# Scenario reduction in mixed-integer stochastic programming

R. Henrion, C. Küchler, W. Römisch

WIAS Berlin and Humboldt-University Berlin http://www.math.hu-berlin.de/~romisch

COPI'08, EDF, Clamart, November 26-28, 2008





Bundesministerium für Bildung und Forschung



#### Introduction

Most approaches for solving stochastic programs of the form

$$\min\left\{\int_{\Xi} f_0(x,\xi) P(d\xi) : x \in X\right\}$$

with a probability measure P on  $\Xi$  and a (normal) integrand  $f_0$ , require numerical integration techniques, i.e., replacing the integral by some quadrature formula

$$\int_{\Xi} f_0(x,\xi) P(d\xi) \approx \sum_{i=1}^n p_i f_0(x,\xi_i),$$

where  $p_i > 0$ ,  $\sum_{i=1}^{n} p_i = 1$  and  $\xi_i \in \Xi$ , i = 1, ..., n. Since  $f_0$  is often expensive to compute, the number n should be as small as possible.

**Aim:** Given pairs  $(\xi_i, p_i)$ , i = 1, ..., N, where N is too large. Find a subset  $\{\xi_{i_1}, ..., \xi_{i_n}\}$  with n < N and the corresponding probabilities  $q_j$ , j = 1, ..., n, such that the approximation is still reasonable.

Home Page Title Page Page 2 of 25 Go Back Full Screen Close Quit

#### Mixed-integer two-stage stochastic programs

We consider

$$\min\left\{\langle c, x\rangle + \int_{\Xi} \Phi(q(\xi), h(\xi) - T(\xi)x) P(d\xi) : x \in X\right\}$$

where  $\Phi$  is given by

$$\Phi(u,t) := \inf \left\{ \langle u_1, y_1 \rangle + \langle u_2, y_2 \rangle \left| \begin{array}{c} W_1 y_1 + W_2 y_2 \le t \\ y_1 \in \mathbb{R}^{m_1}_+, y_2 \in \mathbb{Z}^{m_2}_+ \end{array} \right\} \right\}$$

for all pairs  $(u,t) \in \mathbb{R}^{m_1+m_2} \times \mathbb{R}^d$ , and  $c \in \mathbb{R}^m$ , X is a closed subset of  $\mathbb{R}^m$ ,  $\Xi$  a polyhedron in  $\mathbb{R}^s$ ,  $T \in \mathbb{R}^{d \times m}$ ,  $W_1 \in \mathbb{R}^{d \times m_1}$ ,  $W_2 \in \mathbb{R}^{d \times m_2}$ , and  $q(\xi) \in \mathbb{R}^{m_1+m_2}$  and  $h(\xi) \in \mathbb{R}^d$  are affine functions of  $\xi$ , and P is a Borel probability measure.

| Home Page    |
|--------------|
| Title Page   |
| Contents     |
| •••          |
|              |
| Page 3 of 25 |
| Go Back      |
| Full Screen  |
| Close        |

## **Assumptions:**

(C1) The matrices  $W_1$  and  $W_2$  have rational elements. (C2) For each pair  $(x,\xi) \in X \times \Xi$  it holds that  $h(\xi) - T(\xi)x \in \mathcal{T}$  (relatively complete recourse), where

 $\mathcal{T} := \big\{ t \in \mathbb{R}^d | \exists y = (y_1, y_2) \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \text{ with } W_1 y_1 + W_2 y_2 \le t \big\}.$ 

(C3) For each  $\xi \in \Xi$  the recourse cost  $q(\xi)$  belongs to the dual feasible set (dual feasibility)

 $\mathcal{U} := \left\{ u = (u_1, u_2) \in \mathbb{R}^{m_1 + m_2} | \exists z \in \mathbb{R}^d_- \text{ with } W_j^\top z = u_j, j = 1, 2 \right\}.$ (C4)  $P \in \mathcal{P}_r(\Xi)$ , i.e.,  $\int_{\Xi} \|\xi\|^r P(d\xi) < +\infty, r \in \{1, 2\}.$ 

Condition (C2) means that a feasible second stage decision always exists. Both (C2) and (C3) imply  $\Phi(u,t)$  to be finite for all  $(u,t) \in \mathcal{U} \times \mathcal{T}$ . Clearly, it holds  $(0,0) \in \mathcal{U} \times \mathcal{T}$  and  $\Phi(0,t) = 0$  for every  $t \in \mathcal{T}$ .

r = 1 holds if either  $q(\xi)$  is the only quantity depending on  $\xi$  or  $q(\xi)$  does not depend on  $\xi$ . Otherwise, we set r = 2.

