# Scenario reduction in mixed-integer stochastic programming 

R. Henrion, C. Küchler, W. Römisch

WIAS Berlin and Humboldt-University Berlin
http://www.math.hu-berlin.de/~romisch

COPI'08, EDF, Clamart, November 26-28, 2008

## Introduction

Most approaches for solving stochastic programs of the form

$$
\min \left\{\int_{\Xi} f_{0}(x, \xi) P(d \xi): x \in X\right\}
$$

with a probability measure $P$ on $\Xi$ and a (normal) integrand $f_{0}$, require numerical integration techniques, i.e., replacing the integral by some quadrature formula

$$
\int_{\Xi} f_{0}(x, \xi) P(d \xi) \approx \sum_{i=1}^{n} p_{i} f_{0}\left(x, \xi_{i}\right)
$$

where $p_{i}>0, \sum_{i=1}^{n} p_{i}=1$ and $\xi_{i} \in \Xi, i=1, \ldots, n$.
Since $f_{0}$ is often expensive to compute, the number $n$ should be as small as possible.
Aim: Given pairs $\left(\xi_{i}, p_{i}\right), i=1, \ldots, N$, where $N$ is too large. Find a subset $\left\{\xi_{i_{1}}, \ldots, \xi_{i_{n}}\right\}$ with $n<N$ and the corresponding probabilities $q_{j}, j=1, \ldots, n$, such that the approximation is still reasonable.

## Mixed-integer two-stage stochastic programs

We consider

$$
\min \left\{\langle c, x\rangle+\int_{\Xi} \Phi(q(\xi), h(\xi)-T(\xi) x) P(d \xi): x \in X\right\}
$$

where $\Phi$ is given by

$$
\Phi(u, t):=\inf \left\{\left\langle u_{1}, y_{1}\right\rangle+\left\langle u_{2}, y_{2}\right\rangle \left\lvert\, \begin{array}{l}
W_{1} y_{1}+W_{2} y_{2} \leq t \\
y_{1} \in \mathbb{R}_{+}^{m_{1}}, y_{2} \in \mathbb{Z}_{+}^{m_{2}}
\end{array}\right.\right\}
$$

for all pairs $(u, t) \in \mathbb{R}^{m_{1}+m_{2}} \times \mathbb{R}^{d}$, and $c \in \mathbb{R}^{m}, X$ is a closed subset of $\mathbb{R}^{m}, \Xi$ a polyhedron in $\mathbb{R}^{s}, T \in \mathbb{R}^{d \times m}, W_{1} \in \mathbb{R}^{d \times m_{1}}$, $W_{2} \in \mathbb{R}^{d \times m_{2}}$, and $q(\xi) \in \mathbb{R}^{m_{1}+m_{2}}$ and $h(\xi) \in \mathbb{R}^{d}$ are affine functions of $\xi$, and $P$ is a Borel probability measure.

## Assumptions:

(C1) The matrices $W_{1}$ and $W_{2}$ have rational elements.
(C2) For each pair $(x, \xi) \in X \times \Xi$ it holds that $h(\xi)-T(\xi) x \in \mathcal{T}$ (relatively complete recourse), where
$\mathcal{T}:=\left\{t \in \mathbb{R}^{d} \mid \exists y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{m_{1}} \times \mathbb{Z}^{m_{2}}\right.$ with $\left.W_{1} y_{1}+W_{2} y_{2} \leq t\right\}$.
(C3) For each $\xi \in \Xi$ the recourse cost $q(\xi)$ belongs to the dual feasible set (dual feasibility)
$\mathcal{U}:=\left\{u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{m_{1}+m_{2}} \mid \exists z \in \mathbb{R}_{-}^{d}\right.$ with $\left.W_{j}^{\top} z=u_{j}, j=1,2\right\}$.
(C4) $P \in \mathcal{P}_{r}(\Xi)$, i.e., $\int_{\Xi}\|\xi\|^{r} P(d \xi)<+\infty, r \in\{1,2\}$.
Condition (C2) means that a feasible second stage decision always exists. Both (C2) and $\Phi(0, t)=0$ for every $t \in \mathcal{T}$.
$r=1$ holds if either $q(\xi)$ is the only quantity depending on $\xi$ or $q(\xi)$ does not depend on $\xi$. Otherwise, we set $r=2$.

