Scenario reduction in
mixed-integer stochastic programming

R. Henrion, C. Kichler, W. Romisch

WIAS Berlin and Humboldt-University Berlin

http://www.math.hu-berlin.de/ romisch

COPI'08, EDF, Clamart, November 26-28, 2008

% Bundesministerium
fiir Bildung

und Forschung

DFG Research Center MATHEON
Mathematics for key technologies

Title Pag

IIIIIIIIII



Introduction

Most approaches for solving stochastic programs of the form

min {/Efo(x,g)P(dg) .z € X}

with a probability measure P on = and a (normal) integrand f,
require numerical integration techniques, i.e., replacing the integral
by some quadrature formula

[ fle.&)P@) = 3 pifa(o. 6,
= i=1

where p; >0, > " pp=1land§ €= i=1,...,n.

Since f( is often expensive to compute, the number n should be as
small as possible.

Aim: Given pairs (&,p;), @ = 1,..., N, where N is too large.
Find a subset {&;,,...,&,} with n < N and the corresponding
probabilities g;, j = 1,...,n, such that the approximation is still
reasonable.
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Mixed-integer two-stage stochastic programs
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for all pairs (u,t) € R™ ™2 x R? and ¢ € R™ X is a closed
subset of R™, = a polyhedron in R*, T € R™>™ W, € R™>™, L
Wo € R>™2 and ¢(¢) € R™*™ and h(¢) € RY are affine o |

functions of &, and P is a Borel probability measure.

We consider
i {<c, 0+ [ 2(a(6) )~ T P(E) 7 € X},

where @ is given by

Wiy + Ways <t }

CI) t I:. f m m
(u7 ) 111 {<ulay1> + <u27y2> U c R+1,y2 c Z+2

Close I
Quit I



Assumptions:
(C1) The matrices W; and W5 have rational elements. Home Page _|
(C2) For each pair (z,£) € X xZ it holds that h(§) —T'(§)xr € T

(relatively complete recourse), where
T = {t E Rd‘ay = (y17 y2) E le X ZTRQ W|th lel + W2y2 S t} Contents I

(C3) For each £ € = the recourse cost ¢(£) belongs to the dual « | »
feasible set (dual feasibility)

< >
U= {u=(u,u) € R™M™|3z € R with WYTZ = a5 = 1,20

(C4) P e P(2) ie, fa IEII"P(d€) < 400, T € {1,2}. EEZZN

Condition (C2) means that a feasible second stage decision always exists. Both (C2) and &I
(C3) imply ®(u,t) to be finite for all (u,t) € U x T. Clearly, it holds (0,0) € U x 7 and

®(0,t) =0 for every t € 7. Full Screen |

r = 1 holds if either ¢(&) is the only quantity depending on & or ¢(£) does not depend on &.

Otherwise, we set r = 2. Close |
Quit I



With the convex polyhedral cone

d d Home Page I
K :={t € R®| 3y € R™ such that t > Wiy, } = W1 (R™) +RY
one obtains the representation _ Tiepue |
T p— U (WQZ _|_ IC) Contents I
2€Z2
4 144

The set 7 is always connected (i.e., there exists a polygon con-
necting two arbitrary points of 7) and condition (C1) implies that <
7 is closed. If, for each t € 7, Z(t) denotes the set

Z(t) :={z € Z™ | Jy; € R™ such that Wiy, + Whz < t}, EEEE

the representation of 7 implies that it is decomposable into subsets oo |
of the form

il reen_|
T(ty) = {teT|Z(t)=Z(ty)}
= () Wez+K)\ | (Wz+K) N
2€Z(to) 2€7M2\ Z(t) -

for every tg € 7.



In general, the set Z(ty) is finite or countable, but condition (C1)
implies that there exist countably many elements ¢; € 7 and z;; €
72 for 7 belonging to a finite subset V; of N, 7 € N, such that

T=JT(t) with T(t)=t+K)\ Wz, +K).

ieN JEN;

The sets 7 (t;), @ € N, are nonempty and star-shaped, but noncon-

‘%%JL -

vex in general.

I/VQZ,[VZ

Wazi3
|

B. i B i\ By | B,

t;

Illustration of 7 (t;) for Wi =0 and d = 2, i.e., K = R?, with N; = {1,2, 3} and its decomposition
into the sets B;, j = 1,2, 3,4, whose closures are rectangular.
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If for some i € N the set 7 (t;) is nonconvex, it can be decomposed
into a finite number of subsets.

