Towards Quasi-Monte Carlo scenario generation in stochastic programming

W. Römisch

Humboldt-University Berlin www.math.hu-berlin.de/~romisch
(H. Heitsch)

Introduction

- Standard approach for solving stochastic programs are variants of Monte Carlo (MC) for generating scenarios (i.e., samples).
- Recent alternative approaches to scenario generation in stochastic programming besides MC:
(a) Optimal quantization of probability distributions (Pflug-Pichler 2010).
(b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05, Homem-de-Mello 06).
(c) Sparse grid quadrature rules (Chen-Mehrotra 08).
- While the justification of MC and (a) may be based on available stability results for stochastic programs, there is almost no reasonable justification of applying (b) and (c).
- Known convergence rates: MC $O\left(n^{-\frac{1}{2}}\right)$, (a) $O\left(n^{-\frac{1}{d}}\right)$ (b) $O\left(n^{-1}(\log n)^{d}\right)$, recently: $O\left(n^{-1+\delta}\right)(\delta$ small $)$
(d dimension of random vector, n number of scenarios).

Two-stage linear stochastic programs

Two-stage stochastic programs arise as deterministic equivalents of improperly posed random linear programs

$$
\min \{\langle c, x\rangle: x \in X, T x=\xi\}
$$

where X is a convex polyhedral subset of \mathbb{R}^{m}, T a matrix, ξ is a d-dimensional random vector.
A possible deviation $\xi-T x$ is compensated by additional costs $\Phi(x, \xi)$ whose mean with respect to the probability distribution P of ξ is added to the objective. We assume that the additional costs represent the optimal value of a second-stage program, namely,

$$
\Phi(x, \xi)=\inf \left\{\langle q, y\rangle: y \in \mathbb{R}^{\bar{m}}, W y=\xi-T x, y \geq 0\right\}
$$

where $q \in \mathbb{R}^{\bar{m}}, W$ a (d, \bar{m})-matrix (having rank d).
The deterministic equivalent then is of the form

$$
\min \left\{\langle c, x\rangle+\int_{\mathbb{R}^{d}} \Phi(x, \xi) P(d \xi): x \in X\right\}
$$

Page 3 of 17

We assume that the additional costs are of the form

$$
\Phi(x, \xi)=\varphi(\xi-T x)
$$

with the second-stage optimal value function

$$
\begin{aligned}
\varphi(t) & =\inf \{\langle q, y\rangle: W y=t, y \geq 0\} \quad\left(t \in W\left(\mathbb{R}_{+}^{\bar{m}}\right)\right) \\
& =\sup \left\{\langle t, z\rangle: W^{\top} z \leq q\right\}=\sup _{z \in \mathcal{D}}\langle t, z\rangle
\end{aligned}
$$

There exist vertices v^{j} of the dual feasible set \mathcal{D} and polyhedral cones $\mathcal{K}_{j}, j=1, \ldots, \ell$, decomposing $\operatorname{dom} \varphi$ such that

$$
\varphi(t)=\left\langle v^{j}, t\right\rangle, \forall t \in \mathcal{K}_{j}, \quad \text { and } \quad \varphi(t)=\max _{j=1, \ldots, \ell}\left\langle v^{j}, t\right\rangle .
$$

Hence, the integrands are of the form

$$
f(\xi)=\max _{j=1, \ldots, \ell}\left\langle v^{j}, \xi-T x\right\rangle \quad \text { if } \quad \xi-T x \in W\left(\mathbb{R}_{+}^{\bar{m}}\right) .
$$

Quasi-Monte Carlo methods

We consider the approximate computation of

$$
I_{d}(f)=\int_{[0,1]^{d}} f(\xi) d \xi \quad \text { or } \quad I_{d}(f)=\int_{\mathbb{R}^{d}} f(\xi) \rho_{d}(\xi) d \xi
$$

by a QMC algorithm

$$
Q_{n, d}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right) \quad \text { or } \quad Q_{n, d}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right) \rho_{d}\left(\xi^{i}\right)
$$

with (non-random) points $\xi^{i}, i=1, \ldots, n$, from $[0,1]^{d}$ or \mathbb{R}^{d}.

We assume that f belongs to a linear normed space \mathbb{F}_{d} with norm $\|\cdot\|_{d}$ and unit ball \mathbb{B}_{d}. Worst-case error of $Q_{n, d}$ over \mathbb{B}_{d} :

$$
e\left(Q_{n, d}\right)=\sup _{f \in \mathbb{B}_{d}}\left|I_{d}(f)-Q_{n, d}(f)\right|
$$

Example: F_{d} is a weighted tensor product Sobolev space, a particular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in F_{d}.

ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth, but hopefully only some of them relevant.

Let $D=\{1, \ldots, d\}$ and $f \in L_{1, \rho_{d}}\left(\mathbb{R}^{d}\right)$ with $\rho_{d}(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)$, where

$$
f \in L_{p, \rho_{d}}\left(\mathbb{R}^{d}\right) \quad \text { iff } \quad \int_{\mathbb{R}^{d}}|f(\xi)|^{p} \rho_{d}(\xi) d \xi<\infty \quad(p \geq 1)
$$

Let the projection $P_{k}, k \in D$, be defined by

$$
\left(P_{k} f\right)(\xi):=\int_{-\infty}^{\infty} f\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \rho_{k}(s) d s \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

Clearly, $P_{k} f$ is constant with respect to ξ_{k}. For $u \subseteq D$ we write

$$
P_{u} f=\left(\prod_{k \in u} P_{k}\right)(f),
$$

where the product means composition, and note that the ordering within the product is not important because of Fubini's theorem.

ANOVA-decomposition of f :

$$
f=\sum_{u \subseteq D} f_{u}
$$

where $f_{\emptyset}=I_{d}(f)=P_{D}(f)$ and recursively

$$
f_{u}=P_{-u}(f)-\sum_{v \subseteq u} f_{v}
$$

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)
$f_{u}=\sum_{v \subseteq u}(-1)^{|u|-|v|} P_{-v} f=P_{-u}(f)+\sum_{v \subset u}(-1)^{|u|-|v|} P_{u-v}\left(P_{-u}(f)\right)$,
where P_{-u} and P_{u-v} mean integration with respect to $\xi_{j}, j \in D \backslash u$ and $j \in u \backslash v$, respectively. The second representation motivates that f_{u} is essentially as smooth as $P_{-u}(f)$.

If f belongs to $L_{2, \rho_{d}}\left(\mathbb{R}^{d}\right)$, the ANOVA functions $\left\{f_{u}\right\}_{u \subseteq D}$ are orthogonal in $L_{2, \rho_{d}}\left(\mathbb{R}^{d}\right)$.

We set $\sigma^{2}(f)=\left\|f-I_{d}(f)\right\|_{L_{2}}^{2}$ and $\sigma_{u}^{2}(f)=\left\|f_{u}\right\|_{L_{2}}^{2}$, and have

$$
\sigma^{2}(f)=\|f\|_{L_{2}}^{2}-\left(I_{d}(f)\right)^{2}=\sum_{\emptyset \neq u \subseteq D} \sigma_{u}^{2}(f) .
$$

Sobol's global sensitivity indices of f :

$$
\bar{S}_{u}=\frac{1}{\sigma^{2}(f)} \sum_{v \cap u \neq \emptyset} \sigma_{v}^{2}(f)
$$

Owen's dimension distribution (superposition or truncation) of f : Probability measure $\nu_{S}\left(\nu_{T}\right)$ defined on the power set of D

$$
\nu_{S}(s):=\sum_{|u|=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \quad\left(\nu_{T}(s)=\sum_{\max \{j: j \in u\}=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}\right) \quad(s \in D) .
$$

Mean superposition dimension of f :

$$
\bar{d}_{S}=\sum_{\emptyset \neq u \subseteq D}|u| \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}=\sum_{i=1}^{d} S_{\{i\}}
$$

Efficient truncation dimension $d_{T}(\varepsilon)$ of f is the $(1-\varepsilon)$-quantile of ν_{T}.

ANOVA decomposition of two-stage integrands

Assumption:

(A1) $W\left(\mathbb{R}_{+}^{\bar{m}}\right)=\mathbb{R}^{d}$ (complete recourse).
(A2) $\mathcal{D} \neq \emptyset$ (dual feasibility).
(A3) $\int_{\mathbb{R}^{d}}\|\xi\| P(d \xi)<\infty$.
(A4) P has a density of the form $\rho_{d}(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)\left(\xi \in \mathbb{R}^{d}\right)$ with $\rho_{j} \in C(\mathbb{R}), j=1, \ldots, d$.
(A1) and (A2) imply that $\operatorname{dom} \varphi=\mathbb{R}^{d}$ and \mathcal{D} is bounded and, hence, it is the convex hull of its vertices. Furthermore, the cones \mathcal{K}_{j} are the normal cones to \mathcal{D} at the vertices v^{j}, i.e.,

$$
\begin{aligned}
\mathcal{K}_{j} & =\left\{t \in \mathbb{R}^{d}:\left\langle t, z-v^{j}\right\rangle \leq 0, \forall z \in \mathcal{D}\right\} \quad(j=1, \ldots, \ell) \\
& =\left\{t \in \mathbb{R}^{d}:\left\langle t, v^{i}-v^{j}\right\rangle \leq 0, \forall i=1, \ldots, \ell, i \neq j\right\} .
\end{aligned}
$$