With the convex polyhedral cone
$\mathcal{K}:=\left\{t \in \mathbb{R}^{d} \mid \exists y_{1} \in \mathbb{R}^{m_{1}}\right.$ such that $\left.t \geq W_{1} y_{1}\right\}=W_{1}\left(\mathbb{R}^{m_{1}}\right)+\mathbb{R}_{+}^{d}$ one obtains the representation

$$
\mathcal{T}=\bigcup_{z \in \mathbb{Z}^{m_{2}}}\left(W_{2} z+\mathcal{K}\right) .
$$

The set $\mathcal{T}$ is always connected (i.e., there exists a polygon connecting two arbitrary points of $\mathcal{T}$ ) and condition (C1) implies that $\mathcal{T}$ is closed. If, for each $t \in \mathcal{T}, Z(t)$ denotes the set

$$
Z(t):=\left\{z \in \mathbb{Z}^{m_{2}} \mid \exists y_{1} \in \mathbb{R}^{m_{1}} \text { such that } W_{1} y_{1}+W_{2} z \leq t\right\}
$$

the representation of $\mathcal{T}$ implies that it is decomposable into subsets of the form

$$
\begin{aligned}
\mathcal{T}\left(t_{0}\right) & :=\left\{t \in \mathcal{T} \mid Z(t)=Z\left(t_{0}\right)\right\} \\
& =\bigcap_{z \in Z\left(t_{0}\right)}\left(W_{2} z+\mathcal{K}\right) \backslash \bigcup_{z \in \mathbb{Z}^{m_{2}} \backslash Z\left(t_{0}\right)}\left(W_{2} z+\mathcal{K}\right)
\end{aligned}
$$

for every $t_{0} \in \mathcal{T}$.

In general, the set $Z\left(t_{0}\right)$ is finite or countable, but condition (C1) implies that there exist countably many elements $t_{i} \in \mathcal{T}$ and $z_{i j} \in$ $\mathbb{Z}^{m_{2}}$ for $j$ belonging to a finite subset $N_{i}$ of $\mathbb{N}, i \in \mathbb{N}$, such that

$$
\mathcal{T}=\bigcup_{i \in \mathbb{N}} \mathcal{T}\left(t_{i}\right) \quad \text { with } \quad \mathcal{T}\left(t_{i}\right)=\left(t_{i}+\mathcal{K}\right) \backslash \bigcup_{j \in N_{i}}\left(W_{2} z_{i j}+\mathcal{K}\right)
$$

The sets $\mathcal{T}\left(t_{i}\right), i \in \mathbb{N}$, are nonempty and star-shaped, but nonconvex in general.


Illustration of $\mathcal{T}\left(t_{i}\right)$ for $W_{1}=0$ and $d=2$, i.e., $\mathcal{K}=\mathbb{R}_{+}^{2}$, with $N_{i}=\{1,2,3\}$ and its decomposition into the sets $B_{j}, j=1,2,3,4$, whose closures are rectangular.

If for some $i \in \mathbb{N}$ the set $\mathcal{T}\left(t_{i}\right)$ is nonconvex, it can be decomposed into a finite number of subsets.
This leads to a countable number of subsets $B_{j}, j \in \mathbb{N}$, of $\mathcal{T}$ whose closures are convex polyhedra with facets parallel to $W_{1}\left(\mathbb{R}^{m_{1}}\right)$ or to suitable facets of $\mathbb{R}_{+}^{r}$ and form a partition of $\mathcal{T}$.