This leads to a countable number of subsets B;, 7 € N, of 7 whose
closures are convex polyhedra with facets parallel to Wi (R™) or
to suitable facets of R, and form a partition of 7.

Since the sets Z(t) of feasible integer decisions do not change if ¢
varies in some B, the function (u,t) — ®(u,t) from U x T to R
has the (local) Lipschitz continuity regions &/ x B;, 7 € N and the
estimate

|(u, ) — @ (i, )| < L(max{L, ¢[], [[E]l}lw — al| +max{L, lull, [|all}t —#])

holds for all pairs (u,t), (i,t) € U x B; and some (uniform) con-
stant L > 0.

(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)
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The integrand
folz, &) = (¢, z) + B(q(§), h(§) —T()z) ((z,8) € X X )

has the property that, for every x € X, and

2 ={{ €E|ME) - Tz € B;} (jeN) Comens |

it holds «“ »»

fole,€) — fole, )] < masc{L, €], 1€ IE — &1l (6.€ € Z2s) g puem
folw, )| < Cmax{1, [lz])} max{1, €]} (€ € =)

for all z € X with some constants L and C.
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Since the objective function is lower semicontinuous on X if the
conditions (C1)—(C4) are satisfied, solutions exist if X is compact. Fall screen_|
If the probability distribution P has a density, the objective function
is continuous, but nonconvex in general. If the support of P is finite, Cose |
the objective function is piecewise continuous with a finite number
of continuity regions, whose closures are polyhedral. o |



Example: (Schultz-Stougie-van der Vlerk 98)

m=d=s=2m;=0,me=4, c=(0,0), X =[0,57
h(€) =& q(§) = ¢ = (-16,-19,-23,-28), y; € {0,1} i =
1,2,3,4, P ~U(5,10,15} (discrete)

Second stage problem: MILP with 1764 binary variables and 882 constraints.

2 L 2345
T—[ 3 3 _
() v (6132)
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Stability

We consider the class of functions
Fop(Z) ={fl1g: f € F(2), B € B},

where 15 denotes the characteristic function of the set B and the
class F, (=) consists of all continuous functions f : = — R such
that the estimates

[ (€)] <max{1, [|€]|"}
f(&) = f(&) <max{1, [l €] HIE — €]

hold true for all £, € € = and B is the set of convex polyhedra in =
that contains

{§ €=: () —T(§)x € B}
for all z € X and all polyhedra B in R? with facets, i.e., (d —
1)-dimensional faces, that are parallel to W1 (R™) or parallel to
suitable facets of Ri.
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Metric on P,(Z):

GalPQ)i= s { | [ 5€)P - Qae)|: 1 € Fu(3)}

Let v(P) denote the optimal value of the stochastic program, i.e.,

v(P) = inf {/Efo(g;,g)p(dg) 1z € X}.

Proposition: (Rs-Vigerske 08)
Assume (C1)—(C4) and let X be compact. Then the estimate

[v(P) = v(Q)| < Lep(G8(P,Q))

holds for every @) € P,(Z), where the function ¢p is defined by
wp(0) =0 and

op(t) = inf {Rd+lt+ /{5 . R}HgH’"P(dg)} (t > 0).

R>1

The function characterizes the tail behavior of P and is continuous at ¢ = 0. If P has a finite
pth moment, i.e., if fa 1€|[PP(dE) < +00, for some p > r, the estimate

op(t) < Ctrta1 (£ >0)

is valid for some constant C' > 0. If = is bounded, we have ¢p(t) < Ct.
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The metric ¢, 5 is difficult to handle, but it holds:

Proposition:

Convergence with respect to the metric (, 5 is equivalent to con-
vergence with respect to (. (Fortet-Mourier metric of order r) and
with respect to ag (B-discrepancy), where

G(P,Q) = p{' [ ree- Q)(di)' ferE)

ap(P,Q) = sup |P(B) — Q(B)

If the set = is bounded, it even holds
1

ap(P,Q) < (5(P,Q) < Cap(P,Q)+

with some constant C' depending on =.

