Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods

W. Römisch

Humboldt-University Berlin Institute of Mathematics
www.math.hu-berlin.de/~romisch

Chemnitzer Mathematisches Colloquium, TU Chemnitz, 29.6.2017

Introduction and overview

- Stochastic optimization: Mathematics of decision making under uncertainty.
- Two-stage stochastic optimization is a standard problem. But, the evaluation of the objective of such models is \#P-hard (Hanasusanto-Kuhn-Wiesemann 16).
- Computational methods for solving stochastic optimization problems require a discretization of the underlying probability distribution induced by a numerical integration scheme for computing expectations.
- Standard approach: Variants of Monte Carlo (MC) methods. However, MC methods are extremely slow and may require enormous sample sizes.
- On the other hand, it is known that numerical integration is strongly polynomially tractable for integrands belonging to weighted tensor product mixed Sobolev spaces if the weights satisfy certain condition (Sloan-Woźniakowski 98).
- Moreover, the optimal order of convergence of numerical integration in such spaces can essentially be achieved by certain randomized Quasi-Monte Carlo methods (Sloan-Kuo-Joe 02, Kuo 03).
- Typical integrands in two-stage stochastic programming can be approximated by functions from mixed Sobolev spaces if their effective dimension is low.

Application: Mean-Risk Electricity Portfolio Management

(Eichhorn-Römisch-Wegner 05, Eichhorn-Heitsch-Römisch 10)

Linear two-stage stochastic programming models

Consider a linear program with stochastic parameters of the form

$$
\min \{\langle c, x\rangle: x \in X, T(\xi) x=h(\xi)\}
$$

where $\xi: \Omega \rightarrow \Xi$ is a random vector defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, $c \in \mathbb{R}^{m}, \Xi$ and X are polyhedral subsets of \mathbb{R}^{d} and \mathbb{R}^{m}, respectively, and the $r \times m$-matrix $T(\cdot)$ and vector $h(\cdot) \in \mathbb{R}^{r}$ are affine functions of ξ.

Idea: Introduce a recourse variable $y \in \mathbb{R}^{\bar{m}}$, recourse costs $q(\cdot) \in \mathbb{R}^{\bar{m}}$ as affine function of ξ, a fixed recourse $r \times \bar{m}$-matrix W, a polyhedral cone $Y \subseteq \mathbb{R}^{\bar{m}}$, and solve the second-stage or recourse program

$$
\min \{\langle q(\xi), y\rangle: y \in Y, W y=h(\xi)-T(\xi) x\}
$$

Define the optimal recourse costs
$Q(x, \xi):=\Phi(q(\xi), h(\xi)-T(\xi) x)=\inf \{\langle q(\xi), y\rangle: y \in Y, W y=h(\xi)-T(\xi) x\}$ and add the expected recourse costs $\mathbb{E}[Q(x, \xi)]$ (depending on the first-stage decision x) to the original objective and consider the two-stage program

$$
\min \{\langle c, x\rangle+\mathbb{E}[Q(x, \xi)]: x \in X\} .
$$

Structural properties of two-stage models

We consider the infimum function $\Phi(\cdot, \cdot)$ of the parametrized linear (secondstage) program, namely,

$$
\begin{aligned}
\Phi(u, t) & =\inf \{\langle u, y\rangle: W y=t, y \in Y\} \quad\left((u, t) \in \mathbb{R}^{\bar{m}} \times \mathbb{R}^{r}\right) \\
& =\sup \left\{\langle t, z\rangle: W^{\top} z-u \in Y^{*}\right\} \quad((u, t) \in \mathcal{D} \times W(Y)) \\
\mathcal{D} & =\left\{u \in \mathbb{R}^{\bar{m}}:\left\{z \in \mathbb{R}^{r}: W^{\top} z-u \in Y^{*}\right\} \neq \emptyset\right\}
\end{aligned}
$$

where W^{\top} denotes the transposed of the recourse matrix W and Y^{\star} the polar cone of Y and we used linear programming duality.