Since the sets $Z(t)$ of feasible integer decisions do not change if $t$ varies in some $B_{j}$, the function $(u, t) \mapsto \Phi(u, t)$ from $\mathcal{U} \times \mathcal{T}$ to $\mathbb{R}$ has the (local) Lipschitz continuity regions $\mathcal{U} \times B_{j}, j \in \mathbb{N}$ and the estimate

$$
|\Phi(u, t)-\Phi(\tilde{u}, \tilde{t})| \leq L(\max \{1,\|t\|,\|\tilde{t}\|\}\|u-\tilde{u}\|+\max \{1,\|u\|,\|\tilde{u}\|\}\|t-\tilde{t}\|)
$$

holds for all pairs $(u, t),(\tilde{u}, \tilde{t}) \in \mathcal{U} \times B_{j}$ and some (uniform) constant $L>0$.
(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)

The integrand

$$
f_{0}(x, \xi)=\langle c, x\rangle+\Phi(q(\xi), h(\xi)-T(\xi) x) \quad((x, \xi) \in X \times \Xi)
$$

has the property that, for every $x \in X$, and

$$
\Xi_{x, j}=\left\{\xi \in \Xi \mid h(\xi)-T(\xi) x \in B_{j}\right\} \quad(j \in \mathbb{N})
$$

it holds

$$
\left|f_{0}(x, \xi)-f_{0}(x, \tilde{\xi})\right| \leq \hat{L} \max \left\{1,\|\xi\|^{r-1},\|\tilde{\xi}\|^{r-1}\right\}\|\xi-\tilde{\xi}\|\left(\xi, \tilde{\xi} \in \Xi_{x, j}\right)
$$

$$
\left|f_{0}(x, \xi)\right| \leq C \max \{1,\|x\|\} \max \left\{1,\|\xi\|^{r}\right\}(\xi \in \Xi)
$$

for all $x \in X$ with some constants $\hat{L}$ and $C$.

Since the objective function is lower semicontinuous on $X$ if the conditions (C1)-(C4) are satisfied, solutions exist if $X$ is compact. If the probability distribution $P$ has a density, the objective function is continuous, but nonconvex in general. If the support of $P$ is finite, the objective function is piecewise continuous with a finite number of continuity regions, whose closures are polyhedral.

Example: (Schultz-Stougie-van der Vlerk 98)
$m=d=s=2, m_{1}=0, m_{2}=4, c=(0,0), X=[0,5]^{2}$, $h(\xi)=\xi, q(\xi) \equiv q=(-16,-19,-23,-28), y_{i} \in\{0,1\}, i=$ $1,2,3,4, P \sim \mathcal{U}(5,10,15\}$ (discrete)
Second stage problem: MILP with 1764 binary variables and 882 constraints.

$$
T=\left(\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right) \quad W=\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
6 & 1 & 3 & 2
\end{array}\right)
$$

## Stability

We consider the class of functions

$$
\mathcal{F}_{r, \mathcal{B}}(\Xi):=\left\{f \mathbb{1}_{B}: f \in \mathcal{F}_{r}(\Xi), B \in \mathcal{B}\right\},
$$

where $\mathbf{1}_{B}$ denotes the characteristic function of the set $B$ and the class $\mathcal{F}_{r}(\Xi)$ consists of all continuous functions $f: \Xi \rightarrow \mathbb{R}$ such that the estimates

$$
\begin{gathered}
|f(\xi)| \leq \max \left\{1,\|\xi\|^{r}\right\} \\
f(\xi)-f(\tilde{\xi}) \leq \max \left\{1,\|\xi\|^{r-1},\|\tilde{\xi}\|^{r-1}\right\}\|\xi-\tilde{\xi}\|
\end{gathered}
$$

hold true for all $\xi, \tilde{\xi} \in \Xi$ and $\mathcal{B}$ is the set of convex polyhedra in $\Xi$ that contains

$$
\{\xi \in \Xi: h(\xi)-T(\xi) x \in B\}
$$

for all $x \in X$ and all polyhedra $B$ in $\mathbb{R}^{d}$ with facets, i.e., $(d-$ 1)-dimensional faces, that are parallel to $W_{1}\left(\mathbb{R}^{m_{1}}\right)$ or parallel to suitable facets of $\mathbb{R}_{+}^{d}$.

