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Introduction

Most approaches for solving stochastic programs of the form

min

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X
}

with a probability measure P on Ξ and a (normal) integrand f0,

require numerical integration techniques, i.e., replacing the integral

by some quadrature formula∫
Ξ

f0(x, ξ)P (dξ) ≈
n∑
i=1

pif0(x, ξi),

where pi > 0,
∑n

i=1 pi = 1 and ξi ∈ Ξ, i = 1, . . . , n.

Since f0 is often expensive to compute, the number n should be as

small as possible.

Aim: Given pairs (ξi, pi), i = 1, . . . , N , where N is too large.

Find a subset {ξi1, . . . , ξin} with n < N and the corresponding

probabilities qj, j = 1, . . . , n, such that the approximation is still

reasonable.
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Mixed-integer two-stage stochastic programs

We consider

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where Φ is given by

Φ(u, t) := inf

{
〈u1, y1〉 + 〈u2, y2〉

∣∣∣∣ W1y1 + W2y2 ≤ t

y1 ∈ Rm1
+ , y2 ∈ Zm2

+

}
for all pairs (u, t) ∈ Rm1+m2 × Rd, and c ∈ Rm, X is a closed

subset of Rm, Ξ a polyhedron in Rs, T ∈ Rd×m, W1 ∈ Rd×m1,

W2 ∈ Rd×m2, and q(ξ) ∈ Rm1+m2 and h(ξ) ∈ Rd are affine

functions of ξ, and P is a Borel probability measure.
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Assumptions:
(C1) The matrices W1 and W2 have rational elements.

(C2) For each pair (x, ξ) ∈ X×Ξ it holds that h(ξ)−T (ξ)x ∈ T
(relatively complete recourse), where

T :=
{
t ∈ Rd|∃y = (y1, y2) ∈ Rm1 × Zm2 with W1y1 + W2y2 ≤ t

}
.

(C3) For each ξ ∈ Ξ the recourse cost q(ξ) belongs to the dual

feasible set (dual feasibility)

U :=
{
u = (u1, u2) ∈ Rm1+m2|∃z ∈ Rd

− with W>
j z = uj, j = 1, 2

}
.

(C4) P ∈ Pr(Ξ), i.e.,
∫

Ξ ‖ξ‖
rP (dξ) < +∞, r ∈ {1, 2}.

Condition (C2) means that a feasible second stage decision always exists. Both (C2) and
(C3) imply Φ(u, t) to be finite for all (u, t) ∈ U × T . Clearly, it holds (0, 0) ∈ U × T and
Φ(0, t) = 0 for every t ∈ T .

r = 1 holds if either q(ξ) is the only quantity depending on ξ or q(ξ) does not depend on ξ.
Otherwise, we set r = 2.
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With the convex polyhedral cone

K :=
{
t ∈ Rd | ∃y1 ∈ Rm1 such that t ≥ W1y1

}
= W1(Rm1) + Rd

+

one obtains the representation

T =
⋃

z∈Zm2

(W2z +K).

The set T is always connected (i.e., there exists a polygon con-

necting two arbitrary points of T ) and condition (C1) implies that

T is closed. If, for each t ∈ T , Z(t) denotes the set

Z(t) := {z ∈ Zm2 | ∃y1 ∈ Rm1 such that W1y1 + W2z ≤ t},

the representation of T implies that it is decomposable into subsets

of the form

T (t0) := {t ∈ T |Z(t) = Z(t0)}
=

⋂
z∈Z(t0)

(W2z +K) \
⋃

z∈Zm2\Z(t0)

(W2z +K)

for every t0 ∈ T .
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In general, the set Z(t0) is finite or countable, but condition (C1)

implies that there exist countably many elements ti ∈ T and zij ∈
Zm2 for j belonging to a finite subset Ni of N, i ∈ N, such that

T =
⋃
i∈N

T (ti) with T (ti) = (ti +K) \
⋃
j∈Ni

(W2zij +K).

The sets T (ti), i ∈ N, are nonempty and star-shaped, but noncon-

vex in general.

W2zi,1

W2zi,2

B1 B2 B3 B4

W2zi,3

ti

Illustration of T (ti) for W1 = 0 and d = 2, i.e., K = R2
+, with Ni = {1, 2, 3} and its decomposition

into the sets Bj , j = 1, 2, 3, 4, whose closures are rectangular.
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If for some i ∈ N the set T (ti) is nonconvex, it can be decomposed

into a finite number of subsets.

This leads to a countable number of subsets Bj, j ∈ N, of T whose

closures are convex polyhedra with facets parallel to W1(Rm1) or

to suitable facets of Rr
+ and form a partition of T .