Theorem: (Walkup-Wets 69)
The function $\Phi(\cdot, \cdot)$ is finite and continuous on the polyhedral cone $\mathcal{D} \times W(Y)$. Furthermore, the function $\Phi(u, \cdot)$ is piecewise linear convex on $W(Y)$ for fixed $u \in \mathcal{D}$, and $\Phi(\cdot, t)$ is piecewise linear concave on \mathcal{D} for fixed $t \in W(Y)$. There exists a decompostion of $\mathcal{D} \times W(Y)$ into polyhedral cones $\mathcal{K}_{j}, j=$ $1, \ldots, \ell$, and $\bar{m} \times r$ matrices C_{j} such that

$$
\Phi(u, t)=\max _{j=1, \ldots, \ell}\left\langle C_{j} u, t\right\rangle .
$$

Assumptions:

(A1) relatively complete recourse: for any $(\xi, x) \in \Xi \times X$,

$$
h(\xi)-T(\xi) x \in W(Y)
$$

(A2) dual feasibility: $q(\xi) \in \mathcal{D}$ holds for all $\xi \in \Xi$.
(A3) finite second order moment: $\int_{\Xi}\|\xi\|^{2} P(d \xi)<\infty$.
Note that (A1) is satisfied if $W(Y)=\mathbb{R}^{d}$ (complete recourse). In general, (A1) and (A2) impose a condition on the support of P.

Proposition: (Wets 74)

Assume (A1) and (A2). Then the deterministic equivalent of the two-stage model represents a convex program (with linear constraints) if the integrals $\int_{\Xi} \Phi(q(\xi), h(\xi)-T(\xi) x) P(d \xi)$ are finite for all $x \in X$. For the latter it suffices to assume (A3).
An element $x \in X$ minimizes the convex two-stage program if and only if

$$
\begin{gathered}
0 \in \int_{\Xi} \partial Q(x, \xi) P(d \xi)+N_{X}(x), \\
\partial Q(x, \xi)=c-T(\xi)^{\top} \arg \max _{z \in \mathbb{R}^{r}, W^{\top} z-q(\xi) \in Y^{\star}}\langle z, h(\xi)-T(\xi) x\rangle .
\end{gathered}
$$

Complexity of two-stage stochastic programs

The two papers Dyer-Stougie 06, Hanasusanto-Kuhn-Wiesemann 16 consider the following second-stage optimal value function
$Q(\alpha, \beta, \xi)=\max \left\{\xi^{\top} y-\beta z: y \leq \alpha z, y \in \mathbb{R}_{+}^{d}, z \in[0,1]\right\}=\max \left\{\xi^{\top} \alpha-\beta, 0\right\}$, where $\alpha \in \mathbb{R}_{+}^{d}$ and $\beta \in \mathbb{R}_{+}$are parameters and the random vector ξ is uniformly distributed in $[0,1]^{d}$. Starting with the identity

$$
\max \{\gamma-\beta, 0\}=\gamma-\int_{0}^{\beta} \mathbf{1}_{\{\gamma \geq t\}} d t
$$

we find for the expected recourse function

$$
\begin{aligned}
\mathbb{E}[Q(\alpha, \beta, \xi)] & =\mathbb{E}\left[\alpha^{\top} \xi\right]-\int_{0}^{\beta} \mathbb{E}\left[\mathbb{1}_{\left\{\alpha^{\top} \xi \geq t\right\}}\right] d t \\
& =\frac{1}{2} \alpha^{\top} e-\beta+\int_{0}^{\beta} \operatorname{Vol} P(\alpha, t) d t \\
\frac{\partial \mathbb{E}[Q(\alpha, \beta, \xi)]}{\partial \beta} & =\operatorname{Vol} P(\alpha, \beta)-1,
\end{aligned}
$$

where $P(\alpha, \beta)=\left\{z \in[0,1]^{d}: \alpha^{\top} z \leq \beta\right\}$ is the knapsack polytope and $e=(1, \ldots, 1)^{\top} \in \mathbb{R}^{d}$.

Theorem: (Hanasusanto-Kuhn-Wiesemann 16)
For any pair $(\alpha, \beta) \in \mathbb{R}_{+}^{d+1}$ there exists $\varepsilon(d, \alpha)>0$ such that the computation of $\mathbb{E}[Q(\alpha, \beta, \xi)]$ within an absolute accuracy of $\varepsilon<\varepsilon(d, \alpha)$ is at least as hard as computing the volume $\operatorname{Vol} P(\alpha, \beta)$ of the knapsack polytope.
The computation of the latter is \#P-hard (Dyer-Frieze 88).