Home Page Title Page Contents •• Page 4 of 25 Go Back Full Screen Close

With the convex polyhedral cone

 $\mathcal{K} := \left\{ t \in \mathbb{R}^d \mid \exists y_1 \in \mathbb{R}^{m_1} \text{ such that } t \geq W_1 y_1 \right\} = W_1(\mathbb{R}^{m_1}) + \mathbb{R}^d_+$ 

one obtains the representation

$$\mathcal{T} = \bigcup_{z \in \mathbb{Z}^{m_2}} (W_2 z + \mathcal{K}).$$

The set  $\mathcal{T}$  is always connected (i.e., there exists a polygon connecting two arbitrary points of  $\mathcal{T}$ ) and condition (C1) implies that  $\mathcal{T}$  is closed. If, for each  $t \in \mathcal{T}$ , Z(t) denotes the set

 $Z(t) := \{ z \in \mathbb{Z}^{m_2} \mid \exists y_1 \in \mathbb{R}^{m_1} \text{ such that } W_1 y_1 + W_2 z \leq t \},\$ 

the representation of  ${\mathcal T}$  implies that it is decomposable into subsets of the form

$$\mathcal{T}(t_0) := \{ t \in \mathcal{T} \mid Z(t) = Z(t_0) \}$$
  
= 
$$\bigcap_{z \in Z(t_0)} (W_2 z + \mathcal{K}) \setminus \bigcup_{z \in \mathbb{Z}^{m_2} \setminus Z(t_0)} (W_2 z + \mathcal{K})$$

for every  $t_0 \in \mathcal{T}$ .

| Home Page    |
|--------------|
| Title Page   |
| Contents     |
| ••           |
|              |
| Page 5 of 25 |
| Go Back      |
| Full Screen  |
| Close        |
| Quit         |

In general, the set  $Z(t_0)$  is finite or countable, but condition (C1) implies that there exist countably many elements  $t_i \in \mathcal{T}$  and  $z_{ij} \in \mathbb{Z}^{m_2}$  for j belonging to a finite subset  $N_i$  of  $\mathbb{N}$ ,  $i \in \mathbb{N}$ , such that

$$\mathcal{T} = \bigcup_{i \in \mathbb{N}} \mathcal{T}(t_i) \quad \text{with} \quad \mathcal{T}(t_i) = (t_i + \mathcal{K}) \setminus \bigcup_{j \in N_i} (W_2 z_{ij} + \mathcal{K}).$$

The sets  $\mathcal{T}(t_i)$ ,  $i \in \mathbb{N}$ , are nonempty and star-shaped, but nonconvex in general.





Illustration of  $\mathcal{T}(t_i)$  for  $W_1 = 0$  and d = 2, i.e.,  $\mathcal{K} = \mathbb{R}^2_+$ , with  $N_i = \{1, 2, 3\}$  and its decomposition into the sets  $B_j$ , j = 1, 2, 3, 4, whose closures are rectangular.

If for some  $i \in \mathbb{N}$  the set  $\mathcal{T}(t_i)$  is nonconvex, it can be decomposed into a finite number of subsets.

This leads to a countable number of subsets  $B_j$ ,  $j \in \mathbb{N}$ , of  $\mathcal{T}$  whose closures are convex polyhedra with facets parallel to  $W_1(\mathbb{R}^{m_1})$  or to suitable facets of  $\mathbb{R}^r_+$  and form a partition of  $\mathcal{T}$ .