Since the class B strongly depends on the structure of the under-
lying mixed-integer stochastic program, we sometimes consider the
rectangular discrepancy with B = B,

Breet :={l1 X Iy X --- x I;| ) # I; is a closed interval in R} .
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The metric Fortet-Mourier metric ¢, allows the following dual rep-

resentation as transportation problem: Let tome page_|
cr(€,€) = max{L, [|E]"7H 1Y€ =€l (6,6 € ). rite poe_|
PI’OpOSition: (Rachev/Riischendorf 98) e |

Let = be bounded.

((P,Q) = inf{ / ¢r(€,€)0(d¢, d€):mO=P,m0 =Q

—__,
X5
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where the reduced cost ¢ is of the form

n—1
ér(Sv €> = inf {Z CT<€ZZ'7 fllqu) 'n e Na gli S Ea &1 — 'Sv gln — g}
1=1

Is a metric on = with ¢, < ¢,.



Scenario reduction

Home Page I

Let P be a probability measure with finite support {&!, ..., ¢V}
and set p; := P({&'}) > 0 fori =1,...,N. Denoting by d; the _ Terue |
Dirac measure placing mass one at the point &, P has the form

Contents I

N
P = ;pi(sgi' «“ »

The problem of optimal scenario reduction consists in determining

Lol ]

a discrete probability measure () on R® supported by a subset of

{et, ..., €YY} and being close to P with respect to —
dy = Xag+(1—=N¢ (Ae0,1]).
It can be written as GoBack |

| N n 5 {7717 ct 777n} C {517 n 7€N} Full Screen I
min { d ZM@Z% P g >0j=1,....n,3 q=1 (
jZl Close I

This optimization problem may be decomposed into an outer prob-
lem for determining supp (@) = 1 and an inner problem for choos- | e |

ing the probabilities g;, 7 =1,...,n.



To this end, we denote

Home Page I

N n
d)\<P7 <777 Q)) = d)\ Zpl(sfza Z Qj(snj Title Page I
i=1 j=1
n
Sn = {q € R+ . Zj:1 QJ — 1} Contents I
Then the scenario reduction problem may be rewritten as “« | o»
: . ) 1 N _
min{min dy(P, (n,¢)) : 7 C 1L, &7} nl = n} I
with the inner problem (optimal redistribution) e 150725 |

min{dA(P, (777 Q)) - q S Sn} Go Back |

for the fixed support 7. The outer problem is a combinatorial opti-

mization problem (NP hard) while the inner problem may be refor- N
mulated as a linear program.
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We assume for the sake of notational simplicity, that n = {&1, ..., £"}.

Then the inner problem is of the form: [enerel|
min{d\(P, ({¢',...,£"},q)) : ¢ € Su} rie Pase |

The finiteness of the support of P allows to define for B € B the
critical index set 1(B) by

I(B)={ie{l,...,N}: ¢ e B} E 58

Contents

and to write

DRI N
|P(B Z pl Z qj . Page 16 of 25 |

icl(B jel(B)N{1,...n}

Furthermore, we define the system of critical index sets of B as

={I(B) : B € B}.
Thus, the B-discrepancy between P and () may be reformulated L
as follows: P

ap(PQ)=max|> pi— > g an |

el JeIn{l,...n}



This allows to compute ap by means of the following linear pro-

min {t

Since |Z5| < 2%, the number of inequalities is too large to solve

gram:

.....

— Zje[ﬂ{l n} 4 <t- Zie[ Di }

.....

this LP numerically.

Therefore, we consider the following reduced system of critical index
sets

Ip={1(B)n{l,...,n} : B € B}.

Thereby, every member J € Z; of the reduced system is associated
with a family ¢(J) C Zp of critical index sets, all of which share
the same intersection with {1,... n}:

o(J)={lelg:J=InNn{l,...,n}} (Je€ZIp).
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Finally, we consider the quantities

J

= max Di

[ESO(J) 1€l

and 7y := min sz (J € Ip),

Iep(J

and write the inner problem as

i

min <

\

Now we have |Z;| < 2" and, hence, drastically reduced the max-

imum number of inequalities. This can make the LP solvable at

Aty + (1 = )\)tc

t(yatC > 07 q; > 07 Z?:l q; = 17

ni; >0,i=1,... N j=1,...,n

te> S 1D e 1Cr(fl )

D Mij=pii=1,...,N,

Zfiﬂﬁj:%d:l,---, n,

— e = ta— 7, I €T}
Zje[* qj < to + 7+, I* € .’Z';;,

least for moderate values of n.

