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Abstract. Two-stage stochastic programs with random right-hand side are considered. Optimal
values and solution sets are regarded as mappings of the expected recourse functions and their
perturbations, respectively. Conditions are identified implying that these mappings are directionally
differentiable and semidifferentiable on appropriate functional spaces. Explicit formulas for the
derivatives are derived. Special attention is paid to the role of a Lipschitz condition for solution
sets as well as of a quadratic growth condition of the objective function.
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1. Introduction. Two-stage stochastic programming is concerned with prob-
lems that require a here-and-now decision on the basis of given probabilistic infor-
mation on the random data without making further observations. The costs to be
minimized consist of the direct costs of the here-and-now (or first-stage) decision as
well as the costs generated by the need of taking a recourse (or second-stage) deci-
sion in response to the random environment. Recourse costs are often formulated by
means of expected values with respect to the probability distribution of the involved
random data. In this way, two-stage models and their solutions depend on the under-
lying probability distribution. Since this distribution is often incompletely known in
applied models, or it has to be approximated for computational purposes, the stability
behavior of stochastic programming models when changing the probability measure
is important. This problem is studied in a number of papers. We mention here only
the surveys [13], [40] and the papers [1], [12], [18], [26], [27], [34], and [35]. The
paper [1] contains general results on continuity properties of optimal values and solu-
tions when perturbing the probability measures with respect to the topology of weak
convergence. Quantitative continuity results of solution sets to two-stage stochastic
programs with respect to suitable distances of probability measures are obtained in
[26] and [27]. Asymptotic properties of statistical estimators of values and solutions
to stochastic programs are derived in [18], [34], [35]. They are based on directional
differentiability properties of the underlying optimization problems with respect to
the parameter that carries the randomness [18], [35] or the probability measure [34].
These directional differentiability results for values [35] and solutions [13], [18], [34]
lead to asymptotic results via the so-called delta-method. For a description of the
delta-method we refer to Chapter 6 in [28], [35], to [36] for an up-to-date presenta-
tion, and to [16] for a set-valued variant. These papers illuminate the importance
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88 DARINKA DENTCHEVA AND WERNER RÖMISCH

of the Hadamard directional differentiability (for single-valued functions) and of the
semidifferentiability (for set-valued mappings) in the context of asymptotic statistics.

The present paper aims at contributing to this line of differential stability stud-
ies. The results in [18], [34] apply to fairly general stochastic optimization models
but impose conditions that are rather restrictive in our context. The present paper
deals with special two-stage models and, using structural properties, avoids certain
assumptions that complicate or even prevent the applicability of the general results
to two-stage stochastic programs. Such assumptions are the (local) uniqueness of
solutions and differentiability properties of perturbed problems, which are indispens-
able in [18], [34]. Before discussing this in more detail, let us introduce the class of
two-stage stochastic programs we want to consider:

min{g(x) +Qµ(Ax) : x ∈ C},(1.1)

where g : R
m → R is a convex function, C ⊆ R

m is a nonempty closed convex set,
A is an (s,m)-matrix, and Qµ is the expected recourse function with respect to the
(Borel) probability measure µ on R

s;

Qµ(y) =

∫
Rs

Q̃(ω − y)µ(dω),(1.2)

Q̃(t) = inf{〈q, u〉 : Wu = t, u ≥ 0}, t ∈ R
s.(1.3)

Here q ∈ R
m̄ are the recourse costs, W is an (s, m̄)-matrix and called the recourse

matrix, and Q̃(ω−Ax) corresponds to the value of the optimal second-stage decision
for compensating a possible violation of the (random) constraint Ax = ω. To have
the problem (1.1)–(1.3) well defined, we assume

(A1) posW = {Wu : u ∈ R
m̄
+} = R

s (complete recourse),

(A2) MD = {t ∈ R
s : WT t ≤ q} �= ∅ (dual feasibility),

(A3)

∫
Rs

‖ω‖µ(dω) < ∞ (finite first moment).

The assumptions (A1) and (A2) imply that Q̃ is finite, convex, and polyhedral
on R

s. Due to (A3), Qµ is also finite and convex on R
s (cf. [15], [39]). Observe that,

in general, an expected recourse function Qµ may be nondifferentiable on a certain
union of hyperplanes in R

s and that, indeed, differentiability properties of Qµ depend
on the degree of smoothness induced by the measure µ (cf. [15], [21], [38], [39], and
Remark 4.10). Another observation is that the uniqueness of solutions to (1.1) is
guaranteed only if the constraint set C picks just one element from the relevant level
set of g(·) +Qµ(A ·). As the next example shows, this set may be large since Qµ(A ·)
is constant on translates of the null space of the matrix A.

Example 1.1. In (1.1)–(1.3), let m = 3, n = 2, g(x) = 1
4 (x2 − x3), C = [0, 1

2 ]
3 ,

A =
(

1 0 −1
1 −1 0

)
, q = (1, 1, 1, 1) , W =

(
1 0 −1 0
0 1 0 −1

)
, and µ be the uniform distribution

on the square [− 1
2 ,

1
2 ]

2 in R
2.

Then we have Q̃(t) = |t1|+|t2| and Qµ(y) = y2
1+y2

2+
1
2 for y = (y1, y2) ∈ [− 1

2 ,
1
2 ]

2.
The optimization problem (1.1) and its solution set ψ(Qµ) take the form

min

{
1

4
(x2 − x3) + (x1 − x3)

2 + (x1 − x2)
2 +

1

2
: (x1, x2, x3) ∈

[
0,

1

2

]3
}

,
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 89

ψ(Qµ) =

{(
1

8
+ u, u,

1

4
+ u

)
: u ∈

[
0,

1

4

]}
=

{(
1

8
, 0,

1

4

)
+ kerA

}
∩ C,

where kerA = {(u, u, u) : u ∈ R} is the null space of A.
Proposition 2.1 below provides some more insight into the structure of the solution

set to (1.1) and elucidates the role of the set-valued mapping σ(y) := argmin{g(x) :
x ∈ C,Ax = y} in this respect.