Metric on $\mathcal{P}_{r}(\Xi)$ :

$$
\zeta_{r, \mathcal{B}}(P, Q):=\sup \left\{\left|\int_{\Xi} f(\xi)(P-Q)(d \xi)\right|: f \in \mathcal{F}_{r, \mathcal{B}}(\Xi)\right\}
$$

Let $v(P)$ denote the optimal value of the stochastic program, i.e.,

$$
v(P):=\inf \left\{\int_{\Xi} f_{0}(x, \xi) P(d \xi): x \in X\right\}
$$

Proposition: (Rö-Vigerske 08)
Assume (C1)-(C4) and let $X$ be compact. Then the estimate

$$
|v(P)-v(Q)| \leq L \varphi_{P}\left(\zeta_{r, \mathcal{B}}(P, Q)\right)
$$

holds for every $Q \in \mathcal{P}_{r}(\Xi)$, where the function $\varphi_{P}$ is defined by $\varphi_{P}(0)=0$ and

$$
\varphi_{P}(t):=\inf _{R \geq 1}\left\{R^{d+1} t+\int_{\{\xi \in \Xi \mid\|\xi\|>R\}}\|\xi\|^{r} P(d \xi)\right\} \quad(t>0)
$$

The function characterizes the tail behavior of $P$ and is continuous at $t=0$. If $P$ has a finite $p$ th moment, i.e., if $\int_{\Xi}\|\xi\|^{p} P(d \xi)<+\infty$, for some $p>r$, the estimate

$$
\varphi_{P}(t) \leq C t^{\frac{p+r}{p+d-1}} \quad(t \geq 0)
$$

is valid for some constant $C>0$. If $\Xi$ is bounded, we have $\varphi_{P}(t) \leq C t$.

The metric $\zeta_{r, \mathcal{B}}$ is difficult to handle, but it holds:

## Proposition:

Convergence with respect to the metric $\zeta_{r, \mathcal{B}}$ is equivalent to convergence with respect to $\zeta_{r}$ (Fortet-Mourier metric of order $r$ ) and with respect to $\alpha_{\mathcal{B}}$ ( $\mathcal{B}$-discrepancy), where

$$
\begin{aligned}
\zeta_{r}(P, Q):= & \sup \left\{\left|\int_{\Xi} f(\xi)(P-Q)(d \xi)\right|: f \in \mathcal{F}_{r}(\Xi)\right\}, \\
& \alpha_{\mathcal{B}}(P, Q):=\sup _{B \in \mathcal{B}}|P(B)-Q(B)|
\end{aligned}
$$

If the set $\Xi$ is bounded, it even holds

$$
\alpha_{\mathcal{B}}(P, Q) \leq \zeta_{r, \mathcal{B}}(P, Q) \leq C \alpha_{\mathcal{B}}(P, Q)^{\frac{1}{s+1}}
$$

with some constant $C$ depending on $\Xi$.

Since the class $\mathcal{B}$ strongly depends on the structure of the underlying mixed-integer stochastic program, we sometimes consider the rectangular discrepancy with $\mathcal{B}=\mathcal{B}_{\text {rect }}$

$$
\mathcal{B}_{\text {rect }}:=\left\{I_{1} \times I_{2} \times \cdots \times I_{s} \mid \emptyset \neq I_{j} \text { is a closed interval in } \mathbb{R}\right\} .
$$

The metric Fortet-Mourier metric $\zeta_{r}$ allows the following dual representation as transportation problem: Let

$$
c_{r}(\xi, \tilde{\xi}):=\max \left\{1,\|\xi\|^{r-1},\|\tilde{\xi}\|^{r-1}\right\}\|\xi-\tilde{\xi}\| \quad(\xi, \tilde{\xi} \in \Xi) .
$$