Since the sets Z(t) of feasible integer decisions do not change if t
varies in some Bj, the function (u, t) 7→ Φ(u, t) from U × T to R
has the (local) Lipschitz continuity regions U ×Bj, j ∈ N and the
estimate

|Φ(u, t)− Φ(ũ, t̃)| ≤ L(max{1, ‖t‖, ‖t̃‖}‖u− ũ‖+ max{1, ‖u‖, ‖ũ‖}‖t− t̃‖)

holds for all pairs (u, t), (ũ, t̃) ∈ U ×Bj and some (uniform) con-

stant L > 0.

(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)
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The integrand

f0(x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) ((x, ξ) ∈ X × Ξ)

has the property that, for every x ∈ X , and

Ξx,j = {ξ ∈ Ξ |h(ξ)− T (ξ)x ∈ Bj} (j ∈ N)

it holds

|f0(x, ξ)− f0(x, ξ̃)|≤L̂max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξx,j)

|f0(x, ξ)|≤ C max{1, ‖x‖}max{1, ‖ξ‖r} (ξ ∈ Ξ)

for all x ∈ X with some constants L̂ and C.

Since the objective function is lower semicontinuous on X if the

conditions (C1)–(C4) are satisfied, solutions exist if X is compact.

If the probability distribution P has a density, the objective function

is continuous, but nonconvex in general. If the support of P is finite,

the objective function is piecewise continuous with a finite number

of continuity regions, whose closures are polyhedral.
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Example: (Schultz-Stougie-van der Vlerk 98)

m = d = s = 2, m1 = 0, m2 = 4, c = (0, 0), X = [0, 5]2,

h(ξ) = ξ, q(ξ) ≡ q = (−16,−19,−23,−28), yi ∈ {0, 1}, i =

1, 2, 3, 4, P ∼ U(5, 10, 15} (discrete)

Second stage problem: MILP with 1764 binary variables and 882 constraints.

T =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)

0
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-40

-30

-20



Home Page

Title Page

Contents

JJ II

J I

Page 10 of 25

Go Back

Full Screen

Close

Quit

Stability

We consider the class of functions

Fr,B(Ξ) := {f1lB : f ∈ Fr(Ξ), B ∈ B},

where 1lB denotes the characteristic function of the set B and the

class Fr(Ξ) consists of all continuous functions f : Ξ → R such

that the estimates

|f (ξ)|≤max{1, ‖ξ‖r}

f (ξ)− f (ξ̃)≤max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖
hold true for all ξ, ξ̃ ∈ Ξ and B is the set of convex polyhedra in Ξ

that contains

{ξ ∈ Ξ : h(ξ)− T (ξ)x ∈ B}
for all x ∈ X and all polyhedra B in Rd with facets, i.e., (d −
1)-dimensional faces, that are parallel to W1(Rm1) or parallel to

suitable facets of Rd
+.
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Metric on Pr(Ξ):

ζr,B(P,Q) := sup

{∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣ : f ∈ Fr,B(Ξ)

}
Let v(P ) denote the optimal value of the stochastic program, i.e.,

v(P ) := inf

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X
}
.

Proposition: (Rö-Vigerske 08)

Assume (C1)–(C4) and let X be compact. Then the estimate

|v(P )− v(Q)| ≤ LϕP (ζr,B(P,Q))

holds for every Q ∈ Pr(Ξ), where the function ϕP is defined by

ϕP (0) = 0 and

ϕP (t) := inf
R≥1

{
Rd+1t +

∫
{ξ∈Ξ | ‖ξ‖>R}

‖ξ‖rP (dξ)

}
(t > 0).

The function characterizes the tail behavior of P and is continuous at t = 0. If P has a finite
pth moment, i.e., if

∫
Ξ
‖ξ‖pP (dξ) < +∞, for some p > r, the estimate

ϕP (t) ≤ Ct
p−r

p+d−1 (t ≥ 0)

is valid for some constant C > 0. If Ξ is bounded, we have ϕP (t) ≤ Ct.
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The metric ζr,B is difficult to handle, but it holds:

Proposition:
Convergence with respect to the metric ζr,B is equivalent to con-

vergence with respect to ζr (Fortet-Mourier metric of order r) and

with respect to αB (B-discrepancy), where

ζr(P,Q) := sup

{∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣ : f ∈ Fr(Ξ)

}
,

αB(P,Q) := sup
B∈B
|P (B)−Q(B)|

If the set Ξ is bounded, it even holds

αB(P,Q) ≤ ζr,B(P,Q) ≤ CαB(P,Q)
1

s+1

with some constant C depending on Ξ.

Since the class B strongly depends on the structure of the under-

lying mixed-integer stochastic program, we sometimes consider the

rectangular discrepancy with B = Brect

Brect := {I1 × I2 × · · · × Is | ∅ 6= Ij is a closed interval in R} .
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The metric Fortet-Mourier metric ζr allows the following dual rep-

resentation as transportation problem: Let

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev/Rüschendorf 98)

Let Ξ be bounded.