Note that assumption (A1) could be relaxed by introducing the set K = {y ∈
R
s : Qµ(y) < +∞}. Then (A2) and (A3) imply that K is a closed convex polyhedron

and that Qµ is convex and continuous on K (cf. [39]). Now (A1) can be replaced by
the condition K ⊇ A(C) (relatively complete recourse), and much of the work done
in this paper carries over to this more general setting by using spaces of functions
defined on K instead of R

s.
Let KC denote the set of all convex functions on R

s which forms a convex cone
in the space C0(Rs) of all continuous functions on R

s. KC will serve as the set of
possible perturbations of the given expected recourse function Qµ ∈ KC . We define

ϕ(Q) := inf{g(x) +Q(Ax) : x ∈ C},
ψ(Q) := argmin{g(x) +Q(Ax) : x ∈ C}

and regard ϕ and ψ as mappings from KC into the extended reals and the set of all
closed convex subsets of R

m, respectively.
In this paper we develop a sensitivity analysis for the mappings ϕ and ψ at some

given function Qµ. The stochastic programming origin of the model (1.1) takes a
back seat, and our results are stated in terms of general conditions on Qµ and its
perturbations Q. We identify conditions such that the value function ϕ has first- and
second-order directional derivatives and the solution-set mapping ψ is directionally
differentiable at Qµ into admissible directions. Here, admissibility means that the
direction belongs to the radial tangent cone to KC at Qµ, i.e.,

T r(KC ;Qµ) = {λ(Q−Qµ) : Q ∈ KC , λ > 0},
ensuring that the difference quotients are well defined. For v belonging to T r(KC ;Qµ)
the Gateaux directional derivatives of ϕ and ψ at Qµ and (Qµ, x̄), x̄ ∈ ψ(Qµ), respec-
tively, are defined as

ϕ′(Qµ; v) = lim
t→0+

1

t
(ϕ(Qµ + tv)− ϕ(Qµ)),

ϕ′′(Qµ; v) = lim
t→0+

1

t2
(ϕ(Qµ + tv)− ϕ(Qµ)− tϕ′(Qµ; v)),

ψ′(Qµ, x̄; v) = lim
t→0+

1

t
(ψ(Qµ + tv)− x̄),

if the limits exist. The third limit is understood in the sense of (Painlevé–Kuratowski)
set convergence (e.g. [2]). Recall that the lower and upper set limits of a family (St)t>0

of subsets of a metric space (X, d) are defined as

lim inf
t→0+

St = {x ∈ X : lim
t→0+

d(x, St) = 0},
lim sup
t→0+

St = {x ∈ X : lim inf
t→0+

d(x, St) = 0}.

Both sets are closed and the lower set limit is contained in the upper limit. If both
limits coincide, the family (St)t>0 is said to converge and its limit set is denoted
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90 DARINKA DENTCHEVA AND WERNER RÖMISCH

by lim
t→0+

St. For sequences of sets (Sn)n∈N the definitions of set limits are modified

correspondingly.
We also derive conditions implying that the limits defining the directional deriva-

tives exist uniformly with respect to directions v belonging to compact subsets of cer-
tain functional spaces. The limits are then called (first- or second-order) Hadamard
directional derivatives and semiderivatives for set-valued maps, respectively. The cor-
responding directional derivatives are defined on tangent cones to the cone of convex
functions in certain functional spaces. For more information on concepts of directional
differentiability and multifunction differentiability we refer to [4], [33], and to [2], [3],
[23], and [25], respectively.

Let us fix some notations used throughout the paper. ‖ · ‖ and 〈·, ·〉 denote the
norm and scalar product, respectively, in some Euclidean space R

n; B(x, r) denotes
the open ball around x ∈ R

n with radius r > 0; d(x,D) denotes the distance of x ∈ R
n

to the set D ⊆ R
n; for a real-valued function f on R

n, ∇f denotes its gradient in R
n

and the (n, n)-matrix ∇2f its Hessian; if f is locally Lipschitzian near x ∈ R
n, ∂f(x)

denotes the Clarke subdifferential of f at x; f ′(x; d) denotes the directional derivative
of f at x in direction d if it exists; for x ∈ C, T (C;x) denotes the tangent cone to
C at x, i.e., T (C;x) = lim inft→0+

1
t (C − x) = cl{λ(y − x) : y ∈ C, λ > 0}, where

cl stands for closure; for x ∈ C, ξ ∈ T (C;x), T 2(C;x, ξ) denotes the second-order
tangent set to C at x in direction ξ, i.e., T 2(C;x, ξ) = lim inft→0+

1
t2 (C−x− tξ) (note

that T 2(C;x, ξ) is closed and convex; see [10], [6] for further properties).
In our paper, we use the following linear metric spaces of real-valued functions

on R
s: The space C0(Rs) of continuous functions on R

s equipped with the distance

d∞(f, f̃) =

∞∑
n=1

2−n ‖f − f̃‖∞,n

1 + ‖f − f̃‖∞,n

,

where

‖f‖∞,r = max
‖y‖≤r

|f(y)| for f, f̃ ∈ C0(Rs) and r > 0;

the space C0,1(Rs) of locally Lipschitzian functions on R
s with the metric

dL(f, f̃) =

∞∑
n=1

2−n ‖f − f̃‖∞,n + ‖f − f̃‖L,n
1 + ‖f − f̃‖∞,n + ‖f − f̃‖L,n

,

where

‖f‖L,r = sup

{ |f(y)− f(ỹ)|
‖y − ỹ‖ : ‖y‖ ≤ r, ‖ỹ‖ ≤ r, y �= ỹ

}
,

= sup{‖z‖ : z ∈ ∂f(y), ‖y‖ ≤ r} for f, f̃ ∈ C0,1(Rs) and r > 0;

the space C1(Rs) of continuously differentiable functions on R
s with the metric

d(f, f̃) = d∞(f, f̃) + d∞(∇f,∇f̃), f, f̃ ∈ C1(Rs), and the space C1,1(Rs) of func-
tions in C1(Rs) whose gradients are locally Lipschitzian on R

s equipped with the
distance d(f, f̃) = d∞(f, f̃) + d∞(∇f,∇f̃) + dL(∇f,∇f̃), f, f̃ ∈ C1,1(Rs).

The sensitivity analysis of the mappings ϕ and ψ is carried out by exploiting
structural properties of the optimization model (1.1). We obtain novel differentiability
properties of solution sets and extend our earlier results on directional differentiability
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 91

of optimal values in [12] considerably. As one might expect, the basic ingredients of
our analysis are a Lipschitz continuity result for solution sets with respect to the dis-
tance in C0,1(Rs) (Theorem 2.3) and a quadratic growth condition near solution sets
(Theorem 2.7). Both theorems extend earlier results in [27] to more general situations
for the first-stage costs g and constraint set C. All results in the paper apply to the
linear-quadratic case, i.e., to linear- or convex-quadratic g and polyhedral C. Indeed,
all results are formulated as generally as possible and most of them are accompanied
by illustrative examples. The second-order analysis of ϕ in section 3 utilizes some ideas
from [31] and [32], but its proof is entirely different and its Gateaux differentiability
part is valid for nondifferentiable directions (Theorem 3.4). It is also elaborated that
the Hadamard directional differentiability properties require the C0-topology for the
first-order result and the C1-topology for the second-order one (Theorem 3.8), while
the C1,1-topology is needed for the semidifferentiability of the solution-set mapping
ψ (Theorem 4.9). All results on differentiability properties of ψ in section 4 are new
and do not follow from recent sensitivity results (e.g., [5], [8], [7], [17], [32]; see also
the survey [8] for further references and Remark 4.4 for a more detailed discussion).