## Proposition: (Rachev/Rüschendorf 98)

Let $\Xi$ be bounded.

$$
\zeta_{r}(P, Q)=\inf \left\{\int_{\Xi \times \Xi} \hat{c}_{r}(\xi, \tilde{\xi}) \Theta(d \xi, d \tilde{\xi}): \pi_{1} \Theta=P, \pi_{2} \Theta=Q\right\}
$$

where the reduced cost $\hat{c}$ is of the form
$\hat{c}_{r}(\xi, \tilde{\xi}):=\inf \left\{\sum_{i=1}^{n-1} c_{r}\left(\xi_{l_{i}}, \xi_{l_{i+1}}\right): n \in \mathbb{N}, \xi_{l_{i}} \in \Xi, \xi_{l_{1}}=\xi, \xi_{l_{n}}=\tilde{\xi}\right\}$.
is a metric on $\Xi$ with $\hat{c}_{r} \leq c_{r}$.

## Scenario reduction

Let $P$ be a probability measure with finite support $\left\{\xi^{1}, \ldots, \xi^{N}\right\}$ and set $p_{i}:=P\left(\left\{\xi^{i}\right\}\right)>0$ for $i=1, \ldots, N$. Denoting by $\delta_{\xi}$ the Dirac measure placing mass one at the point $\xi, P$ has the form

$$
P=\sum_{i=1}^{N} p_{i} \delta_{\xi i}
$$

The problem of optimal scenario reduction consists in determining a discrete probability measure $Q$ on $\mathbb{R}^{s}$ supported by a subset of $\left\{\xi^{1}, \ldots, \xi^{N}\right\}$ and being close to $P$ with respect to

$$
d_{\lambda}:=\lambda \alpha_{\mathcal{B}}+(1-\lambda) \zeta_{r} \quad(\lambda \in[0,1]) .
$$

It can be written as
$\min \left\{d_{\lambda}\left(\sum_{i=1}^{N} p_{i} \delta_{\xi^{i}}, \sum_{j=1}^{n} q_{j} \delta_{\eta^{j}}\right) \left\lvert\, \begin{array}{l}\left\{\eta^{1}, \ldots, \eta^{n}\right\} \subset\left\{\xi^{1}, \ldots, \xi^{N}\right\} \\ q_{j} \geq 0 j=1, \ldots, n, \sum_{j=1}^{n} q_{j}=1\end{array}\right.\right\}$.
This optimization problem may be decomposed into an outer problem for determining $\operatorname{supp}(Q)=\eta$ and an inner problem for choosing the probabilities $q_{j}, j=1, \ldots, n$.

To this end, we denote

$$
\begin{aligned}
d_{\lambda}(P,(\eta, q)) & :=d_{\lambda}\left(\sum_{i=1}^{N} p_{i} \delta_{\xi^{i}}, \sum_{j=1}^{n} q_{j} \delta_{\eta^{j}}\right) \\
S_{n} & :=\left\{q \in \mathbb{R}_{+}^{n}: \sum_{j=1}^{n} q_{j}=1\right\} .
\end{aligned}
$$

Then the scenario reduction problem may be rewritten as

$$
\min _{\eta}\left\{\min _{q \in S_{n}} d_{\lambda}(P,(\eta, q)): \eta \subset\left\{\xi^{1}, \ldots, \xi^{N}\right\},|\eta|=n\right\}
$$

$$
\min \left\{d_{\lambda}(P,(\eta, q)): q \in S_{n}\right\}
$$

for the fixed support $\eta$. The outer problem is a combinatorial optimization problem (NP hard) while the inner problem may be reformulated as a linear program.