It holds that $\cup_{j=1, \ldots, \ell} \mathcal{K}_{j}=\mathbb{R}^{d}$ and for $j \neq j^{\prime}$ the intersection $\mathcal{K}_{j} \cap \mathcal{K}_{j^{\prime}}$ is a common closed face of dimension $d-1$ iff the two cones are adjacent. The intersection is contained in

$$
\left\{t \in \mathbb{R}^{d}:\left\langle t, v^{j^{\prime}}-v^{j}\right\rangle=0\right\} .
$$

To compute projections $P_{k}(f)$ for $k \in D$. Let $\xi_{i} \in \mathbb{R}, i=1, \ldots, d$, $i \neq k$, be given. We set $\xi^{k}=\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_{d}\right)$ and

$$
\xi_{s}=\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}=\cup_{j=1, \ldots, \ell} \mathcal{K}_{j}
$$

Assuming (A1)-(A4) it is possible to derive an explicit representation of $P_{k}(f)$ depending on ξ^{k} and on the finitely many points at which the one-dimensional affine subspace $\left\{\xi_{s}: s \in \mathbb{R}\right\}$ meets the common face of two adjacent cones. This leads to

Proposition:

Let $k \in D$. Assume (A1)-(A4) and that all adjacent vertices of \mathcal{D} have different k th components.
The k th projection $P_{k} f$ is infinitely differentiable if the density ρ_{k} is in $C^{\infty}(\mathbb{R})$ and all its derivatives are bounded on \mathbb{R}, in particular, if ρ_{k} is the normal density.

Theorem:

Let $u \subset D$. Assume (A1)-(A4) and that all adjacent vertices of \mathcal{D} have different k th components for some $k \in D \backslash u$.
The ANOVA term f_{u} belongs to $C^{\infty}\left(\mathbb{R}^{d-|u|}\right)$ if $\rho_{k} \in C^{\infty}(\mathbb{R})$ and all its derivatives are bounded on \mathbb{R}.

Example:

Let $\bar{m}=3, d=2, P$ denote the two-dimensional standard normal distribution and let the following vector q and matrix W

$$
W=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 1 & -1
\end{array}\right) \quad q=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

be given. Then (A1) and (A2) are satisfied and the dual feasible set \mathcal{D} is the triangle (in \mathbb{R}^{2})

$$
\mathcal{D}=\left\{z \in \mathbb{R}^{2}:-z_{1}+z_{2} \leq 1, z_{1}+z_{2} \leq 1,-z_{2} \leq 0\right\}
$$

with the vertices

$$
v^{1}=\binom{1}{0} \quad v^{2}=\binom{-1}{0} \quad v^{3}=\binom{0}{1} .
$$

Figure 1: Illustration of \mathcal{D}, its vertices v^{j} and the normal cones \mathcal{K}_{j} to its vertices

Hence, the second component of the two adjacent vertices v^{1} and v^{2} coincides. The function φ is of the form

$$
\varphi(t)=\max _{i=1,2,3}\left\langle v^{i}, t\right\rangle=\max \left\{t_{1},-t_{1}, t_{2}\right\}=\max \left\{\left|t_{1}\right|, t_{2}\right\}
$$

and the integrand is

$$
f(\xi)=\max \left\{\left|\xi_{1}-[T x]_{1}\right|, \xi_{2}-[T x]_{2}\right\}
$$

The ANOVA projection $P_{1} f$ is in C^{∞}, but $P_{2} f$ is not differentiable.

Remark: Under the assumptions of the theorem the function

$$
f_{d-1}(\xi)=\sum_{|u| \leq d-1} f_{u}=f-f_{D}
$$

is in $C^{\infty}\left(\mathbb{R}^{d}\right)$ if $\rho_{k} \in C^{\infty}(\mathbb{R})$ and all its derivatives are bounded on \mathbb{R} for every $k \in D$. For which two-stage stochastic programs is $\left\|f_{D}\right\|_{L_{2}}$ small, i.e., the efficient truncation dimension is less than $d-1$?