The results of sections 3 and 4 have direct implications to asymptotic properties
of values and solution sets of two-stage stochastic programs when applying (smooth)
nonparametric estimation procedures to approximate Qµ. For a discussion of some of
the related aspects we refer to the brief exposition in Remark 4.11. Further applica-
tions to asymptotics are beyond the scope of this paper and will be done elsewhere.

2. Basic directional properties. The first step in our analysis of directional
properties consists in establishing results on the lower Lipschitz continuity of ψ and
on the directional uniform quadratic growth of the objective near its solution set.
Both results become important for our method of deriving directional differentiability
properties for the optimal value function ϕ and the solution set mapping ψ at some
given expected recourse function Qµ. Their proofs are based on a decomposition of
the program

min{g(x) +Q(Ax) : x ∈ C},(2.1)

with Q belonging to KC , into two auxiliary problems. The first one is a convex
program with decisions taken from A(C), and the second represents a parametric
convex program which does not depend on Q.

Proposition 2.1. Let Q ∈ KC , and let ψ(Q) be nonempty. Then we have

ϕ(Q) = inf{π(y) +Q(y) : y ∈ A(C)} = π(Ax) +Q(Ax), for any x ∈ ψ(Q), and

ψ(Q) = σ(Y (Q)), where

Y (Q) := argmin{π(y) +Q(y) : y ∈ A(C)},
π(y) := inf{g(x) : x ∈ C,Ax = y}, and
σ(y) := argmin{g(x) : x ∈ C,Ax = y}, y ∈ A(C).

Moreover, π is convex on A(C) and dom σ is nonempty.
Proof. Let x̄ ∈ ψ(Q). Then we have

ϕ(Q) = g(x̄) +Q(Ax̄) ≥ π(Ax̄) +Q(Ax̄) ≥ inf{π(y) +Q(y) : y ∈ A(C)}.
For the converse inequality, let ε > 0 and ȳ ∈ A(C) be such that

π(ȳ) +Q(ȳ) ≤ inf{π(y) +Q(y) : y ∈ A(C)}+ ε

2
.
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92 DARINKA DENTCHEVA AND WERNER RÖMISCH

Then there exists a x̄ ∈ C such that Ax̄ = ȳ and g(x̄) ≤ π(ȳ) + ε
2 . Hence

ϕ(Q) ≤ g(x̄) +Q(Ax̄) ≤ π(ȳ) +Q(ȳ) +
ε

2
≤ inf{π(y) +Q(y) : y ∈ A(C)}+ ε.

Since ε > 0 is arbitrary, the first statement has been shown. In particular, x ∈ σ(Ax)
and Ax ∈ Y (Q) for any x ∈ ψ(Q) . Hence, it holds that ψ(Q) ⊆ σ(Y (Q)). Conversely,
let x ∈ σ(Y (Q)). Then x ∈ σ(y) for some y ∈ Y (Q). Thus Ax = y and g(x) = π(y) =
π(Ax), implying

g(x) +Q(Ax) = π(Ax) +Q(Ax) = inf{π(y) +Q(y) : y ∈ A(C)}
= ϕ(Q) and x ∈ ψ(Q).

Since the convexity of π is immediate, the proof is complete.
In the following, it will turn out that Lipschitzian properties of the solution set

mapping y �→ σ(y) and a quadratic growth property of g near σ(y) are essential. For
the linear-quadratic case we are in a comfortable situation in this respect. Namely,
we have the following proposition.

Proposition 2.2. Let g be linear or convex-quadratic, let C be convex polyhedral,
and assume domσ to be nonempty. Then σ is a polyhedral multifunction which is
Hausdorff Lipschitzian on its domain dom σ = A(C), i.e., there exists a constant
L > 0 such that

dH(σ(y), σ(ỹ)) ≤ L‖y − ỹ‖ for all y, ỹ ∈ A(C),

where dH denotes the (extended) Hausdorff distance on subsets of R
m.

Moreover, for each r > 0 there exists a constant η(r) > 0 such that

g(x) ≥ π(Ax) + η(r)d(x, σ(Ax))2 for all x ∈ C ∩B(0, r).

(Here π and σ are defined as in Proposition 2.1.)
Proof. The Lipschitz property of σ is shown in [19, Theorem 4.2]. To prove the

second statement, let g be of the form g(x) = 〈Hx, x〉+ 〈c, x〉, where H is symmetric
and positive semidefinite and c ∈ R

m. For each y ∈ A(C) we fix some z(y) ∈ σ(y).
An elementary characterization of solution sets to convex-quadratic programs with
linear constraints yields that

σ(y) = {x ∈ C : Ax = y,Hx = Hz(y), 〈c, x〉 = 〈c, z(y)〉}.

Due to the Lipschitz behavior of convex polyhedra (cf. [37]), there exists a constant
Lσ > 0 such that

d(x, σ(y)) ≤ Lσ(‖Hx−Hz(y)‖+ |〈c, x〉 − 〈c, z(y)〉|)

for all y ∈ A(C) and x ∈ C with Ax = y. Using the decomposition H = H
1
2H

1
2 ,

where H
1
2 denotes the square root of H, and the representation 〈c, x〉 − 〈c, z(y)〉 =

g(x)− π(y)− ‖H 1
2x‖2 + ‖H 1

2 z(y)‖2, one arrives at the estimate

d(x, σ(y)) ≤ Lσ(‖H 1
2 ‖(1 + ‖x‖+ ‖z(y)‖)‖H 1

2 (x− z(y))‖+ g(x)− π(y))

for all y ∈ A(C) and x ∈ C with Ax = y.
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 93

Now, let r > 0 and let us fix some element x̄ ∈ C ∩ B(0, r) and a correspond-
ing z(Ax̄) ∈ σ(Ax̄). For each y ∈ A(C) we now select z(y) ∈ σ(y) such that
‖z(y) − z(Ax̄)‖ = d(z(Ax̄), σ(y)). Since σ is Hausdorff Lipschitzian on A(C), this
implies ‖z(y)− z(Ax̄)‖ ≤ L‖Ax̄− y‖ for all y ∈ A(C). Hence, there exists a constant
K(r) > 0 such that ‖z(Ax)‖ ≤ K(r) for all x ∈ C∩B(0, r). Thus our estimate contin-

ues to d(x, σ(Ax))2 ≤ L̂(r)(‖H 1
2 (x−z(Ax))‖2+(g(x)−π(Ax))2) for all x ∈ C∩B(0, r)

and some constant L̂(r) > 0. Furthermore, the equation

g

(
1

2
(x+ z(y))

)
=

1

2
g(x) +

1

2
g(z(y))− 1

4
‖H 1

2 (x− z(y))‖2

implies ‖H 1
2 (x − z(y))‖2 ≤ 2(g(x) − π(y)) for all y ∈ A(C), x ∈ C, with Ax = y.