We assume for the sake of notational simplicity, that $\eta=\left\{\xi^{1}, \ldots, \xi^{n}\right\}$. Then the inner problem is of the form:

$$
\min \left\{d_{\lambda}\left(P,\left(\left\{\xi^{1}, \ldots, \xi^{n}\right\}, q\right)\right): q \in S_{n}\right\}
$$

The finiteness of the support of $P$ allows to define for $B \in \mathcal{B}$ the critical index set $I(B)$ by

$$
I(B):=\left\{i \in\{1, \ldots, N\}: \xi^{i} \in B\right\}
$$

and to write

$$
|P(B)-Q(B)|=\left|\sum_{i \in I(B)} p_{i}-\sum_{j \in I(B) \cap\{1, \ldots, n\}} q_{j}\right| .
$$

Furthermore, we define the system of critical index sets of $\mathcal{B}$ as

$$
\mathcal{I}_{\mathcal{B}}:=\{I(B): B \in \mathcal{B}\} .
$$

Thus, the $\mathcal{B}$-discrepancy between $P$ and $Q$ may be reformulated as follows:

$$
\alpha_{\mathcal{B}}(P, Q)=\max _{I \in \mathcal{I}_{\mathcal{B}}}\left|\sum_{i \in I} p_{i}-\sum_{j \in I \cap\{1, \ldots, n\}} q_{j}\right| .
$$

This allows to compute $\alpha_{\mathcal{B}}$ by means of the following linear program:

$$
\min \left\{\begin{array}{l|l}
t & \begin{array}{l}
-\sum_{j \in I \cap\{1, \ldots, n\}} q_{j} \leq t-\sum_{i \in I} p_{i} \\
\sum_{j \in I \cap\{1, \ldots, n\}} q_{j} \leq t+\sum_{i \in I} p_{i}, I \in \mathcal{I}_{\mathcal{B}}
\end{array}
\end{array}\right\}
$$

Since $\left|\mathcal{I}_{\mathcal{B}}\right| \leq 2^{N}$, the number of inequalities is too large to solve this LP numerically.

Therefore, we consider the following reduced system of critical index sets

$$
\mathcal{I}_{\mathcal{B}}^{*}:=\{I(B) \cap\{1, \ldots, n\}: B \in \mathcal{B}\} .
$$

Thereby, every member $J \in \mathcal{I}_{\mathcal{B}}^{*}$ of the reduced system is associated with a family $\varphi(J) \subset \mathcal{I}_{\mathcal{B}}$ of critical index sets, all of which share the same intersection with $\{1, \ldots, n\}$ :

$$
\varphi(J):=\left\{I \in \mathcal{I}_{\mathcal{B}}: J=I \cap\{1, \ldots, n\}\right\} \quad\left(J \in \mathcal{I}_{\mathcal{B}}^{*}\right) .
$$

Finally, we consider the quantities

$$
\gamma^{J}:=\max _{I \in \varphi(J)} \sum_{i \in I} p_{i} \quad \text { and } \quad \gamma_{J}:=\min _{I \in \varphi(J)} \sum_{i \in I} p_{i} \quad\left(J \in \mathcal{I}_{\mathcal{B}}^{*}\right),
$$

and write the inner problem as

$$
\min \left\{\begin{array}{l|l}
\lambda t_{\alpha}+(1-\lambda) t_{\zeta} & \begin{array}{l}
t_{\alpha}, t_{\zeta} \geq 0, q_{j} \geq 0, \sum_{j=1}^{n} q_{j}=1, \\
\eta_{i j} \geq 0, i=1, \ldots, N, j=1, \ldots, n, \\
t_{\zeta} \geq \sum_{i=1}^{N} \sum_{j=1}^{n} \hat{c}_{r}\left(\xi^{i}, \xi^{j}\right) \eta_{i j}, \\
\sum_{j=1}^{n} \eta_{i j}=p_{i}, i=1, \ldots, N, \\
\sum_{i=1}^{N} \eta_{i j}=q_{j}, j=1, \ldots, n, \\
-\sum_{j \in I^{*}} q_{j} \leq t_{\alpha}-\gamma^{I^{*}}, I^{*} \in \mathcal{I}_{\mathcal{B}}^{*} \\
\sum_{j \in I^{*}} q_{j} \leq t_{\alpha}+\gamma_{I^{*}}, I^{*} \in \mathcal{I}_{\mathcal{B}}^{*}
\end{array}
\end{array}\right\}
$$

Now we have $\left|\mathcal{I}_{\mathcal{B}}^{*}\right| \leq 2^{n}$ and, hence, drastically reduced the maximum number of inequalities. This can make the LP solvable at least for moderate values of $n$.