Remark: If ξ is normal with covariance matrix Σ, there exists an orthogonal matrix Q such that $\Sigma=Q D Q^{\top}$ with a diagonal matrix D containing the eigenvalues. Hence, we may assume that $h(\xi)$ is of the form

$$
h(\xi)=Q \xi \quad \text { with } \xi \text { satisfying (A4). }
$$

Then the geometric condition on the vertices of \mathcal{D} is generically satisfied in the following sense: The set of all orthogonal matrices Q such that $Q \mathcal{D}$ satisfies the geometric condition is representable as the countable intersection of open dense subsets.

Sensitivity and the reduction of efficient dimension

Proposition:

Assume (A1)-(A4) and let σ_{i}^{2} denote the variance of $\xi_{i}, i=$ $1, \ldots, d$. Then it holds

$$
\bar{S}_{\{i\}} \leq \frac{\sigma_{i}^{2}}{\sigma^{2}(f)} \max _{j=1, \ldots, \ell}\left|v_{i}^{j}\right|^{2} \quad(i=1, \ldots, d),
$$

where $v^{j}, j=1, \ldots, \ell$, are the vertices of the dual polyhedron.

Hence, the transformation of a $\mathcal{N}(\mu, \Sigma)$ random vector in the form
$\Sigma=B B^{\top}$ should be organized such that the σ_{i} are decreasing and the first few variances σ_{i} are (strongly) dominating if possible.

Standard Cholesky decomposition $B=L$ is not useful.
Principal component analysis (PCA), i.e., $B=\left(\sqrt{\lambda_{1}} v_{1}, \ldots, \sqrt{\lambda_{d}} v_{d}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{d}$ are the eigenvalues of Σ in decreasing order and $v_{i}, i=1, \ldots, d$, the corresponding orthonormal eigenvectors, is very useful in financial applications (Wang-Fang 03, Wang-Sloan 07).

Conclusions

- The results provide a theoretical basis for applying QMC accompanied by efficient dimension reduction techniques to stochas- tic programs with low efficient dimension.
- The results are extendable and will be extended to more general two-stage and to multi-stage situations.
- Numerical experiments using randomly shifted lattice rules (Kuo, Sloan) and digitally shifted polynomial lattice rules (Dick, Pillichshammer) are in preparation.

Thank you!

References

M. Chen and S. Mehrotra: Epi-convergent scenario generation method for stochastic problems via sparse grid, SPEPS 7-2008.
J. Dick, F. Pillichshammer: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, 2010.
M. Griebel, F. Y. Kuo and I. H. Sloan: The smoothing effect of integration in \mathbb{R}^{d} and the ANOVA decomposition, Mathematics of Computation (to appear).
T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling, SIAM Journal on Optimization 19 (2008), 524-551.
J. Imai and K. S. Tan: Minimizing effective dimension using linear transformation, in Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter Ed.), Springer, Berlin, 2004, 275-292.
F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, Journal of Complexity 19 (2003), 301-320.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, Mathematics of Computation 79 (2010), 953-966.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, B. J. Waterhouse: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands, Journal of Complexity 26 (2010), 135160.
A. B. Owen: The dimension distribution and quadrature test functions, Statistica Sinica 13 (2003), 1-17.
D. Nuyens and R. Cools: Fast algorithms for component-by-component constructions of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, Mathematics of Computation 75 (2006), 903-922.
T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration quadratures, Numerische Mathematik 100 (2005), 141-163.
G. Ch. Pflug, A. Pichler: Scenario generation for stochastic optimization problems, in: Stochastic Optimization Methods in Finance and Energy (M.I. Bertocchi, G. Consigli, M.A.H. Dempster eds.), Springer, 2011.
I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for highdimensional integration, Journal of Complexity 14 (1998), 1-33.
I. H. Sloan, F. Y. Kuo and S. Joe: On the step-by-step construction of Quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces, Mathematics of Computation 71 (2002), 1609-1640.
I. M. Sobol' and S. Kucherenko: Derivative based global sensitivity measures and their link with global sensitivity indices, Mathematics and Computers in Simulation 79 (2009), 3009-3017.
X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, Journal of Complexity 19 (2003), 101-124.
X. Wang and I. H. Sloan: Brownian bridge and principal component analysis: towards removing the curse of dimensionality, IMA Journal of Numerical Analysis 27 (2007), 631-654.
X. Wang and I. H. Sloan: Low discrepancy sequences in high dimensions: How well are their projections distributed ? Journal of Computational and Applied Mathematics 213 (2008), 366-386.

Title Page

Contents

