposition or truncation) of f: Probability measure ν_S (ν_T) defined on the power set of D

$$\nu_{S}(s) := \sum_{|u|=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \qquad \left(\nu_{T}(s) = \sum_{\max\{j: j \in u\}=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}\right) \ (s \in D).$$

Mean superposition dimension of f:

$$\bar{d}_S = \sum_{\emptyset \neq u \subseteq D} |u| \frac{\sigma_u^2(f)}{\sigma^2(f)} = \sum_{i=1}^d S_{\{i\}}$$

Efficient truncation dimension $d_T(\varepsilon)$ of f is the $(1 - \varepsilon)$ -quantile of ν_T .

Home Page
Title Page
Contents
••
Page 8 of 17
Go Back
Close
Quit

ANOVA decomposition of two-stage integrands

Assumption:

(A1) $W(\mathbb{R}^{\bar{m}}_{+}) = \mathbb{R}^{d}$ (complete recourse). (A2) $\mathcal{D} \neq \emptyset$ (dual feasibility). (A3) $\int_{\mathbb{R}^{d}} \|\xi\| P(d\xi) < \infty$. (A4) P has a density of the form $\rho_{d}(\xi) = \prod_{j=1}^{d} \rho_{j}(\xi_{j})$ ($\xi \in \mathbb{R}^{d}$) with $\rho_{j} \in C(\mathbb{R})$, j = 1, ..., d.

(A1) and (A2) imply that dom $\varphi = \mathbb{R}^d$ and \mathcal{D} is bounded and, hence, it is the convex hull of its vertices. Furthermore, the cones \mathcal{K}_j are the normal cones to \mathcal{D} at the vertices v^j , i.e.,

 $\mathcal{K}_j = \{ t \in \mathbb{R}^d : \langle t, z - v^j \rangle \le 0, \forall z \in \mathcal{D} \} \quad (j = 1, \dots, \ell) \\ = \{ t \in \mathbb{R}^d : \langle t, v^i - v^j \rangle \le 0, \forall i = 1, \dots, \ell, i \neq j \}.$

It holds that $\bigcup_{j=1,\dots,\ell} \mathcal{K}_j = \mathbb{R}^d$ and for $j \neq j'$ the intersection $\mathcal{K}_j \cap \mathcal{K}_{j'}$ is a common closed face of dimension d-1 iff the two cones are adjacent. The intersection is contained in

 $\{t \in \mathbb{R}^d : \langle t, v^{j'} - v^j \rangle = 0\}.$

To compute projections $P_k(f)$ for $k \in D$. Let $\xi_i \in \mathbb{R}$, i = 1, ..., d, $i \neq k$, be given. We set $\xi^k = (\xi_1, ..., \xi_{k-1}, \xi_{k+1}, ..., \xi_d)$ and

 $\xi_s = (\xi_1, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_d) \in \mathbb{R}^d = \bigcup_{j=1,\ldots,\ell} \mathcal{K}_j.$

Assuming (A1)–(A4) it is possible to derive an explicit representation of $P_k(f)$ depending on ξ^k and on the finitely many points at which the one-dimensional affine subspace $\{\xi_s : s \in \mathbb{R}\}$ meets the common face of two adjacent cones. This leads to

Proposition:

Let $k \in D$. Assume (A1)–(A4) and that all adjacent vertices of \mathcal{D} have different kth components.

The kth projection $P_k f$ is infinitely differentiable if the density ρ_k is in $C^{\infty}(\mathbb{R})$ and all its derivatives are bounded on \mathbb{R} , in particular, if ρ_k is the normal density.

Title Page Contents Page 10 of 17 Go Back Full Screen Close

Home Page

Theorem:

Let $u \subset D$. Assume (A1)–(A4) and that all adjacent vertices of \mathcal{D} have different kth components for some $k \in D \setminus u$. The ANOVA term f_u belongs to $C^{\infty}(\mathbb{R}^{d-|u|})$ if $\rho_k \in C^{\infty}(\mathbb{R})$ and all its derivatives are bounded on \mathbb{R} .

Example:

Let $\bar{m} = 3$, d = 2, P denote the two-dimensional standard normal distribution and let the following vector q and matrix W

$$W = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \qquad q = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

be given. Then (A1) and (A2) are satisfied and the dual feasible set ${\cal D}$ is the triangle (in $\mathbb{R}^2)$

 $\mathcal{D} = \{ z \in \mathbb{R}^2 : -z_1 + z_2 \le 1, z_1 + z_2 \le 1, -z_2 \le 0 \},\$

with the vertices

$$v^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $v^2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ $v^3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

Home Page
Title Page
Contents
•• ••
Page 11 of 17
Go Back
Full Screen
Close
Quit

Figure 1: Illustration of \mathcal{D} , its vertices v^j and the normal cones \mathcal{K}_j to its vertices

Hence, the second component of the two adjacent vertices v^1 and v^2 coincides. The function φ is of the form

$$\varphi(t) = \max_{i=1,2,3} \langle v^i, t \rangle = \max\{t_1, -t_1, t_2\} = \max\{|t_1|, t_2\}$$

and the integrand is

$$f(\xi) = \max\{|\xi_1 - [Tx]_1|, \xi_2 - [Tx]_2\}$$

The ANOVA projection $P_1 f$ is in C^{∞} , but $P_2 f$ is not differentiable.