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)Θ(dξ, dξ̃) :π1Θ=P, π2Θ =Q

}
where the reduced cost ĉ is of the form

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.

is a metric on Ξ with ĉr ≤ cr.



Home Page

Title Page

Contents

JJ II

J I

Page 14 of 25

Go Back

Full Screen

Close

Quit

Scenario reduction

Let P be a probability measure with finite support {ξ1, . . . , ξN}
and set pi := P ({ξi}) > 0 for i = 1, . . . , N . Denoting by δξ the

Dirac measure placing mass one at the point ξ, P has the form

P =

N∑
i=1

piδξi.

The problem of optimal scenario reduction consists in determining

a discrete probability measure Q on Rs supported by a subset of

{ξ1, . . . , ξN} and being close to P with respect to

dλ := λαB + (1− λ)ζr (λ ∈ [0, 1]).

It can be written as

min

dλ
 N∑

i=1

piδξi,

n∑
j=1

qjδηj

∣∣∣∣∣∣
{η1, . . . , ηn} ⊂ {ξ1, . . . , ξN}

qj ≥ 0 j = 1, . . . , n,
n∑
j=1

qj = 1

.
This optimization problem may be decomposed into an outer prob-

lem for determining supp (Q) = η and an inner problem for choos-

ing the probabilities qj, j = 1, . . . , n.
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To this end, we denote

dλ(P, (η, q)) := dλ

 N∑
i=1

piδξi,

n∑
j=1

qjδηj


Sn := {q ∈ Rn

+ :
∑n

j=1
qj = 1}.

Then the scenario reduction problem may be rewritten as

min
η
{min
q∈Sn

dλ(P, (η, q)) : η ⊂ {ξ1, . . . , ξN}, |η| = n}

with the inner problem (optimal redistribution)

min{dλ(P, (η, q)) : q ∈ Sn}

for the fixed support η. The outer problem is a combinatorial opti-

mization problem (NP hard) while the inner problem may be refor-

mulated as a linear program.
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We assume for the sake of notational simplicity, that η = {ξ1, . . . , ξn}.
Then the inner problem is of the form:

min{dλ(P, ({ξ1, . . . , ξn}, q)) : q ∈ Sn}
The finiteness of the support of P allows to define for B ∈ B the

critical index set I(B) by

I(B) := {i ∈ {1, . . . , N} : ξi ∈ B}
and to write

|P (B)−Q(B)| =

∣∣∣∣∣∣
∑
i∈I(B)

pi −
∑

j∈I(B)∩{1,...,n}

qj

∣∣∣∣∣∣ .
Furthermore, we define the system of critical index sets of B as

IB := {I(B) : B ∈ B}.
Thus, the B-discrepancy between P and Q may be reformulated

as follows:

αB(P,Q) = max
I∈IB

∣∣∣∣∣∣
∑
i∈I

pi −
∑

j∈I∩{1,...,n}

qj

∣∣∣∣∣∣.
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This allows to compute αB by means of the following linear pro-

gram:

min

{
t

∣∣∣∣∣ −
∑

j∈I∩{1,...,n} qj ≤ t−
∑

i∈I pi∑
j∈I∩{1,...,n} qj ≤ t +

∑
i∈I pi, I ∈ IB

}
Since |IB| ≤ 2N , the number of inequalities is too large to solve

this LP numerically.

Therefore, we consider the following reduced system of critical index

sets

I∗B := {I(B) ∩ {1, . . . , n} : B ∈ B}.
Thereby, every member J ∈ I∗B of the reduced system is associated

with a family ϕ(J) ⊂ IB of critical index sets, all of which share

the same intersection with {1, . . . , n}:

ϕ(J) := {I ∈ IB : J = I ∩ {1, . . . , n}} (J ∈ I∗B).
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Finally, we consider the quantities

γJ := max
I∈ϕ(J)

∑
i∈I

pi and γJ := min
I∈ϕ(J)

∑
i∈I

pi (J ∈ I∗B),

and write the inner problem as

min


λ tα + (1− λ)tζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tα, tζ ≥ 0, qj ≥ 0,
∑n

j=1 qj = 1,

ηij ≥ 0, i = 1, . . . , N, j = 1, . . . , n,

tζ ≥
∑N

i=1

∑n
j=1 ĉr(ξ

i, ξj)ηij,∑n
j=1 ηij = pi, i = 1, . . . , N,∑N
i=1 ηij = qj, j = 1, . . . , n,

−
∑

j∈I∗ qj ≤ tα − γI
∗
, I∗ ∈ I∗B∑

j∈I∗ qj ≤ tα + γI∗, I
∗ ∈ I∗B


Now we have |I∗B| ≤ 2n and, hence, drastically reduced the max-

imum number of inequalities. This can make the LP solvable at

least for moderate values of n.
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How to determine I∗B, γJ and γJ?