Since the sets Z(t) of feasible integer decisions do not change if t varies in some  $B_j$ , the function  $(u, t) \mapsto \Phi(u, t)$  from  $\mathcal{U} \times \mathcal{T}$  to  $\mathbb{R}$  has the (local) Lipschitz continuity regions  $\mathcal{U} \times B_j$ ,  $j \in \mathbb{N}$  and the estimate

 $|\Phi(u,t) - \Phi(\tilde{u},\tilde{t})| \le L(\max\{1, \|t\|, \|\tilde{t}\|\} \|u - \tilde{u}\| + \max\{1, \|u\|, \|\tilde{u}\|\} \|t - \tilde{t}\|)$ 

holds for all pairs  $(u, t), (\tilde{u}, \tilde{t}) \in \mathcal{U} \times B_j$  and some (uniform) constant L > 0.

(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)

| Home Page    |
|--------------|
| Title Page   |
| Contents     |
| •• ••        |
|              |
| Page 7 of 25 |
| Go Back      |
| Full Screen  |
| Close        |
| Quit         |

#### The integrand

 $f_0(x,\xi) = \langle c, x \rangle + \Phi(q(\xi), h(\xi) - T(\xi)x) \quad ((x,\xi) \in X \times \Xi)$ 

has the property that, for every  $x \in X$ , and

$$\Xi_{x,j} = \{\xi \in \Xi \mid h(\xi) - T(\xi)x \in B_j\} \quad (j \in \mathbb{N})$$

it holds

 $|f_0(x,\xi) - f_0(x,\tilde{\xi})| \le \hat{L} \max\{1, \|\xi\|^{r-1}, \|\tilde{\xi}\|^{r-1}\} \|\xi - \tilde{\xi}\| \ (\xi, \tilde{\xi} \in \Xi_{x,j})$  $|f_0(x,\xi)| \le C \max\{1, \|x\|\} \max\{1, \|\xi\|^r\} \ (\xi \in \Xi)$ 

for all  $x \in X$  with some constants  $\hat{L}$  and C.

Since the objective function is lower semicontinuous on X if the conditions (C1)–(C4) are satisfied, solutions exist if X is compact. If the probability distribution P has a density, the objective function is continuous, but nonconvex in general. If the support of P is finite, the objective function is piecewise continuous with a finite number of continuity regions, whose closures are polyhedral.

| Home Page    |  |  |  |  |  |
|--------------|--|--|--|--|--|
| Title Page   |  |  |  |  |  |
|              |  |  |  |  |  |
| Contents     |  |  |  |  |  |
| •• ••        |  |  |  |  |  |
| •            |  |  |  |  |  |
| Page 8 of 25 |  |  |  |  |  |
| Go Back      |  |  |  |  |  |
| Full Screen  |  |  |  |  |  |
| Close        |  |  |  |  |  |
| Quit         |  |  |  |  |  |

**Example:** (Schultz-Stougie-van der Vlerk 98)

$$m = d = s = 2, m_1 = 0, m_2 = 4, c = (0, 0), X = [0, 5]^2,$$
  
 $h(\xi) = \xi, q(\xi) \equiv q = (-16, -19, -23, -28), y_i \in \{0, 1\}, i = 1, 2, 3, 4, P \sim \mathcal{U}(5, 10, 15)$  (discrete)

Second stage problem: MILP with 1764 binary variables and 882 constraints.

$$T = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \qquad W = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 6 & 1 & 3 & 2 \end{pmatrix}$$



Home Page Title Page Contents Page 9 of 25 Go Back Full Screen Close Quit

# Stability

We consider the class of functions

 $\mathcal{F}_{r,\mathcal{B}}(\Xi) := \{ f \mathbf{1}_B : f \in \mathcal{F}_r(\Xi), B \in \mathcal{B} \},\$ 

where  $\mathbf{1}_B$  denotes the characteristic function of the set B and the class  $\mathcal{F}_r(\Xi)$  consists of all continuous functions  $f : \Xi \to \mathbb{R}$  such that the estimates