How to determine $\mathcal{I}_{\mathcal{B}}^{*}, \gamma_{J}$ and $\gamma^{J}$ ?

## Observation:

$\mathcal{I}_{\mathcal{B}}^{*}, \gamma_{J}$ and $\gamma^{J}$ are determined by those polyhedra (belonging to $\mathcal{P}$ ), each of whose facets contains an element of $\left\{\xi^{1}, \ldots, \xi^{n}\right\}$, such that it can not be enlarged without changing its interior's intersection with $\left\{\xi^{1}, \ldots, \xi^{n}\right\}$. The polyhedra in $\mathcal{P}$ are called supporting.


Non supporting polyhedron (left) and supporting polyhedron (right). The dots represent the remaining scenarios $\xi^{1}, \ldots, \xi^{n}$

## Proposition:

$\mathcal{I}_{\mathcal{B}}^{*}=\left\{J \subseteq\{1, \ldots, n\}: \exists B \in \mathcal{P}, \cup_{j \in J}\left\{\xi^{j}\right\}=\left\{\xi^{1}, \ldots, \xi^{n}\right\} \cap\right.$ int $\left.B\right\}$
$\gamma^{J}=\max \left\{P(\right.$ int $\left.B): B \in \mathcal{P}, \cup_{j \in J}\left\{\xi^{j}\right\}=\left\{\xi^{1}, \ldots, \xi^{n}\right\} \cap \operatorname{int} B\right\}$
$\gamma_{J}=\sum p_{i}$ with $I \subseteq\{1, \ldots, N\}$ defined by
$I:=\left\{i: \min _{j \in J}\left\langle m^{l}, \xi^{j}\right\rangle \leq\left\langle m^{l}, \xi^{i}\right\rangle \leq \max _{j \in J}\left\langle m^{l}, \xi^{j}\right\rangle, l=1, \ldots, k\right\}$,
where $m^{j}, j=1, \ldots, k$, are the rows of a matrix $M \in \mathbb{R}^{k \times s}$ having the property that every polyhedron $B \in \mathcal{B}$ can be written as

$$
B=\left\{\xi \in \mathbb{R}^{s}: \underline{a}^{B} \leq M \xi \leq \bar{a}^{B}\right\}
$$

for some $\underline{a}^{B}$ and $\bar{a}^{B}$ in $\overline{\mathbb{R}}^{k}$.
Note that $|\mathcal{P}| \leq\binom{ n+2}{2}^{k}$ !

For $n=5, k=3$ and $n=20, k=12$, the latter is equal to 3375 and $7.36 \cdot 10^{27}$, respectively.

## Numerical results

Optimal redistribution w.r.t. the polyhedral discrepancy $\alpha_{\mathcal{B}}$ :