Therefore, we finally obtain

d(x, σ(Ax))2 ≤ L̂(r)(2(g(x)− π(Ax)) + (g(x)− π(Ax))2)

≤ L̂(r)max{2,K(r)}(g(x)− π(Ax))

for all x ∈ C ∩B(0, r), where K(r) := supx∈C∩B(0,r)(g(x)− π(Ax)).
Due to the above proposition, the main results in this section apply to the linear-

quadratic case. Although this case represents the main application of our results, the
assumptions of the following theorems are formulated in terms of general conditions
on the mapping σ in order to widen the range of applications. The first theorem
states (lower) Lipschitz continuity of ψ at Qµ and supplements Theorem 2.4 in [27].

Theorem 2.3. Let Qµ ∈ KC , let ψ(Qµ) be nonempty and bounded, and let Qµ

be strongly convex on some open, convex neighborhood of Aψ(Qµ). Let x̄ ∈ ψ(Qµ)
and assume that there exist a constant L > 0 and a neighborhood U of ȳ with {ȳ} =
Aψ(Qµ) such that

d(x̄, σ(y)) ≤ L‖ȳ − y‖ for all y ∈ A(C) ∩ U.

Then there exist constants L̂ > 0, δ > 0, and r > 0 such that

d(x̄, ψ(Q)) ≤ L̂‖Q−Qµ‖L,r
whenever Q ∈ KC and ‖Q−Qµ‖L,r < δ.

Proof. We may assume that U is open and convex and that Qµ is strongly convex
on U . Let V be an open, convex, bounded subset of R

m such that ψ(Qµ) ⊂ V
and A(V ) ⊂ U . It follows from Proposition 2.3 in [27] (where a slightly different
terminology is used) that there exists a constant δ > 0 such that ∅ �= ψ(Q) ⊂ V
whenever Q ∈ KC and

sup{‖z‖ : z ∈ ∂(Q−Qµ)(y), y ∈ clA(V )} < δ.

Let r > 0 be chosen such that cl A(V ) ⊂ B̄(0, r). Hence, we have ∅ �= ψ(Q) ⊂ V
whenever Q ∈ KC , ‖Q − Qµ‖L,r < δ. Then Proposition 2.1 yields the relation
ψ(Q) = σ(Y (q)), where Y (Q) = argmin{π(y) + Q(y) : y ∈ A(C)}. Since Qµ is
strongly convex on U , there exists a constant κ > 0 such that

κ‖y − ȳ‖2 ≤ π(y) +Qµ(y)− (π(ȳ) +Qµ(ȳ)) for all y ∈ U.

Let Q ∈ KC with ‖Q−Qµ‖L,r < δ, and let ỹ ∈ Y (Q). Since y belongs to A(V ) ⊂ U ,
we obtain

κ‖ỹ − ȳ‖2 ≤ π(ỹ) +Qµ(ỹ)− (π(ȳ) +Qµ(ȳ)) + π(ȳ) +Q(ȳ)− (π(ỹ) +Q(ỹ))

= (Q−Qµ)(ȳ)− (Q−Qµ)(ỹ),
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94 DARINKA DENTCHEVA AND WERNER RÖMISCH

and, hence,

‖ỹ − ȳ‖ ≤ 1

κ

(Q−Qµ)(ȳ)− (Q−Qµ)(ỹ)

‖ȳ − ỹ‖ ≤ 1

κ
‖Q−Qµ‖L,r.

The proof can now be completed as follows. LetQ ∈ KC be such that ‖Q−Qµ‖L,r < δ.
Then

d(x̄, ψ(Q)) = d(x̄, σ(Y (Q))) ≤ sup
y∈Y (Q)

d(x̄, σ(y))

≤ L sup
y∈Y (Q)

‖ȳ − y‖ ≤ L

κ
‖Q−Qµ‖L,r.

Remark 2.4. The proof shows that a Lipschitz modulus of ψ can be chosen as
the quotient of a Lipschitz constant to σ and a strong convexity constant to Qµ.

From the proof it is immediate that replacing the local Lipschitz condition on σ
by stronger conditions like

sup
x∈σ(ȳ)

d(x, σ(y)) ≤ L‖ȳ − y‖ or

dH(σ(ȳ), σ(y)) ≤ L‖ȳ − y‖ for all y ∈ A(C) ∩ U

leads to corresponding stronger Lipschitz continuity properties of solution sets. Be-
cause of Proposition 2.2, all of this applies to the linear-quadratic case. However, it is
worth mentioning that the theorem also applies to more general problems such that
the corresponding solution sets σ(y) enjoy Lipschitzian properties. Conditions ensur-
ing Lipschitz behavior of σ can be derived from stability results for the corresponding
parametric generalized equation

0 ∈ ∇L(x, λ; y) +NC×Rs(x, λ),(2.2)

which describes the first-order necessary optimality condition. Here L(x, λ; y) :=

g(x) + λT (Ax − y) is the Lagrangian function, ∇L(x, λ; y) =
(∇g(x)+ATλ

Ax−y

)
, where

g is assumed to be continuously differentiable, and NC×Rs is the normal cone map
of convex analysis. Such stability results are presently available for broad classes of
parametric generalized equations (e.g., [17], [22], [24]). A typical recent result in this
direction, which applies to our situation for twice continuously differentiable g, is
Theorem 5.1 in [22]. It says that the solution set mapping of the parametric gener-
alized equation (2.2) is pseudo-Lipschitzian around (x̄, λ̄; ȳ) if the adjoint generalized
equation

0 ∈ ∇2L(x̄, λ̄; ȳ)w∗ +D∗NC×Rs(x̄, λ̄;−∇L(x̄, λ̄; ȳ))(w∗)(2.3)

has only the trivial solution w∗ = 0.
Here D∗NC×Rs(x̄, λ̄;−∇L(x̄, λ̄; ȳ)) is the Mordukhovich coderivative [22] of the

normal cone multifunction at the point (x̄, λ̄;−∇L(x̄, λ̄; ȳ)) belonging to the graph
of NC×Rs . Translating this into our framework, we obtain that the mapping σ is
pseudo-Lipschitzian around (x̄, ȳ) if the following two conditions are satisfied.

(a) There exists an element x̂ belonging to the relative interior of C such that
Ax̂ = ȳ (Slater condition).