# $|f(\xi)| \le \max\{1, \|\xi\|^r\}$

 $f(\xi) - f(\tilde{\xi}) \leq \max\{1, \|\xi\|^{r-1}, \|\tilde{\xi}\|^{r-1}\} \|\xi - \tilde{\xi}\|$ hold true for all  $\xi, \tilde{\xi} \in \Xi$  and  $\mathcal{B}$  is the set of convex polyhedra in  $\Xi$  that contains

 $\{\xi \in \Xi : h(\xi) - T(\xi)x \in B\}$ 

for all  $x \in X$  and all polyhedra B in  $\mathbb{R}^d$  with facets, i.e., (d - 1)-dimensional faces, that are parallel to  $W_1(\mathbb{R}^{m_1})$  or parallel to suitable facets of  $\mathbb{R}^d_+$ .



Metric on  $\mathcal{P}_r(\Xi)$ :

$$\zeta_{r,\mathcal{B}}(P,Q) := \sup\left\{ \left| \int_{\Xi} f(\xi)(P-Q)(d\xi) \right| : f \in \mathcal{F}_{r,\mathcal{B}}(\Xi) \right\}$$

Let v(P) denote the optimal value of the stochastic program, i.e.,

$$v(P) := \inf \left\{ \int_{\Xi} f_0(x,\xi) P(d\xi) : x \in X \right\}.$$

**Proposition:** (Rö-Vigerske 08) Assume (C1)–(C4) and let X be compact. Then the estimate

 $|v(P) - v(Q)| \le L\varphi_P(\zeta_{r,\mathcal{B}}(P,Q))$ 

holds for every  $Q \in \mathcal{P}_r(\Xi)$ , where the function  $\varphi_P$  is defined by  $\varphi_P(0) = 0$  and

$$\varphi_P(t) := \inf_{R \ge 1} \left\{ R^{d+1}t + \int_{\{\xi \in \Xi \mid \|\xi\| > R\}} \|\xi\|^r P(d\xi) \right\} \quad (t > 0).$$

The function characterizes the tail behavior of P and is continuous at t = 0. If P has a finite pth moment, i.e., if  $\int_{\Xi} \|\xi\|^p P(d\xi) < +\infty$ , for some p > r, the estimate

$$\varphi_P(t) \le C t^{\frac{p-r}{p+d-1}} \quad (t \ge 0)$$

is valid for some constant C > 0. If  $\Xi$  is bounded, we have  $\varphi_P(t) \leq Ct$ .

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| •             |
|               |
| Page 11 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
| Quit          |

# The metric $\zeta_{r,B}$ is difficult to handle, but it holds: **Proposition:**

Convergence with respect to the metric  $\zeta_{r,\mathcal{B}}$  is equivalent to convergence with respect to  $\zeta_r$  (Fortet-Mourier metric of order r) and with respect to  $\alpha_{\mathcal{B}}$  ( $\mathcal{B}$ -discrepancy), where

$$\zeta_r(P,Q) := \sup\left\{ \left| \int_{\Xi} f(\xi)(P-Q)(d\xi) \right| : f \in \mathcal{F}_r(\Xi) \right\},\$$
$$\alpha_{\mathcal{B}}(P,Q) := \sup_{B \in \mathcal{B}} |P(B) - Q(B)|$$

If the set  $\Xi$  is bounded, it even holds

 $\alpha_{\mathcal{B}}(P,Q) \le \zeta_{r,\mathcal{B}}(P,Q) \le C\alpha_{\mathcal{B}}(P,Q)^{\frac{1}{s+1}}$ 

with some constant C depending on  $\Xi$ .