|  | k | $\mathrm{n}=5$ | $\mathrm{n}=10$ | $\mathrm{n}=15$ | $\mathrm{n}=20$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathbb{R}^{3} \\ \mathrm{~N}=100 \end{gathered}$ | cell | 0.01 | 0.01 | 0.01 | 0.05 |
|  | 3 | 0.01 | 0.04 | 0.56 | 6.02 |
|  | 6 | 0.03 | 1.03 | 14.18 | 157.51 |
|  | 9 | 0.15 | 7.36 | 94.49 | 948.17 |
| $\begin{gathered} \mathbb{R}^{4} \\ \mathrm{~N}=100 \end{gathered}$ | cell | 0.01 | 0.01 | 0.05 | 0.30 |
|  | 4 | 0.01 | 0.19 | 1.83 | 17.22 |
|  | 8 | 0.11 | 5.66 | 59.28 | 521.31 |
|  | 12 | 0.67 | 39.86 | 374.15 | 3509.34 |
| $\begin{gathered} \mathbb{R}^{3} \\ \mathrm{~N}=200 \end{gathered}$ | cell | 0.01 | 0.01 | 0.01 | 0.07 |
|  | 3 | 0.01 | 0.05 | 0.53 | 4.28 |
|  | 6 | 0.03 | 0.76 | 11.80 | 132.21 |
|  | 9 | 0.12 | 4.22 | 78.49 | 815.79 |
| $\begin{gathered} \mathbb{R}^{4} \\ \mathrm{~N}=200 \end{gathered}$ | cell | 0.01 | 0.01 | 0.06 | 0.29 |
|  | 4 | 0.01 | 0.20 | 2.56 | 41.73 |
|  | 8 | 0.11 | 4.44 | 73.70 | 1042.78 |
|  | 12 | 0.74 | 28.29 | 473.72 | 6337.68 |

Running times [sec] of the optimal redistribution algorithm

## Example 2:

We consider $\Xi=[0,1]^{2}, N=1000$ samples from the uniform distribution on $\Xi, n=25$. Consider $d_{\lambda}=\lambda \alpha_{\mathcal{B}_{\text {rect }}}+(1-\lambda) \zeta_{2}$.


25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform distribution on $[0,1]^{2}$ and optimal probabilities adjusted w.r.t. $d_{\lambda}$ for $\lambda=1$ (gray balls) and

$$
\lambda=0.9 \text { (black circles) }
$$

## Example 2: (continued)

Solving the outer combinatorial optimization problem by different heuristics:

- Forward selection:

Step [0]: $\quad J^{[0]}:=\varnothing$.

Step [i]: $\quad l_{i} \in \operatorname{argmin}_{l \notin J J^{[i-1]}} \inf _{q \in S_{i}} d_{\lambda}\left(P,\left(\left\{\xi^{l_{1}}, \ldots, \xi^{l_{i-1}}, \xi^{l}\right\}, q\right)\right), J^{[i]}:=J^{[i-1]} \cup\left\{l_{i}\right\}$.
Step [n+1]: Minimize $d_{\lambda}\left(\left\{P,\left(\xi^{l_{1}}, \ldots, \xi^{l_{n}}\right\}, q\right)\right)$ s.t. $q \in S_{n}$.

- (next neighbor) Quasi Monte Carlo (QMC): Take the first $n$ points of the Halton sequences with bases 2 and 3 in $[0,1]^{2}$. The closest scenarios to these points are determined and weight $1 / n$ is associated. The resulting distance to the initial measure is computed for $\lambda=1$.
- (next neighbor) adjusted QMC: The probabilities of the closest scenarios to the Halton points are adjusted by optimal redistribution and the distance $d_{\lambda}$ is computed for $\lambda=1$.

Conclusion: Forward selection provides good results, but is very slow due to the optimal redistribution after each step. Next neighbor adjusted QMC performs significantly better than next neighbor QMC.


Distance $\alpha_{\mathcal{B}_{\text {rect }}}$ between $P$ (with $N=1000$ ) and equidistributed QMC-points (dashed), QMC-points, whose probabilities are adjusted (bold), and running times of the QMC-based heuristic (in seconds).

## References

Dupačová,J.; Gröwe-Kuska, N.; Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics, Mathematical Programming 95 (2003), 493-511.

Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs, Operations Research Letters 35 (2007), 731-736.

Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances, Computational Optimization and Applications (to appear).

Henrion, R., Küchler, C., Römisch, W.: Discrepancy distances and scenario reduction in twostage stochastic mixed-integer programming, Journal of Industrial and Management Optimization 4 (2008), 363-384.

Römisch, W., Vigerske, S.: Quantitative stability of fully random mixed-integer two-stage stochastic programs, Optimization Letters 2 (2008), 377-388.