(b) The equations Aw∗
1 = 0 and 0 ∈ ∇2g(x̄)w∗

1 +ATw∗
2 +D∗NC(x̄, λ̄;−∇g(x̄)−

AT λ̄)(w∗
1) have only the trivial solution w∗

1 = 0, w∗
2 = 0. (Here (x̄, λ̄) is a

solution of (2.2) for y = ȳ.)
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 95

The next examples show that the theorem applies to instances of two-stage
stochastic programs with nonunique solutions and with nonpolyhedral convex con-
straint sets C.

Example 2.5. We revisit Example 1.1 and obtain with the notations of Proposition
2.1 that A(C) = [− 1

2 ,
1
2 ]

2, π(y) = 1
4 (y1−y2), Y (Qµ) = argmin{ 1

4 (y1−y2)+y2
1+y2

2+
1
2 :

y ∈ A(C)} = {(− 1
8 ,

1
8 )}, and σ(y) = {(u, u − y2, u − y1) : u ∈ R} ∩ C for y ∈ A(C).

Hence, Y (Qµ) is a singleton, but ψ(Qµ) = σ(Y (Qµ)) forms a line segment. Moreover,
σ is Hausdorff Lipschitzian on A(C) and Theorem 2.3 applies.

Example 2.6. In (1.1)–(1.3) let m = 2, s = 1, g(x) ≡ 0, A = (1, 0), q = (1, 1),
W = (1,−1), µ be the uniform distribution on [− 1

2 ,
1
2 ], and C = {(x1, x2) ∈ R

2 :
x2

2 ≤ x1}. Then we have

Q̃(t) = |t|, Qµ(y) =

∫
R

|ω − y|µ(dω) =
{
y2 + 1

4 , y ∈ [− 1
2 ,

1
2 ],

|y| otherwise,

ψ(Qµ) = {(0, 0)}, and Qµ is strongly convex on (− 1
2 ,

1
2 ). For y ∈ A(C) = R+ we have

σ(y) = {x ∈ C : Ax = y} = {(y, x2) ∈ R
2 : x2

2 ≤ y} = {y} × [−√
y,
√
y],

and, hence d((0, 0), σ(y)) = y for all y ∈ R+. Thus Theorem 2.3 applies for x̄ = (0, 0).

Example 2.9 shows that Theorem 2.3 gets lost if Qµ fails to be strongly convex
on some neighborhood of Aψ(Qµ). Our next result establishes a sufficient condition
for the uniform quadratic growth near solution sets.

Theorem 2.7. Let Qµ ∈ KC , let ψ(Qµ) be nonempty and bounded, and let Qµ be
strongly convex on some open convex neighborhood U of Aψ(Qµ). Assume that there
exists a constant L > 0 such that

dH(σ(y), σ(ỹ)) ≤ L‖y − ỹ‖ for all y, ỹ ∈ A(C),

and for each r > 0 there exists a constant η(r) > 0 such that

g(x) ≥ π(Ax) + η(r)d(x, σ(Ax))2 for all x ∈ C ∩B(0, r).

Then, for some open, bounded neighborhood V of ψ(Qµ) and each v ∈ T r(KC ;Qµ),
there exist constants c > 0 and δ > 0 such that the following uniform growth condition
holds:

g(x) + (Qµ + tv)(Ax) ≥ ϕ(Qµ + tv) + cd(x, ψ(Qµ + tv))2

for all x ∈ C ∩ V and t ∈ [0, δ).

Proof. Let v ∈ T r(KC , Qµ), and let V be an open, bounded subset of R
m such

that ψ(Qµ) ⊂ V and A(V ) ⊆ U . As in Theorem 2.3 we choose δ > 0 such that
∅ �= ψ(Qµ + tv) ⊂ V and, in addition, that Qµ + tv is strongly convex on U for all
t ∈ [0, δ) (with a uniform constant κ > 0). For each t ∈ [0, δ) Proposition 2.1 then
yields that ψ(Qµ + tv) = σ(yt), where yt is the unique minimizer of the strongly
convex function π + Qµ + tv on A(C) and, moreover, we have κ‖y − yt‖2 ≤ π(y) +
(Qµ + tv)(y) − ϕ(Qµ + tv) for all y ∈ A(C) ∩ U . Now, we choose r > 0 such that
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96 DARINKA DENTCHEVA AND WERNER RÖMISCH

V ⊆ B(0, r) and continue for each x ∈ C ∩ V and t ∈ [0, δ) as follows:

d(x, ψ(Qµ + tv))2 = d(x, σ(yt))
2

≤ 2(d(x, σ(Ax))2 + dH(σ(Ax), σ(yt))
2)

≤ 2

(
1

η(r)
(g(x)− π(Ax)) + L2‖Ax− yt‖2

)

≤ 2

(
1

η(r)
(g(x)−π(Ax))+

L2

κ
(π(Ax)+(Qµ+tv)(Ax)−ϕ(Qµ+tv))

)

≤ 2max

{
1

η(r)
,
L2

κ

}
(g(x) + (Qµ + tv)(Ax)− ϕ(Qµ + tv)).

Putting c−1 = 2max{ 1
η(r) ,

L2

κ } completes the proof.

The following examples show that the quadratic growth condition gets lost even
for the original problem, i.e., t = 0, if either the Lipschitz condition for σ or the strong
convexity property for Qµ are violated.

Example 2.8. Consider again the set-up of Example 2.6. Since it holds that
dH(σ(y), σ(0)) = (y2 + y)

1
2 for all y ∈ R+ = A(C), σ is not Hausdorff Lipschitzian on

A(C). Supposed there exists a neighborhood V of ψ(Qµ) = {(0, 0)} and a constant
3 > 0 such that the growth condition

3 d(x, ψ(Qµ))
2 = 3‖x‖2 ≤ Qµ(x1)− ϕ(Qµ) = x2

1 for all x ∈ C ∩ V

is satisfied. Since the sequence (( 1
n ,

1√
n
)) belongs to C∩V for sufficiently large n ∈ N,

this would imply 3( 1
n2 + 1

n ) ≤ 1
n2 for large n, which is a contradiction.

Example 2.9. In (1.1)–(1.3) let m = s = 1, g(x) ≡ 0, A = 1, C = R, q = (1, 1),
W = (1,−1), and let µ be the probability distribution on R having the density

fµ(z) =

{
|z|, z ∈ [−1, 1],
0, otherwise.

Then

Qµ(y) =

∫
R

|ω − y|µ(dω) =
{

1
3 |y|3 + 2

3 , y ∈ [−1, 1]
|y|, otherwise,

ψ(Qµ) = {0}, and there is no neighborhood of ψ(Qµ) where Qµ is strongly convex.
It is clear that the quadratic growth condition fails to hold, since the inequality
3x2 ≤ Qµ(x) − ϕ(Qµ) =

1
3 |x|3 cannot be true for some 3 > 0 and all x belonging to

some neighborhood of x = 0.