Remark: Under the assumptions of the theorem the function

$$f_{d-1}(\xi) = \sum_{|u| \le d-1} f_u = f - f_L$$

is in $C^{\infty}(\mathbb{R}^d)$ if $\rho_k \in C^{\infty}(\mathbb{R})$ and all its derivatives are bounded on \mathbb{R} for every $k \in D$. For which two-stage stochastic programs is $\|f_D\|_{L_2}$ small, i.e., the efficient truncation dimension is less than d-1?

Remark: If ξ is normal with covariance matrix Σ , there exists an orthogonal matrix Q such that $\Sigma = QDQ^{\top}$ with a diagonal matrix D containing the eigenvalues. Hence, we may assume that $h(\xi)$ is of the form

$$h(\xi) = Q\xi$$
 with ξ satisfying (A4).

Then the geometric condition on the vertices of \mathcal{D} is generically satisfied in the following sense: The set of all orthogonal matrices Q such that $Q\mathcal{D}$ satisfies the geometric condition is representable as the countable intersection of open dense subsets.

Home Page
Title Page
Contents
••
Page 13 of 17
Go Back
Full Screen
Close
Quit

Sensitivity and the reduction of efficient dimension

Proposition:

Assume (A1)–(A4) and let σ_i^2 denote the variance of ξ_i , $i = 1, \ldots, d$. Then it holds

$$\bar{S}_{\{i\}} \le \frac{\sigma_i^2}{\sigma^2(f)} \max_{j=1,\dots,\ell} |v_i^j|^2 \quad (i=1,\dots,d),$$

where v^j , $j = 1, \ldots, \ell$, are the vertices of the dual polyhedron.

Hence, the transformation of a $\mathcal{N}(\mu, \Sigma)$ random vector in the form $\Sigma = B B^{\top}$ should be organized such that the σ_i are decreasing and the first few variances σ_i are (strongly) dominating if possible.

Standard Cholesky decomposition B = L is **not useful**. Principal component analysis (PCA), i.e., $B = (\sqrt{\lambda_1}v_1, \dots, \sqrt{\lambda_d}v_d)$, where $\lambda_1 \ge \dots \ge \lambda_d$ are the eigenvalues of Σ in decreasing order and v_i , $i = 1, \dots, d$, the corresponding orthonormal eigenvectors, is **very useful** in financial applications (Wang-Fang 03, Wang-Sloan 07).

Home Page Title Page Contents Page 14 of 17 Go Back Full Screen Close Quit

Conclusions

- The results provide a theoretical basis for applying QMC accompanied by efficient dimension reduction techniques to stochastic programs with low efficient dimension.
- The results are extendable and will be extended to more general two-stage and to multi-stage situations.
- Numerical experiments using randomly shifted lattice rules (Kuo, Sloan) and digitally shifted polynomial lattice rules (Dick, Pillichshammer) are in preparation.

Thank you !

References

M. Chen and S. Mehrotra: Epi-convergent scenario generation method for stochastic problems via sparse grid, *SPEPS* 7-2008.

J. Dick, F. Pillichshammer: *Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration*, Cambridge University Press, 2010.

M. Griebel, F. Y. Kuo and I. H. Sloan: The smoothing effect of integration in \mathbb{R}^d and the ANOVA decomposition, *Mathematics of Computation* (to appear).

T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling, *SIAM Journal on Optimization* 19 (2008), 524-551.

J. Imai and K. S. Tan: Minimizing effective dimension using linear transformation, in *Monte Carlo and Quasi-Monte Carlo Methods 2002* (H. Niederreiter Ed.), Springer, Berlin, 2004, 275–292.

F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, *Journal of Complexity* 19 (2003), 301-320.

F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, *Mathematics of Computation* 79 (2010), 953–966.

F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, B. J. Waterhouse: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands, *Journal of Complexity* 26 (2010), 135–160.

A. B. Owen: The dimension distribution and quadrature test functions, *Statistica Sinica* 13 (2003), 1–17.

Home Page Title Page Contents Page 16 of 17 Go Back Full Screen Close

D. Nuyens and R. Cools: Fast algorithms for component-by-component constructions of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, *Mathematics of Computation* 75 (2006), 903-922.

T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration quadratures, *Numerische Mathematik* 100 (2005), 141–163.

G. Ch. Pflug, A. Pichler: Scenario generation for stochastic optimization problems, in: Stochastic Optimization Methods in Finance and Energy (M.I. Bertocchi, G. Consigli, M.A.H. Dempster eds.), Springer, 2011.

I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for highdimensional integration, *Journal of Complexity* 14 (1998), 1–33.

I. H. Sloan, F. Y. Kuo and S. Joe: On the step-by-step construction of Quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces, *Mathematics of Computation* 71 (2002), 1609-1640.

I. M. Sobol' and S. Kucherenko: Derivative based global sensitivity measures and their link with global sensitivity indices, *Mathematics and Computers in Simulation* 79 (2009), 3009-3017.

X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, *Journal of Complexity* 19 (2003), 101–124.

X. Wang and I. H. Sloan: Brownian bridge and principal component analysis: towards removing the curse of dimensionality, *IMA Journal of Numerical Analysis* 27 (2007), 631–654.

X. Wang and I. H. Sloan: Low discrepancy sequences in high dimensions: How well are their projections distributed ? *Journal of Computational and Applied Mathematics* 213 (2008), 366–386.

Home Page
Title Page
Contents
••
•
Page 17 of 17
Go Back
Full Screen
Close
Quit