Since the class  $\mathcal{B}$  strongly depends on the structure of the underlying mixed-integer stochastic program, we sometimes consider the rectangular discrepancy with  $\mathcal{B} = \mathcal{B}_{rect}$ 

$$\mathcal{B}_{\text{rect}} := \{ I_1 \times I_2 \times \cdots \times I_s \mid \emptyset \neq I_j \text{ is a closed interval in } \mathbb{R} \}$$

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| •• ••         |
|               |
| Page 12 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
| Quit          |

The metric Fortet-Mourier metric  $\zeta_r$  allows the following dual representation as transportation problem: Let

$$c_r(\xi, \tilde{\xi}) := \max\{1, \|\xi\|^{r-1}, \|\tilde{\xi}\|^{r-1}\} \|\xi - \tilde{\xi}\| \quad (\xi, \tilde{\xi} \in \Xi).$$

**Proposition:** (Rachev/Rüschendorf 98) Let  $\Xi$  be bounded.

$$\zeta_r(P,Q) = \inf\left\{\int_{\Xi\times\Xi} \hat{c}_r(\xi,\tilde{\xi})\Theta(d\xi,d\tilde{\xi}): \pi_1\Theta = P, \pi_2\Theta = Q\right\}$$

where the reduced cost  $\hat{c}$  is of the form

$$\hat{c}_r(\xi,\tilde{\xi}) := \inf\left\{\sum_{i=1}^{n-1} c_r(\xi_{l_i},\xi_{l_{i+1}}) : n \in \mathbb{N}, \xi_{l_i} \in \Xi, \xi_{l_1} = \xi, \xi_{l_n} = \tilde{\xi}\right\}$$

is a metric on  $\Xi$  with  $\hat{c}_r \leq c_r$ .

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| •• ••         |
|               |
| Page 13 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
| Quit          |

#### **Scenario reduction**

Let P be a probability measure with finite support  $\{\xi^1, \ldots, \xi^N\}$ and set  $p_i := P(\{\xi^i\}) > 0$  for  $i = 1, \ldots, N$ . Denoting by  $\delta_{\xi}$  the Dirac measure placing mass one at the point  $\xi$ , P has the form

$$P = \sum_{i=1}^{N} p_i \delta_{\xi^i}.$$

The problem of optimal scenario reduction consists in determining a discrete probability measure Q on  $\mathbb{R}^s$  supported by a subset of  $\{\xi^1, \ldots, \xi^N\}$  and being close to P with respect to

 $d_{\lambda} := \lambda \alpha_{\mathcal{B}} + (1 - \lambda)\zeta_r \quad (\lambda \in [0, 1]).$ 

It can be written as

$$\min\left\{d_{\lambda}\left(\sum_{i=1}^{N} p_{i}\delta_{\xi^{i}}, \sum_{j=1}^{n} q_{j}\delta_{\eta^{j}}\right) \middle| \begin{cases} \eta^{1}, \dots, \eta^{n} \} \subset \{\xi^{1}, \dots, \xi^{N}\} \\ q_{j} \ge 0 \ j = 1, \dots, n, \sum_{j=1}^{n} q_{j} = 1 \end{cases} \right\}$$

This optimization problem may be decomposed into an outer problem for determining  $\operatorname{supp}(Q) = \eta$  and an inner problem for choosing the probabilities  $q_j$ ,  $j = 1, \ldots, n$ .

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| •• ••         |
|               |
| Page 14 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
|               |

To this end, we denote

$$d_{\lambda}(P,(\eta,q)) := d_{\lambda} \left( \sum_{i=1}^{N} p_i \delta_{\xi^i}, \sum_{j=1}^{n} q_j \delta_{\eta^j} \right)$$
$$S_n := \{ q \in \mathbb{R}^n_+ : \sum_{j=1}^{n} q_j = 1 \}.$$

Then the scenario reduction problem may be rewritten as

 $\min_{\eta} \{\min_{q \in S_n} d_{\lambda}(P,(\eta,q)) : \eta \subset \{\xi^1,\ldots,\xi^N\}, |\eta|=n\}$ 

with the inner problem (optimal redistribution)

 $\min\{d_{\lambda}(P,(\eta,q)):q\in S_n\}$ 

for the fixed support  $\eta$ . The outer problem is a combinatorial optimization problem (NP hard) while the inner problem may be reformulated as a linear program.