Note that for any $\alpha \in \mathbb{R}^{d} \backslash\{0\}$ the constant $\varepsilon(d, \alpha)$ tends to 0 exponentially with respect to the dimension d.

The complexity class \#P contains the counting problems associated with the decision problems in the complexity class NP. A counting problem is in \#P if the items to be counted can be validated as such in polynomial time. A \#P problem is at least as difficult as the corresponding NP problem.
It is therefore commonly believed that \#P-hard problems do not admit polynomial-time solution methods.

Note also that the function

$$
f(\xi)=\max \left\{\xi^{\top} \alpha-\beta, 0\right\} \quad\left(\xi \in[0,1]^{d}\right)
$$

is not of bounded variation in the sense of Hardy and Krause if $d>2$ (Owen 05) and does not have mixed Sobolev derivatives on $[0,1]^{d}$.

But, both properties are particularly relevant for the application of Quasi-Monte Carlo methods for numerical integration.

For general linear two-stage stochastic programs, the second-stage optimal value function $\Phi(q(\cdot), h(\cdot)-T(\cdot) x)$ is continuous and piecewise linear-quadratic on Ξ if (A1) and (A2) is satisfied. It holds

$$
\Phi(q(\xi), h(\xi)-T(\xi) x)=\max _{j=1, \ldots, \ell}\left(C_{j} q(\xi)\right)^{\top}(h(\xi)-T(\xi) x) \quad((x, \xi) \in X \times \Xi),
$$

for some $\ell \in \mathbb{N}$ and $r \times \bar{m}$-matrices $C_{j}, j=1, \ldots, \ell$. The latter correspond to some decomposition of $\mathcal{D} \times W(Y)$ into ℓ polyhedral cones.

Discrete approximations of two-stage models

Replace the (original) probability measure P by measures P_{n} having (finite) discrete support $\left\{\xi_{1}, \ldots, \xi_{n}\right\} \quad(n \in \mathbb{N})$, i.e.,

$$
P_{n}=\sum_{i=1}^{n} w_{i} \delta_{\xi_{i}},
$$

and insert it into the infinite-dimensional stochastic program:

$$
\begin{aligned}
\min \left\{\langle c, x\rangle+\sum_{i=1}^{n} w_{i}\left\langle q\left(\xi_{i}\right), y_{i}\right\rangle: x \in X, y_{i}\right. & \in Y, i=1, \ldots, n, \\
W y_{1} & \\
& \\
W y_{2} & \\
& \ddots
\end{aligned} \quad+T\left(\xi_{1}\right) x=h\left(\xi_{2}\right) x=h\left(\xi_{2}\right)
$$

Hence, we arrive at an (often) large scale block-structured linear program which is solvable in polynomial time and allows for specific decomposition methods. (Ruszczyński-Shapiro 2003, Kall-Mayer 2005 (2010))

Complexity of numerical integration

Each absolutely continuous probability distribution on \mathbb{R}^{d} can be transformed into the uniform distribution on $[0,1]^{d}$ (Rosenblatt 52).
Hence, we may consider the approximate computation of

$$
I_{d}(f)=\int_{[0,1]^{d}} f(\xi) d \xi
$$

by a linear numerical integration or quadrature method of the form

$$
Q_{n}(f)=\sum_{i=1}^{n} w_{i} f\left(\xi^{i}\right)
$$

with points $\xi^{i} \in[0,1]^{d}$ and weights $w_{i} \in \mathbb{R}, i=1, \ldots, n$.
We assume that f belongs to a linear normed space \mathbb{F}_{d} of functions on $[0,1]^{d}$ with norm $\|\cdot\|_{d}$ and unit ball $\mathbb{B}_{d}=\left\{f \in \mathbb{F}_{d}:\|f\|_{d} \leq 1\right\}$ such that I_{d} and Q_{n} are linear bounded functionals on \mathbb{F}_{d}.

Worst-case error of Q_{n} over \mathbb{B}_{d} and minimal error are given by:

$$
e\left(Q_{n}\right)=\sup _{f \in \mathbb{B}_{d}}\left|I_{d}(f)-Q_{n}(f)\right| \quad \text { and } \quad e\left(n, \mathbb{B}_{d}\right)=\inf _{Q_{n}} e\left(Q_{n}\right) .
$$

It is known that due to the convexity and symmetry of \mathbb{B}_{d} linear algorithms are optimal among nonlinear and adaptive ones (Bakhvalov 71, Novak 88).