Observation:
I∗B, γJ and γJ are determined by those polyhedra (belonging to P),

each of whose facets contains an element of {ξ1, . . . , ξn}, such that

it can not be enlarged without changing its interior’s intersection

with {ξ1, . . . , ξn}. The polyhedra in P are called supporting.

Non supporting polyhedron (left) and supporting polyhedron (right). The dots represent the
remaining scenarios ξ1, . . . , ξn



Home Page

Title Page

Contents

JJ II

J I

Page 20 of 25

Go Back

Full Screen

Close

Quit

Proposition:

I∗B = {J ⊆ {1, . . . , n} :∃B ∈ P ,∪j∈J{ξj} = {ξ1, . . . , ξn} ∩ intB}
γJ = max{P (intB) : B ∈ P ,∪j∈J{ξj} = {ξ1, . . . , ξn} ∩ intB}
γJ =

∑
i∈I

pi with I ⊆ {1, . . . , N} defined by

I :=

{
i : min

j∈J
〈ml, ξj〉 ≤ 〈ml, ξi〉 ≤ max

j∈J
〈ml, ξj〉, l = 1, . . . , k

}
,

where mj, j = 1, . . . , k, are the rows of a matrix M ∈ Rk×s

having the property that every polyhedron B ∈ B can be written

as

B = {ξ ∈ Rs : aB ≤Mξ ≤ āB}

for some aB and āB in Rk
.

Note that |P| ≤
(
n+2

2

)k
!

For n = 5, k = 3 and n = 20, k = 12, the latter is equal to 3375 and 7.36 ·1027, respectively.
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Numerical results

Optimal redistribution w.r.t. the polyhedral discrepancy αB:

k n=5 n=10 n=15 n=20

cell 0.01 0.01 0.01 0.05
R3 3 0.01 0.04 0.56 6.02

N=100 6 0.03 1.03 14.18 157.51
9 0.15 7.36 94.49 948.17

cell 0.01 0.01 0.05 0.30
R4 4 0.01 0.19 1.83 17.22

N=100 8 0.11 5.66 59.28 521.31
12 0.67 39.86 374.15 3509.34

cell 0.01 0.01 0.01 0.07
R3 3 0.01 0.05 0.53 4.28

N=200 6 0.03 0.76 11.80 132.21
9 0.12 4.22 78.49 815.79

cell 0.01 0.01 0.06 0.29
R4 4 0.01 0.20 2.56 41.73

N=200 8 0.11 4.44 73.70 1042.78
12 0.74 28.29 473.72 6337.68

Running times [sec] of the optimal redistribution algorithm
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Example 2:
We consider Ξ = [0, 1]2, N = 1000 samples from the uniform

distribution on Ξ, n = 25. Consider dλ = λαBrect + (1− λ)ζ2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform

distribution on [0, 1]2 and optimal probabilities adjusted w.r.t. dλ for λ = 1 (gray balls) and

λ = 0.9 (black circles)
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Example 2: (continued)
Solving the outer combinatorial optimization problem by different

heuristics:

• Forward selection:

Step [0]: J [0] := ∅ .

Step [i]: li ∈ argminl 6∈J [i−1] inf
q∈Si

dλ(P, ({ξl1 , . . . , ξli−1 , ξl}, q)), J [i] := J [i−1] ∪ {li}.

Step [n+1]: Minimize dλ({P, (ξl1 , . . . , ξln}, q)) s.t. q ∈ Sn.

• (next neighbor) Quasi Monte Carlo (QMC): Take the first

n points of the Halton sequences with bases 2 and 3 in [0, 1]2. The closest scenarios

to these points are determined and weight 1/n is associated. The resulting distance to

the initial measure is computed for λ = 1.

• (next neighbor) adjusted QMC: The probabilities of the closest

scenarios to the Halton points are adjusted by optimal redistribution and the distance

dλ is computed for λ = 1.
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Conclusion: Forward selection provides good results, but is very

slow due to the optimal redistribution after each step.

Next neighbor adjusted QMC performs significantly better than

next neighbor QMC.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

200

400

600

discrepancy time

Distance αBrect between P (with N = 1000) and equidistributed QMC-points (dashed),
QMC-points, whose probabilities are adjusted (bold), and running times of the QMC-based
heuristic (in seconds).
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Dupačová,J.; Gröwe-Kuska, N.; Römisch, W.: Scenario reduction in stochastic programming: An
approach using probability metrics, Mathematical Programming 95 (2003), 493–511.

Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs, Oper-
ations Research Letters 35 (2007), 731–736.
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