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| •• ••         |
|               |
| Page 15 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
| Quit          |

We assume for the sake of notational simplicity, that  $\eta = \{\xi^1, \dots, \xi^n\}$ . Then the inner problem is of the form:

$$\min\{d_{\lambda}(P,(\{\xi^1,\ldots,\xi^n\},q)):q\in S_n\}$$

The finiteness of the support of P allows to define for  $B\in \mathcal{B}$  the critical index set I(B) by

$$I(B) := \{ i \in \{1, \dots, N\} : \xi^i \in B \}$$

and to write

$$|P(B) - Q(B)| = \left| \sum_{i \in I(B)} p_i - \sum_{j \in I(B) \cap \{1, \dots, n\}} q_j \right|.$$

Furthermore, we define the system of critical index sets of  $\mathcal B$  as

$$\mathcal{I}_{\mathcal{B}} := \{ I(B) : B \in \mathcal{B} \}.$$

Thus, the  $\mathcal{B}$ -discrepancy between P and Q may be reformulated as follows:

$$\alpha_{\mathcal{B}}(P,Q) = \max_{I \in \mathcal{I}_{\mathcal{B}}} \left| \sum_{i \in I} p_i - \sum_{j \in I \cap \{1,\dots,n\}} q_j \right|.$$



This allows to compute  $\alpha_{\mathcal{B}}$  by means of the following linear program:

$$\min\left\{ t \left| \begin{array}{c} -\sum_{j \in I \cap \{1,\dots,n\}} q_j \leq t - \sum_{i \in I} p_i \\ \sum_{j \in I \cap \{1,\dots,n\}} q_j \leq t + \sum_{i \in I} p_i, I \in \mathcal{I}_{\mathcal{B}} \end{array} \right\}$$

Since  $|\mathcal{I}_{\mathcal{B}}| \leq 2^N$ , the number of inequalities is too large to solve this LP numerically.

Therefore, we consider the following reduced system of critical index sets

$$\mathcal{I}_{\mathcal{B}}^* := \{ I(B) \cap \{1, \dots, n\} : B \in \mathcal{B} \}.$$

Thereby, every member  $J \in \mathcal{I}_{\mathcal{B}}^*$  of the reduced system is associated with a family  $\varphi(J) \subset \mathcal{I}_{\mathcal{B}}$  of critical index sets, all of which share the same intersection with  $\{1, \ldots, n\}$ :

$$\varphi(J) := \{ I \in \mathcal{I}_{\mathcal{B}} : J = I \cap \{1, \dots, n\} \} \quad (J \in \mathcal{I}_{\mathcal{B}}^*).$$

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| ••            |
| • •           |
| Page 17 of 25 |
| Go Back       |
| Full Screen   |
| Close         |

Finally, we consider the quantities

$$\gamma^J := \max_{I \in \varphi(J)} \sum_{i \in I} p_i \quad \text{ and } \quad \gamma_J := \min_{I \in \varphi(J)} \sum_{i \in I} p_i \quad (J \in \mathcal{I}_{\mathcal{B}}^*),$$

and write the inner problem as

$$\min \left\{ \lambda t_{\alpha} + (1-\lambda)t_{\zeta} \left| \begin{array}{l} t_{\alpha}, t_{\zeta} \geq 0, \ q_{j} \geq 0, \ \sum_{j=1}^{n} q_{j} = 1, \\ \eta_{ij} \geq 0, i = 1, \dots, N, \ j = 1, \dots, n, \\ t_{\zeta} \geq \sum_{i=1}^{N} \sum_{j=1}^{n} \hat{c}_{r}(\xi^{i}, \xi^{j})\eta_{ij}, \\ \sum_{j=1}^{n} \eta_{ij} = p_{i}, \ i = 1, \dots, N, \\ \sum_{i=1}^{N} \eta_{ij} = q_{j}, \ j = 1, \dots, n, \\ -\sum_{j \in I^{*}} q_{j} \leq t_{\alpha} - \gamma^{I^{*}}, \ I^{*} \in \mathcal{I}_{\mathcal{B}}^{*} \\ \sum_{j \in I^{*}} q_{j} \leq t_{\alpha} + \gamma_{I^{*}}, \ I^{*} \in \mathcal{I}_{\mathcal{B}}^{*} \end{array} \right\}$$

Now we have  $|\mathcal{I}_{\mathcal{B}}^*| \leq 2^n$  and, hence, drastically reduced the maximum number of inequalities. This can make the LP solvable at least for moderate values of n.

| Home Page     |
|---------------|
|               |
| Title Page    |
| Contents      |
| ••            |
| •             |
| Page 18 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
|               |

How to determine  $\mathcal{I}^*_{\mathcal{B}}$ ,  $\gamma_J$  and  $\gamma^J$ ?