The information complexity $n\left(\varepsilon, \mathbb{B}_{d}\right)$ is the minimal number of function values which is needed that the worst-case error is at most ε, i.e.,

$$
n\left(\varepsilon, \mathbb{B}_{d}\right)=\min \left\{n: \exists Q_{n} \text { such that } e\left(Q_{n}\right) \leq \varepsilon\right\}
$$

Of course, the behavior of $n\left(\varepsilon, \mathbb{B}_{d}\right)$ as function of (ε, d) depends heavily on \mathbb{F}_{d}.

Numerical integration is said to be polynomially tractable if there exist constants $C>0 q \geq 0, p>0$ such that

$$
n\left(\varepsilon, \mathbb{B}_{d}\right) \leq C d^{q} \varepsilon^{-p}
$$

be strongly polynomially tractable if there exist constants $C>0, p>0$ such that

$$
n\left(\varepsilon, \mathbb{B}_{d}\right) \leq C \varepsilon^{-p},
$$

have the curse of dimension if there exist $c>0, \varepsilon_{0}>0$ and $\gamma>0$ such that

$$
n\left(\varepsilon, \mathbb{B}_{d}\right) \geq c(1+\gamma)^{d} \text { for all } \varepsilon \leq \varepsilon_{0} \text { and for infinitely many } d \in \mathbb{N} .
$$

Randomized algorithms:

A randomized quadrature algorithm is denoted by $(Q(\omega))_{\omega \in \Omega}$ and considered on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.. We assume that $Q(\omega)$ is a quadrature algorithm for each ω and that it depends on ω in a measurable way. Let $n(f, \omega)$ denote the number of evaluations of $f \in \mathbb{F}_{d}$ needed to perform $Q(\omega) f$. The number

$$
n(Q)=\sup _{f \in \mathbb{B}_{d}} \int_{\Omega} n(f, \omega) \mathbb{P}(d \omega)
$$

is called the cardinality of the randomized algorithm Q and

$$
e^{\mathrm{ran}}(Q)=\sup _{f \in \mathbb{B}_{d}}\left(\int_{\Omega}\left|I_{d} f-Q(\omega) f\right|^{2} \mathbb{P}(d \omega)\right)^{\frac{1}{2}}
$$

the error of Q. The minimal error of randomized algorithms is

$$
e^{\mathrm{ran}}\left(n, \mathbb{B}_{d}\right)=\inf \left\{e^{\mathrm{ran}}(Q): n(Q) \leq n\right\} .
$$

By construction it is clear that $e^{\mathrm{ran}}\left(n, \mathbb{B}_{d}\right) \leq e\left(n, \mathbb{B}_{d}\right)$ holds.
Standard Monte Carlo (MC) method Q based on n i.i.d. samples: (Mathé 95)

$$
e^{\mathrm{ran}}(Q)=(1+\sqrt{n})^{-1} \leq n^{-\frac{1}{2}}
$$

if \mathbb{B}_{d} is the unit ball of $\mathbb{F}_{d}=L_{p}\left([0,1]^{d}\right)$ for $2 \leq p<\infty$.

Example:

Consider the Banach space $\mathbb{F}_{d}=C^{r}\left([0,1]^{d}\right)(r \in \mathbb{N})$ with the norm

$$
\|f\|_{r, d}=\max _{|\alpha| \leq r}\left\|D^{\alpha} f\right\|_{\infty},
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ and $D^{\alpha} f$ denotes the mixed partial derivative of order $|\alpha|=\sum_{i=1}^{d} \alpha_{i}$, i.e.,

$$
D^{\alpha} f(\xi)=\frac{\partial^{|\alpha|} f}{\partial \xi_{1}^{\alpha_{1}} \cdots \partial \xi_{d}^{\alpha_{d}}}(\xi)
$$

It is long known (Bakhvalov 59) that there exist constants $C_{r, d}, c_{r, d}>0$ such that

$$
c_{r, d} n^{-\frac{r}{d}} \leq e\left(n, \mathbb{B}_{d}\right) \leq C_{r, d} n^{-\frac{r}{d}} .
$$

But, surprisingly it was shown only recently that the numerical integration on $C^{r}\left([0,1]^{d}\right)$ suffers from the curse of dimension (Hinrichs-Novak-Ullrich-Woźniakowski 14).