With the linear function v(x) = −x (x ∈ R) we obtain for all t ∈ [0, 1] that
ψ(Qµ + tv) = {√t} (cf. Example 3.7). Hence, the lower Lipschitz property of ψ
fails to hold as well. Since the strong convexity and later also the strict convexity of
the expected recourse function Qµ (on certain convex subsets of R

s) form essential
conditions in most of our results, we recall a theorem (Theorem 2.2 in [30]) that
provides a handy criterion to check these properties for problem (1.1)–(1.3).
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 97

Proposition 2.10. Let V ⊂ R
s be open convex, and assume (A1) and (A3).

Consider the following conditions.

(A2)
∗

intMD = {t ∈ R
s : WT t < q} �= ∅.

(A4) µ is absolutely continuous on R
s.

(A4)
∗

µ satisfies (A4) and there exist a density fµ for µ and a constant

δ > 0 such that fµ(z) ≥ δ whenever d(z, V ) ≤ δ.

Then (A2)∗ and (A4) imply that Qµ is strictly convex on V if V is a subset of the
support of µ, and (A2)∗ and (A4)∗ imply that Qµ is strongly convex on V .

In addition, it is shown in [30] that under (A1)–(A4) the condition (A2)∗ is
also necessary for the strict convexity of Qµ. For extended simple recourse models
(i.e., W = (H,−H) with some nonsingular (s, s)-matrix H) (A2)∗ is equivalent to
q+ + q− > 0 (componentwise), where q = (q+, q−) and q+, q− ∈ R

s. This may be
used to check strict or strong convexity properties in the Examples 2.6 and 2.9.

3. Directional derivatives of optimal values. In this section, we study first-
and second-order directional differentiability properties of the optimal value function
ϕ on its domain KC . We begin with the first-order analysis and show that ϕ as a
mapping from KC to the extended reals is Hadamard directionally differentiable at
some given expected recourse function Qµ ∈ KC . Here KC is regarded as a subset of
C0(Rs). Recall that ϕ is Hadamard directionally differentiable at Qµ on KC iff for
all sequences (vn) converging to some v in C0(Rs) and all sequences tn → 0+ such
that the elements Qµ + tnvn belong to KC the limit

ϕ′(Qµ; v) = lim
n→∞

1

tn
(ϕ(Qµ + tnvn)− ϕ(Qµ))

exists. Since the condition Qµ + tnvn ∈ KC means that vn = 1
tn
(Qn − Qµ) for

some Qn ∈ KC , the limit v belongs to the tangent cone T (KC ;Qµ) to KC at Qµ in
C0(Rs). In [35], [36] this property is also called Hadamard directional differentiability
tangentially to KC .

Proposition 3.1. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and
bounded. Then ϕ is Hadamard directionally differentiable at Qµ on KC , and it holds
for all v ∈ T (KC ;Qµ) that

ϕ′(Qµ; v) = min{v(Ax) : x ∈ ψ(Qµ)}.
If, in addition, Qµ is strictly convex on some open convex neighborhood of Aψ(Qµ),
we have

ϕ′(Qµ; v) = v(ȳ), where {ȳ} = Aψ(Qµ).

Proof. Arguing similarly as in the proof of Proposition 2.1 in [26] there exists a
neighborhood N of Qµ in C0(Rs) such that ψ(Q) is nonempty for all Q ∈ KC ∩ N .
Let (tn) and (vn) be sequences such that tn → 0+, vn → v in C0(Rs), and Qµ+ tnvn
belongs to KC for all n ∈ N. Then Qµ + tnvn ∈ KC ∩ N for sufficiently large n ∈ N.
Let xn ∈ ψ(Qµ + tnvn) for those n ∈ N. Since ψ is Berge upper-semicontinuous at
Qµ [26], the sequence (xn) has an accumulation point x ∈ ψ(Qµ), and we obtain

lim sup
n→∞

1

tn
(ϕ(Qµ + tnvn)− ϕ(Qµ))

≥ lim sup
n→∞

1

tn
(g(xn) + (Qµ + tnvn)(Axn)− g(xn)−Qµ(Axn)) ≥ v(Ax),
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98 DARINKA DENTCHEVA AND WERNER RÖMISCH

where the last inequality follows from the uniform convergence of (vn) to v on bounded
subsets of R

s. In order to show the reverse inequality for lim inf, let x ∈ ψ(Qµ). Then

lim inf
n→∞

1

tn
(ϕ(Qµ + tnvn)− ϕ(Qµ))

≤ lim inf
n→∞

1

tn
(g(x) + (Qµ + tnvn)(Ax)− g(x)−Qµ(Ax)) = v(Ax).

This completes the proof of the first part. The second part is an immediate conclusion,
since Aψ(Qµ) is a singleton whenever Qµ is strictly convex on some of its open, convex
neighborhoods.

The preceding result can also be proved by using the methodology of Theo-
rem 6.4.1 in [28]. There the compactness of the constraint set is assumed, and Gateaux
directional differentiability of ϕ at Qµ together with its Lipschitz continuity is shown.
Here we prefer a direct two-sided argument, which will also be used in the subse-
quent second-order analysis of ϕ. Namely, we will first derive an upper bound for
the second-order Hadamard directional derivative of ϕ at some Qµ ∈ KC , where KC

is equipped with the C0,1 topology. Second, we identify conditions implying that
the upper bound coincides with the Gateaux directional derivative of ϕ at Qµ for all
directions taken from T r(KC ;Qµ).

Lemma 3.2. Let y ∈ R
s, Qµ ∈ KC , tn → 0+, (Qn) be a sequence in KC such

that vn := 1
tn
(Qn −Qµ) → v in C0,1(Rs), and let (ξn) be a sequence converging to ξ

in R
s. Then we have lim supn→∞

1
tn
(vn(y + tnξn)− vn(y)) ≤ maxζ∈∂v(y)〈ζ, ξ〉.

Proof. Each function vn is locally Lipschitzian on R
s and, hence, Lebourg’s mean

value theorem for Clarke’s subdifferential [9] implies the existence of elements ỹn
belonging to the segments [y, y + tnξn] such that

1

tn
(vn(y + tnξn)− vn(y)) ∈ {〈ζ, ξn〉 : ζ ∈ ∂vn(ỹn)}.

The convergence vn → v in C0,1(Rs) implies that

sup{‖ζ‖ : ζ ∈ ∂(vn − v)(y), ‖y‖ ≤ r} −→
n→∞ 0

holds for any r > 0. This yields

dH(∂vn(ỹn), ∂v(ỹn)) ≤ sup{‖ζ‖ : ζ ∈ ∂(vn − v)(ỹn)} −→
n→∞ 0.