#### **Observation:**

 $\mathcal{I}_{\mathcal{B}}^*$ ,  $\gamma_J$  and  $\gamma^J$  are determined by those polyhedra (belonging to  $\mathcal{P}$ ), each of whose facets contains an element of  $\{\xi^1, \ldots, \xi^n\}$ , such that it can not be enlarged without changing its interior's intersection with  $\{\xi^1, \ldots, \xi^n\}$ . The polyhedra in  $\mathcal{P}$  are called supporting.



Non supporting polyhedron (left) and supporting polyhedron (right). The dots represent the remaining scenarios  $\xi^1, \ldots, \xi^n$ 

Home Page Title Page Contents Page 19 of 25 Go Back Full Screen Close Quit

#### **Proposition:**

$$\begin{split} \mathcal{I}_{\mathcal{B}}^{*} &= \{J \subseteq \{1, \dots, n\} : \exists B \in \mathcal{P}, \cup_{j \in J} \{\xi^{j}\} = \{\xi^{1}, \dots, \xi^{n}\} \cap \operatorname{int} B\} \\ \gamma^{J} &= \max\{P(\operatorname{int} B) : B \in \mathcal{P}, \cup_{j \in J} \{\xi^{j}\} = \{\xi^{1}, \dots, \xi^{n}\} \cap \operatorname{int} B\} \\ \gamma_{J} &= \sum_{i \in I} p_{i} \quad \text{with} \quad I \subseteq \{1, \dots, N\} \quad \text{defined by} \\ I &:= \left\{i : \min_{j \in J} \langle m^{l}, \xi^{j} \rangle \leq \langle m^{l}, \xi^{i} \rangle \leq \max_{j \in J} \langle m^{l}, \xi^{j} \rangle, l = 1, \dots, k\right\}, \\ \text{where } m^{j}, \ j = 1, \dots, k, \text{ are the rows of a matrix } M \in \mathbb{R}^{k \times s} \end{split}$$

having the property that every polyhedron  $B \in \mathcal{B}$  can be written as

$$B = \{\xi \in \mathbb{R}^s : \underline{a}^B \le M\xi \le \overline{a}^B\}$$

for some  $\underline{a}^B$  and  $\overline{a}^B$  in  $\overline{\mathbb{R}}^k$ .

Note that 
$$|\mathcal{P}| \leq {\binom{n+2}{2}^k}!$$

For n = 5, k = 3 and n = 20, k = 12, the latter is equal to 3375 and  $7.36 \cdot 10^{27}$ , respectively.

#### Numerical results

## Optimal redistribution w.r.t. the polyhedral discrepancy $\alpha_{\mathcal{B}}$ :

|                | k    | n=5  | n=10  | n=15   | n=20    |
|----------------|------|------|-------|--------|---------|
|                | cell | 0.01 | 0.01  | 0.01   | 0.05    |
| $\mathbb{R}^3$ | 3    | 0.01 | 0.04  | 0.56   | 6.02    |
| N=100          | 6    | 0.03 | 1.03  | 14.18  | 157.51  |
|                | 9    | 0.15 | 7.36  | 94.49  | 948.17  |
|                | cell | 0.01 | 0.01  | 0.05   | 0.30    |
| $\mathbb{R}^4$ | 4    | 0.01 | 0.19  | 1.83   | 17.22   |
| N=100          | 8    | 0.11 | 5.66  | 59.28  | 521.31  |
|                | 12   | 0.67 | 39.86 | 374.15 | 3509.34 |
|                | cell | 0.01 | 0.01  | 0.01   | 0.07    |
| $\mathbb{R}^3$ | 3    | 0.01 | 0.05  | 0.53   | 4.28    |
| N=200          | 6    | 0.03 | 0.76  | 11.80  | 132.21  |
|                | 9    | 0.12 | 4.22  | 78.49  | 815.79  |
|                | cell | 0.01 | 0.01  | 0.06   | 0.29    |
| $\mathbb{R}^4$ | 4    | 0.01 | 0.20  | 2.56   | 41.73   |
| N=200          | 8    | 0.11 | 4.44  | 73.70  | 1042.78 |
|                | 12   | 0.74 | 28.29 | 473.72 | 6337.68 |