For the tensor product mixed Sobolev space

$$
W_{2, \text { mix }}^{(r, \ldots, r)}\left([0,1]^{d}\right)=\left\{f:[0,1]^{d} \rightarrow \mathbb{R}: D^{\alpha} f \in L_{2}\left([0,1]^{d}\right) \text { if }\|\alpha\|_{\infty} \leq r\right\}
$$

it is known that $e\left(n, \mathbb{B}_{d}\right)=O\left(n^{-r}(\log n)^{\frac{(d-1)}{2}}\right)$ (Frolov 76, Bykovskii 85).

We consider the linear space $W_{2, \gamma}^{1}([0,1])$ of all absolutely continuous functions on $[0,1]$ with derivatives belonging to $L_{2}([0,1])$ and the weighted inner product

$$
\langle f, g\rangle_{\gamma}=\int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x+\frac{1}{\gamma} \int_{0}^{1} f^{\prime}(x) g^{\prime}(x) d x
$$

Then the weighted tensor product mixed Sobolev space

$$
\underset{2, \gamma, \text { mix }}{\text { inner product }} W_{j=1}^{(1, \ldots, 1)}\left([0,1]^{d}\right)=\bigotimes_{2, \gamma_{j}}^{d} W_{2}^{1}([0,1])
$$

is equipped with the inner product

$$
\langle g, \tilde{g}\rangle_{\gamma}=\sum_{u \subseteq \mathcal{A}} \gamma_{u}^{-1} \int_{[0,1]^{|u|}}\left(\int_{[0,1]^{d-|u|}} \frac{\partial^{|u|}}{\partial t^{u}} g(t) d t^{-u}\right)\left(\int_{[0,1]^{d-|u|}} \frac{\partial^{|u|}}{\partial t^{u}} \tilde{g}(t) d t^{-u}\right) d t^{u}
$$

where $\mathfrak{D}=\{1, \ldots, d\}$, the weights γ_{i} are positive and γ_{u} is given in product form $\gamma_{u}=\prod_{i \in u} \gamma_{i}$ for $u \subseteq \mathfrak{D}$, where $\gamma_{\emptyset}=1$. For $u \subseteq \mathfrak{D}$ we use the notation $|u|$ for its cardinality, $-u$ for $\mathfrak{D} \backslash u$ and t^{u} for the $|u|$-dimensional vector with components t_{j} for $j \in u$.
Theorem: (Sloan-Woźniakowski 98, Sloan-Wang-Woźniakowski 04)
Numerical integration is strongly polynomially tractable on $W_{2, \gamma, \text { mix }}^{(1, \ldots, 1)}\left([0,1]^{d}\right)$ if

$$
\sum_{j=1}^{\infty} \gamma_{j}<\infty
$$

Monte Carlo sampling

Monte Carlo methods are based on drawing independent identically distributed (i.i.d.) Ξ-valued random samples $\xi^{1}(\cdot), \ldots, \xi^{n}(\cdot), \ldots$ (defined on some probability space $(\Omega, \mathcal{A}, \mathbb{P}))$ from an underlying probability distribution P (on Ξ) such that

$$
Q_{n}(\omega)(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}(\omega)\right),
$$

i.e., $Q_{n}(\cdot)$ is a random functional, and it holds

$$
\lim _{n \rightarrow \infty} Q_{n}(\omega)(f)=\int_{\Xi} f(\xi) P(d \xi)=\mathbb{E}(f) \quad \mathbb{P} \text {-almost surely }
$$

for every real continuous and bounded function f on Ξ.
If P has a finite moment of order $r \geq 1$, the error estimate

$$
\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}(\omega)\right)-\mathbb{E}(f)\right|^{r}\right] \leq \frac{\mathbb{E}\left[(f-\mathbb{E}(f))^{r}\right]}{n^{r-1}}
$$

is valid.

Hence, the mean square convergence rate is

$$
\left\|Q_{n}(\omega)(f)-\mathbb{E}(f)\right\|_{L_{2}}=\sigma(f) n^{-\frac{1}{2}}
$$

where $\sigma^{2}(f)=\mathbb{E}\left[(f-\mathbb{E}(f))^{2}\right]$ is assumed to be finite.
Advantages:
(i) MC sampling works for (almost) all integrands.
(ii) The machinery of probability theory is available.
(iii) The convergence rate does not depend on d.