Here dH denotes the Hausdorff distance, and the inequality is a consequence of general
properties of the subdifferential (cf. Lemma 2.1 in [27]). Hence, there exist elements
ζ̃n belonging to ∂v(ỹn) such that

1

tn
(vn(y + tnξn)− vn(y)) ≤ ‖ξn‖dH(∂vn(ỹn), ∂v(ỹn)) + 〈ζ̃n, ξn〉

and, for some ζ̃ ∈ ∂v(y),

lim sup
n→∞

1

tn
(vn(y + tnξn)− vn(y)) ≤ lim sup

n→∞
〈ζ̃n, ξn〉 = 〈ζ̃, ξ〉 ≤ max

ζ∈∂v(y)
〈ζ, ξ〉,

where the upper semicontinuity of ∂v(·) is used. This completes the proof.
Proposition 3.3. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and

bounded. Let g be twice continuously differentiable, and let Qµ be strictly convex on
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 99

some open convex neighborhood of Aψ(Qµ) and twice continuously differentiable at ȳ,
where {ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ), tn → 0+, and (Qn) be a sequence in KC such
that vn := 1

tn
(Qn −Qµ) → v in C0,1(Rs). Then

lim sup
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≤ inf{〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉+ 1

2
〈∇2g(x̄), ξ, ξ〉

+
1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ max

ζ∈∂v(ȳ)
〈ζ, Aξ〉 : ξ ∈ S(x̄), z ∈ T 2(C; x̄, ξ)},

where S(x̄) := {ξ ∈ T (C; x̄) : 〈∇g(x̄), ξ〉+ 〈∇Qµ(ȳ), Aξ〉 = 0}, T (C; x̄) is the tangent
cone to C at x̄, and T 2(C; x̄, ξ) is the second-order tangent set to C at x̄ in direction ξ.

Proof. Let ξ ∈ S(x̄) and z ∈ T 2(C; x̄, ξ). Then there exists a sequence (zn) such
that zn → z and x̄+ tnξ + t2nzn ∈ C for all n ∈ N. Using Proposition 3.1, this allows
for the following estimate:

ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ
′(Qµ; vn)

≤ g(x̄+ tnξ + t2nzn) +Qµ(A(x̄+ tnξ + t2nzn)) + tnvn(A(x̄+ tnξ + t2nzn))

−g(x̄)−Qµ(Ax̄)− tnvn(Ax̄)

= [g(x̄+ tnξ + t2nzn)− g(x̄)− tn〈∇g(x̄), ξ〉]
+[Qµ(A(x̄+ tnξ + t2nzn))−Qµ(Ax̄)− tn〈∇Qµ(Ax̄), Aξ〉]
+tn[vn(A(x̄+ tnξ + t2nzn))− vn(Ax̄)].

After dividing by t2n and using Lemma 3.2, the limes superior as n → ∞ of the
right-hand side can be bounded above by

〈∇g(x̄), z〉+1

2
〈∇2g(x̄)ξ, ξ〉+〈∇Qµ(Ax̄), Az〉+1

2
〈∇2Qµ(Ax̄)Aξ,Aξ〉+ max

ζ∈∂v(Ax̄)
〈ζ, Aξ〉.

Taking the infimum on the right-hand side yields the assertion.
We notice that the upper second-order Hadamard directional derivative

lim supn→∞
1
t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn)) is nonpositive, since ϕ is con-

cave on KC and, hence, the inequality ϕ(Qµ + tnvn) − ϕ(Qµ) = ϕ(Qn) − ϕ(Qµ) ≤
ϕ′(Qµ;Qn −Qµ) = tnϕ

′(Qµ; vn) is valid. We also note that the upper bound is non-
positive, since (0, 0) belongs to S(x̄)×T 2(C; x̄, 0) = S(x̄)×T (C; x̄). Next we consider
particular perturbations Qn of Qµ, namely, Qn := Qµ+λtn(Q−Qµ) for some Q ∈ KC ,
λ > 0, and sufficiently large n ∈ N. Then vn = λ(Q − Qµ) ∈ T r(KC ;Qµ). The
next result provides conditions implying that the second-order (Gateaux) directional
derivative exists and coincides with the upper bound of the previous proposition. To
state the result we need the notion of second-order regularity (cf. [6]). The constraint
set C is called second-order regular at x̄ ∈ C if for any direction ξ ∈ T (C; x̄) and any
sequence xn ∈ C of the form xn = x̄ + tnξ + t2nrn where, tn → 0+ and rn being a
sequence in R

m satisfying tnrn → 0, it holds that limn→∞ d(rn, T
2(C; x̄, ξ)) = 0. For

example, C is second-order regular at x̄ ∈ C if 0 ∈ T 2(C; x̄, ξ) for every ξ ∈ T (C; x̄)
(cf. [6]). In particular, a polyhedral (convex) set C is second-order regular at any
x̄ ∈ C.

Theorem 3.4. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and bounded.
Let g be twice continuously differentiable, and let Qµ be strictly convex on some
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100 DARINKA DENTCHEVA AND WERNER RÖMISCH

open convex neighborhood of Aψ(Qµ) and twice continuously differentiable at ȳ, where
{ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ), v ∈ T r(KC ;Qµ), and assume that

(i) d(x̄, ψ(Qµ + tv)) = O(t) for small t > 0, and
(ii) C is second-order regular at x̄.
Then the second-order Gateaux directional derivative of ϕ at Qµ in direction v

exists, and it holds that

ϕ′′(Qµ; v) = lim
t→0+

1

t2
(ϕ(Qµ + tnv)− ϕ(Qµ)− tϕ′(Qµ; v))

= inf

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ) : ξ ∈ S(x̄)

}
,(3.1)

where b(ξ) = inf{〈∇g(x̄), z〉 + 〈∇Qµ(ȳ), Az〉 : z ∈ T 2(C; x̄, ξ)} is nonnegative and
convex on S(x̄). Moreover, the infimum in (3.1) is attained at some ξ̄ ∈ S(x̄) having
the property that ϕ′′(Qµ; v) =

1
2v

′(ȳ;Aξ̄) + 1
2b(ξ̄).

(Here S(x̄) and T 2(C; x̄, ξ) are defined as in the previous result, v′(ȳ; η) is the
directional derivative of v at ȳ in direction η, and O(t) denotes a real quantity such
that 1

t |O(t)| is bounded as t → 0+.)
Proof. (i) implies that there exist constants L > 0, δ > 0, and elements x(t) ∈

ψ(Qµ + tv) such that ‖x(t) − x̄‖ ≤ Lt for all t ∈ (0, δ). Now take a sequence (tn)
tending to 0+ in such a way that

lim inf
t→0+

1

t2
(ϕ(Qµ + tv)− ϕ(Qµ)− tϕ′(Qµ; v))

= lim
n→∞

1

t2n
(ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ

′(Qµ; v))

and that ξn := 1
tn
(x(tn)− x̄) −→

n→∞ ξ̄. The latter is possible since ‖ 1
tn
(x(tn)− x̄)‖ ≤ L

for n ∈ N sufficiently large. Then ξ̄ ∈ T (C; x̄) and Proposition 3.1 yields

v(Ax̄) = ϕ′(Qµ; v) = lim
n→∞

1

tn
(ϕ(Qµ + tnv)− ϕ(Qµ))

= lim
n→∞

1

tn
(g(x̄+ tnξn) + (Qµ + tnv)(A(x̄+ tnξn))− g(x̄)−Qµ(Ax̄))

= 〈∇g(x̄), ξ̄〉+ 〈∇Qµ(Ax̄), Aξ̄〉+ v(Ax̄).