Home Page Title Page Contents 44 Page 21 of 25 Go Back Full Screen

Close

Running times [sec] of the optimal redistribution algorithm

#### Example 2:

We consider  $\Xi = [0, 1]^2$ , N = 1000 samples from the uniform distribution on  $\Xi$ , n = 25. Consider  $d_{\lambda} = \lambda \alpha_{\mathcal{B}_{rect}} + (1 - \lambda)\zeta_2$ .



Home Page

Quit

25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform distribution on  $[0, 1]^2$  and optimal probabilities adjusted w.r.t.  $d_{\lambda}$  for  $\lambda = 1$  (gray balls) and  $\lambda = 0.9$  (black circles)

## Example 2: (continued)

Solving the outer combinatorial optimization problem by different heuristics:

- Forward selection:
  - $\begin{array}{ll} \textbf{Step [0]:} & J^{[0]} := \varnothing \,. \\ & \textbf{Step [i]:} & l_i \in \operatorname{argmin}_{l \not\in J^{[i-1]}} \inf_{q \in S_i} d_\lambda(P, (\{\xi^{l_1}, \dots, \xi^{l_{i-1}}, \xi^l\}, q)), J^{[i]} := J^{[i-1]} \cup \{l_i\}. \\ & \textbf{Step [n+1]:} & \textsf{Minimize } d_\lambda(\{P, (\xi^{l_1}, \dots, \xi^{l_n}\}, q)) \textit{ s.t. } q \in S_n. \end{array}$

- (next neighbor) Quasi Monte Carlo (QMC): Take the first n points of the Halton sequences with bases 2 and 3 in [0,1]<sup>2</sup>. The closest scenarios to these points are determined and weight 1/n is associated. The resulting distance to the initial measure is computed for λ = 1.
- (next neighbor) adjusted QMC: The probabilities of the closest scenarios to the Halton points are adjusted by optimal redistribution and the distance d<sub>λ</sub> is computed for λ = 1.

| Home Page     |
|---------------|
| Title Page    |
| Contents      |
| •• ••         |
|               |
| Page 23 of 25 |
| Go Back       |
| Full Screen   |
| Close         |
| Quit          |

**Conclusion:** Forward selection provides good results, but is very slow due to the optimal redistribution after each step. Next neighbor adjusted QMC performs significantly better than next neighbor QMC.



Distance  $\alpha_{\mathcal{B}_{rect}}$  between P (with N = 1000) and equidistributed QMC-points (dashed), QMC-points, whose probabilities are adjusted (bold), and running times of the QMC-based heuristic (in seconds).

Home Page Title Page Contents Page 24 of 25 Go Back Full Screen Close

#### References

Dupačová, J.; Gröwe-Kuska, N.; Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics, *Mathematical Programming* 95 (2003), 493–511.

Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs, *Operations Research Letters* 35 (2007), 731–736.

Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances, *Computational Optimization and Applications* (to appear).

Henrion, R., Küchler, C., Römisch, W.: Discrepancy distances and scenario reduction in twostage stochastic mixed-integer programming, *Journal of Industrial and Management Optimization* 4 (2008), 363–384.

Römisch, W., Vigerske, S.: Quantitative stability of fully random mixed-integer two-stage stochastic programs, *Optimization Letters* 2 (2008), 377–388.

# Home Page Title Page Contents Page 25 of 25 Go Back Full Screen Close