Deficiencies: (Niederreiter 92)
(i) There exist 'only' probabilistic error bounds.
(ii) Possible regularity of the integrand does not improve the rate.
(iii) Generating (independent) random samples is difficult.

Practically, iid samples are approximately obtained by pseudo random number generators as uniform samples in $[0,1]^{d}$ and later transformed to more general sets Ξ and distributions P.

Good pseudo random number generator: Mersenne Twister (Matsumoto-Nishimura 98)

Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to use deterministic points that are (in some way) uniformly distributed in $[0,1]^{d}$ and to consider the approximate computation of

$$
I_{d}(f)=\int_{[0,1]^{d}} f(\xi) d \xi
$$

by a QMC algorithm with (non-random) points $\xi^{i}, i=1, \ldots, n$, from $[0,1]^{d}$:

$$
Q_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right)
$$

The uniform distribution property of point sets may be defined in terms of the so-called L_{p}-discrepancy of ξ^{1}, \ldots, ξ^{n} for $1 \leq p \leq \infty$
$d_{p, n}\left(\xi^{1}, \ldots, \xi^{n}\right)=\left(\int_{[0,1]^{d}}|\operatorname{disc}(\xi)|^{p} d \xi\right)^{\frac{1}{p}}, \quad \operatorname{disc}(\xi):=\prod_{j=1}^{d} \xi_{j}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[0, \xi)}\left(\xi^{i}\right)$.
There exist sequences $\left(\xi^{i}\right)$ in $[0,1]^{d}$ such that for all $\delta \in\left(0, \frac{1}{2}\right]$

$$
d_{\infty, n}\left(\xi^{1}, \ldots, \xi^{n}\right)=O\left(n^{-1}(\log n)^{d}\right) \quad \text { or } \quad d_{\infty, n}\left(\xi^{1}, \ldots, \xi^{n}\right) \leq C(d, \delta) n^{-1+\delta} .
$$

Randomly shifted lattice rules

We consider the randomized Quasi-Monte Carlo method

$$
Q_{n}(\omega)(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\left\{\frac{(i-1)}{n} g+\triangle(\omega)\right\}\right)
$$

where \triangle is a random vector with uniform distribution on $[0,1]^{d}$.

Theorem:

Let n be prime, \mathbb{B}_{d} be the unit ball in $\mathcal{W}_{2, \gamma, \text { mix }}^{(1, \ldots, 1)}\left([0,1]^{d}\right)$. Then $g \in \mathbb{Z}^{d}$ can be constructed component-by-component such that for any $\delta \in\left(0, \frac{1}{2}\right]$ there exists a constant $C(\delta)>0$ and the randomized minimal error allows the estimate

$$
e^{\mathrm{ran}}\left(Q_{n}, \mathbb{B}_{d}\right) \leq C(\delta) n^{-1+\delta}
$$

where the constant $C(\delta)$ increases when δ decreases, but does not depend on the dimension d if the sequence $\left(\gamma_{j}\right)$ satisfies the condition

$$
\sum_{j=1}^{\infty} \gamma_{j}^{\frac{1}{2(1-\delta)}}<\infty \quad\left(\text { e.g. } \gamma_{j}=\frac{1}{j^{3}}\right)
$$

(Sloan-Kuo-Joe 02, Kuo 03, Nuyens-Cools 06)

ANOVA decomposition and effective dimension

We consider a multivariate function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and intend to compute the mean of $f(\xi)$, i.e.

$$
\mathbb{E}[f(\xi)]=I_{d, \rho}(f)=\int_{\mathbb{R}^{d}} f\left(\xi_{1}, \ldots, \xi_{d}\right) \rho\left(\xi_{1}, \ldots, \xi_{d}\right) d \xi_{1} \cdots d \xi_{d}
$$

where ξ is a d-dimensional random vector with density

$$
\rho(\xi)=\prod_{k=1}^{d} \rho_{k}\left(\xi_{k}\right) \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