/
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How to determine Z}, ~v; and 777

Observation:

T}, vy and 7 are determined by those polyhedra (belonging to P),
each of whose facets contains an element of {£!, ..., £"}, such that
it can not be enlarged without changing its interior’s intersection
with {£%,...,£"}. The polyhedra in P are called supporting.

N
N

Non supporting polyhedron (left) and supporting polyhedron (right). The dots represent the
remaining scenarios £, ..., &
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Proposition:

i ={J C{l,...,n}:IB € P,U;c;{&} = {¢',...,£"} Nint B}
7 = max{P(int B) : B € P,Uje (€'} = {€,..., 6" nint B}
Ny = Zpl- with I C{1,..., N} defined by

Home Page

ZEI Contents I
I = {z : mi? <ml,€j> < <ml,§i> < max <ml;fj>7l =1,.. -;k} , L]
JE Je

where m/, 7 = 1,... k, are the rows of a matrix M € Rbxs ]
having the property that every polyhedron B € B can be written
Page 20 of 25 I
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Forn =5, k=3and n =20, k = 12, the latter is equal to 3375 and 7.36- 1027, respectively.
Quit I

as
B={¢ecR:a® < M¢<aP}

_n. =k
for some a” and a® in R".

Note that [P| < (";2)k !



Numerical results

Optimal redistribution w.r.t. the polyhedral discrepancy as:

’ k ‘ n=5 n=10 n=15 n=20 ‘
cell | 0.01 0.01 0.01 0.05
R3 310.01 0.04 0.56 6.02
N=100 6003 103 1418 157.51
91015 7306 9449 0948.17
cell | 0.01 0.01 0.05 0.30
R* 41001 0.19 1.83 17.22
N=100 81011 566 59.28 521.31
12 | 0.67 39.86 374.15 3509.34
cell | 0.01 0.01 0.01 0.07
R3 310.01 0.05 0.53 4.28
N=200 6003 076 11.80 132.21
91012 422 7849 815.79
cell | 0.01 0.01 0.06 0.29
R* 41001 0.20 2.56 41.73
N=200 81011 444 73.70 1042.78
12 | 0.74 28.29 473.72 6337.68

Running times [sec] of the optimal redistribution algorithm
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Example 2:

We consider = = [0,1]>, N = 1000 samples from the uniform

+ (1 = A)Go.

distribution on =, n = 25. Consider d\, = \agp

25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform

distribution on [0, 1]? and optimal probabilities adjusted w.r.t. dy for A = 1 (gray balls) and

08

0.2

rect

06 -

5
B
. .
0 [ . "
-4 .
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|’ .
o .« . .
.
.o

0.2

0.4
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0.8

A = 0.9 (black circles)

1
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Example 2: (continued)
Solving the outer combinatorial optimization problem by different __Home page_|

heuristics:
. Title Page |
e Forward selection:
Step [0] J[O} = . Contents |
Step [i]: [ € argmingg i 1gsf da(P, ({€", ..., &5 €, q), JU = gy {1}
qeoq
Step [n+1]:  Minimize dy({P, (¢",..., &}, q)) st. ¢ € S,. “ 4
4 >

Page 23 of 25 |

to these points are determined and weight 1/n is associated. The resulting distance to e |
0 Dbacl

e (next neighbor) Quasi Monte Carlo (QMC): Take the first

n points of the Halton sequences with bases 2 and 3 in [0, 1]%. The closest scenarios

the initial measure is computed for A = 1.

Full Screen

e (next neighbor) adjusted QMC: The probabilities of the closest
scenarios to the Halton points are adjusted by optimal redistribution and the distance

dy is computed for A = 1.
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Conclusion: Forward selection provides good results, but is very
slow due to the optimal redistribution after each step.
Next neighbor adjusted QMC performs significantly better than

next neighbor QMC.

Distance agp,,, between P (with N = 1000) and equidistributed QMC-points (dashed),
QMC-points, whose probabilities are adjusted (bold), and running times of the QMC-based

heuristic (in seconds).

discrepancy

time

50

1600
1400

1200
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