We are interested in a representation of f consisting of 2^{d} terms

$$
f(\xi)=f_{0}+\sum_{i=1}^{d} f_{i}\left(\xi_{i}\right)+\sum_{\substack{i, j=1 \\ i<j}}^{d} f_{i j}\left(\xi_{i}, \xi_{j}\right)+\cdots+f_{12 \cdots d}\left(\xi_{1}, \ldots, \xi_{d}\right)
$$

The previous representation can be more compactly written as

$$
(*) \quad f(\xi)=\sum_{u \subseteq \mathfrak{D}} f_{u}\left(\xi^{u}\right),
$$

where $\mathfrak{D}=\{1, \ldots, d\}$ and ξ^{u} contains only the components ξ_{j} with $j \in u$ and belongs to $\mathbb{R}^{|u|}$. Here, $|u|$ denotes the cardinality of u.

Next we make use of the space $L_{2, \rho}\left(\mathbb{R}^{d}\right)$ of all square integrable functions with inner product

$$
\langle f, \tilde{f}\rangle_{\rho}=\int_{\mathbb{R}^{d}} f(\xi) \tilde{f}(\xi) \rho(\xi) d \xi
$$

A representation of the form $(*)$ of $f \in L_{2, \rho}\left(\mathbb{R}^{d}\right)$ is called ANOVA decomposition of f if

$$
\int_{\mathbb{R}} f_{u}\left(\xi^{u}\right) \rho_{k}\left(\xi_{k}\right) d \xi_{k}=0 \quad(\text { for all } k \in u \text { and } u \subseteq \mathfrak{D})
$$

The ANOVA terms $f_{u}, \emptyset \neq u \subseteq \mathfrak{D}$, are orthogonal in $L_{2, \rho}\left(\mathbb{R}^{d}\right)$, i.e.

$$
\left\langle f_{u}, f_{v}\right\rangle_{\rho}=\int_{\mathbb{R}^{d}} f_{u}(\xi) f_{v}(\xi) \rho(\xi) d \xi=0 \quad \text { if and only if } \quad u \neq v
$$

The ANOVA terms f_{u} allow a representation in terms of (so-called) (ANOVA) projections, i.e.

$$
\left(P_{k} f\right)(\xi)=\int_{-\infty}^{\infty} f\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \rho_{k}(s) d s\left(\xi \in \mathbb{R}^{d} ; k \in \mathfrak{D}\right)
$$

and

$$
P_{u} f=\left(\prod_{k \in u} P_{k}\right)(f) \quad(u \subseteq \mathfrak{D}) .
$$

Then it holds (Kuo-Sloan-Wasilkowski-Woźniakowski 10):

$$
f_{u}=\left(\prod_{j \in u}\left(I-P_{j}\right)\right) P_{-u}(f)=P_{-u}(f)+\sum_{v \subsetneq u}(-1)^{|u|-|v|} P_{-v}(f),
$$

Consider the variances of f and f_{u}

$$
\sigma^{2}(f)=\left\|f-I_{d, \rho}(f)\right\|_{2, \rho}^{2} \quad \text { und } \quad \sigma_{u}^{2}(f)=\left\|f_{u}\right\|_{2, \rho}^{2}
$$

and obtain

$$
\sigma^{2}(f)=\|f\|_{L_{2}}^{2}-\left(I_{d, \rho}(f)\right)^{2}=\sum_{\emptyset \neq u \subseteq \mathfrak{D}} \sigma_{u}^{2}(f) .
$$

For small $\varepsilon \in(0,1)$ (e.g. $\varepsilon=0.01$)

$$
d_{S}(\varepsilon)=\min \left\{s \in \mathfrak{D}: \sum_{|u| \leq s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \geq 1-\varepsilon\right\}
$$

is called effective (superposition) dimension of f and it holds

$$
(+) \quad\left\|f-\sum_{|u| \leq d_{S}(\varepsilon)} f_{u}\right\|_{2, \rho} \leq \sqrt{\varepsilon} \sigma(f)
$$

i.e., the function f is approximated by a truncated ANOVA decomposition which contains all ANOVA terms f_{u} such that $|u| \leq d_{S}(\varepsilon)$. If f is nonsmooth and the ANOVA terms f_{u}, $|u| \leq d_{S}(\varepsilon)$, are smoother than f, the estimate $(+)$ means an approximate smoothing of f.

ANOVA decomposition of two-stage integrands

Assumptions: (A1) and (A2)
(A3) P has fourth order absolute moments.
(A4) P has a density of the form $\rho(\xi)=\prod_{i=1}^{d} \rho_{i}\left(\xi_{i}\right)\left(\xi \in \mathbb{R}^{d}\right)$ with continuous marginal densities $\rho_{i}, i \in \mathfrak{D}$.
(A5) For each $x \in X$ all common faces of adjacent convex polyhedral sets

$$
\Xi_{j}(x)=\left\{\xi \in \Xi:(q(\xi), h(\xi)-T(\xi) x) \in \mathcal{K}_{j}\right\} \quad(j=1, \ldots, \ell)
$$

do not parallel any coordinate axis, where the polyhedral cones \mathcal{K}_{j}, $j=1, \ldots, \ell$, decompose dom $\Phi=\mathcal{D} \times W(Y)$ (geometric condition).

Theorem: Let $x \in X$, assume (A1)-(A5) and $f=f(x, \cdot)$ be the two-stage integrand. Then the second order truncated ANOVA decomposition of f

$$
f^{(2)}:=\sum_{|u| \leq 2} f_{u} \quad \text { where } \quad f=f^{(2)}+\sum_{|u|=3}^{d} f_{u}
$$

belongs to $W_{2, \rho, \text { mix }}^{(1, \ldots, 1)}\left(\mathbb{R}^{d}\right)$ if all marginal densities $\rho_{k}, k \in \mathfrak{D}$, belong to $C^{1}(\mathbb{R})$.
Remark: The second order truncated ANOVA decomposition $f^{(2)}$ is a good approximation of f if the effective superposition dimension $d_{S}(\varepsilon)$ is at most 2 .

Conclusions

- The approximate computation of the objective of linear two-stage stochastic programs with fixed recourse with a sufficiently high accuracy is \#P-hard.
- The numerical integration on weighted tensor product mixed Sobolev spaces on $[0,1]^{d}$ is strongly polynomially tractable if the weights satisfy a suitable condition.
- Randomly shifted lattice rules attain the optimal order of convergence on such spaces if the weights satisfy a slightly stronger condition. Hence, such methods are superior to Monte Carlo methods and reduce the sample sizes from n to almost \sqrt{n}.
- The second order ANOVA decomposition of two-stage integrands belongs to a mixed Sobolev space on \mathbb{R}^{d} if the marginal densities are in C^{1} and represent a good $L_{2, \rho}\left(\mathbb{R}^{d}\right)$ approximation if the effective superposition dimension $d_{S}(\varepsilon)$ of the integrands is at most two. It is conjectured that this result extends to higher effective dimensions.

References:

M. Dyer and L. Stougie: Computational complexity of stochastic programming problems, Mathematical Programming 106 (2006), 423-432.
J. Dick, F. Y. Kuo and I. H. Sloan: High-dimensional integration - the Quasi-Monte Carlo way, Acta Numerica 22 (2013), 133-288.
G. A. Hanasusanto, D. Kuhn and W. Wiesemann: A comment on "computational complexity of stochastic programming problems", Mathematical Programming 159 (2016), 557-569.
A. Hinrichs, E. Novak, M. Ullrich and H. Woźniakowski: The curse of dimensionality for numerical integration of smooth functions, Mathematics of Computation 83 (2014), 2853-2863.
F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, Journal of Complexity 19 (2003), 301-320.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, Mathematics of Computation 79 (2010), 953-966.
H. Leövey and W. Römisch: Quasi-Monte Carlo methods for linear two-stage stochastic programming problems, Mathematical Programming 151 (2015), 315-345.
E. Novak: Some results on the complexity of numerical integration, in Monte Carlo and Quasi-Monte Carlo Methods (R. Cools and D. Nuyens eds.), Springer, 2016.
A. B. Owen: The dimension distribution and quadrature test functions, Statistica Sinica 13 (2003), 1-17.
A. Ruszczyński and A. Shapiro (Eds.): Stochastic Programming, Handbooks in Operations Research and Management Science, Volume 10, Elsevier, Amsterdam 2003.
I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for high-dimensional integration, Journal of Complexity 14 (1998), 1-33.
I. H. Sloan, F. Y. Kuo and S. Joe: Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM Journal Numerical Analysis 40 (2002), 1650-1665.