This implies ξ̄ ∈ S(x̄). We put rn = 1
tn
(ξn − ξ̄) and xn = x(tn) = x̄+ tnξ̄ + t2nrn. By

expanding g and Qµ and using Proposition 3.1, we obtain

ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ
′(Qµ; v)

= g(xn) +Qµ(Axn) + tnv(Axn)− g(x̄)−Qµ(Ax̄)− tnv(Ax̄)

= 〈∇g(x̄), xn − x̄〉+ 1

2
〈∇2g(x̄)(xn − x̄), xn − x̄〉

+ 〈∇Qµ(Ax̄), Axn − x̄)〉+ 1

2
〈∇2Qµ(Ax̄)(A(xn − x̄)), A(xn − x̄)〉

+ tn(v(Axn)− v(Ax̄)) + o(‖xn − x̄‖2)

= t2n(〈∇g(x̄), rn〉+ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉) + t2n(〈∇Qµ(Ax̄), Arn)〉

+
1

2
〈∇2Qµ(Ax̄)Aξ̄,Aξ̄〉) + tn(v(Axn)− v(Ax̄)) + o(t2n).
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 101

Here we used that o(‖xn − x̄‖2) = o(t2n), where o(tk) denotes a real quantity having
the property 1

tk
o(t) → 0 as t → 0+ (k ∈ N).

Since C is second-order regular at x̄, there exists a sequence zn ∈ T 2(C; x̄, ξ̄) such
that limn→∞ ‖rn − zn‖ = 0, and we get from the previous chain of equalities

1

t2n
(ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ

′(Qµ; v))

= 〈∇g(x̄), zn〉+ 〈∇Qµ(ȳ), Azn〉+ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉

+
1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 1

tn
(v(ȳ + tnAξn)− v(ȳ)) + o(1)

≥ b(ξ̄) +
1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 1

tn
(v(ȳ + tnAξn)− v(ȳ)) + o(1).

Using the fact that v is Hadamard directionally differentiable and Clarke regular [9],
i.e., v′(ȳ; η) = maxζ∈∂v(ȳ)〈ζ, η〉, we obtain

lim inf
t→0+

1

t2
(ϕ(Qµ + tv)− ϕ(Qµ)− tϕ′(Qµ; v))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ v′(ȳ;Aξ̄) + b(ξ̄)

≥ inf

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ) : ξ ∈ S(x̄)

}
.

Proposition 3.3 implies that this lower bound for lim inft→0+ is also an upper bound
for lim supt→0+. Hence, the limit limt→0+

1
t2 (ϕ(Qµ+ tv)−ϕ(Qµ)− tϕ′(Qµ; v)) exists

and is equal to the infimum subject to ξ ∈ S(x̄). Moreover, this infimum is attained
at ξ̄ ∈ S(x̄).
The nonnegativity of b is due to the fact that the necessary optimality condition for
(1.1) at x̄ yields

〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉 ≥ 0 for all z ∈ T 2(C; x̄, ξ), ξ ∈ S(x̄).

The convexity of b follows from the property T 2(C; x̄, λξ+(1−λ)ξ̃) ⊇ λT 2(C; x̄, ξ)+
(1− λ)T 2(C; x̄, ξ̃) for all ξ, ξ̃ ∈ T (C; x̄), and λ ∈ [0, 1].

For the remainder of the proof we put a(ξ) := v′(ȳ;Aξ) and

B(ξ) :=
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉 for all ξ ∈ R

m.

Since S(x̄) is a (convex) cone, we have S(x̄) = λS(x̄) for any λ > 0. Moreover, it
holds that T 2(C; x̄, λξ̄) = λT 2(C; x̄, ξ̄) and thus that b(λξ̄) = λb(ξ̄) for any λ > 0.
Hence, we obtain

0 ≤ f(λ) := B(λξ̄) + a(λξ̄) + b(λξ̄)−B(ξ̄)− a(ξ̄)− b(ξ̄)

= λ2B(ξ̄) + (λ− 1)(a(ξ̄) + b(ξ̄))−B(ξ̄) for all λ > 0.

In the case of B(ξ̄) > 0, the quadratic function f vanishes at λ = 1 with the property
f ′(1) = 2B(ξ̄) + a(ξ̄) + b(ξ̄) = 0, and the final assertion is shown. If B(ξ̄) = 0, the
fact that 0 ≤ f(λ) = (λ− 1)(a(ξ̄) + b(ξ̄)) holds for any λ > 0 implies a(ξ̄) + b(ξ̄) = 0.
Thus ϕ′′(Qµ; v) = 0 = 1

2 (a(ξ̄) + b(ξ̄)), and the proof is complete.
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102 DARINKA DENTCHEVA AND WERNER RÖMISCH

The theorem extends our earlier work in [12], where essentially polyhedrality of
C is assumed. Compared to [12], the additional term b(.) enters the formula for
ϕ′′(Qµ; v). The convex function b(.) reflects second-order properties of the constraint
set C and vanishes if C is polyhedral. Next we state a more handy criterion implying
that ϕ′′(Qµ; v) exists for any direction v ∈ T r(KC ;Qµ).

Corollary 3.5. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and
bounded. Let g be twice continuously differentiable, and let Qµ be strongly convex
on some open convex neighborhood of Aψ(Qµ) and twice continuously differentiable
at ȳ, where {ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ) and assume that

(i)′ there exist a constant L > 0 and a neighborhood U of ȳ such that
d(x̄, σ(y)) ≤ L‖ȳ − y‖ for all y ∈ A(C) ∩ U , where
σ(y) := argmin{g(x) : x ∈ C,Ax = y}, y ∈ A(C), and

(ii) C is second-order regular at x̄.
Then the second-order Gateaux directional derivative of ϕ at Qµ exists for any di-
rection v ∈ T r(KC ;Qµ), and the formula for ϕ′′(Qµ; v) in Theorem 3.4 holds true.
Moreover, conditions (i)′ and (ii) are satisfied for any x̄ ∈ ψ(Qµ) if C is polyhedral
and g is linear or (convex) quadratic.

Proof. Let v ∈ T r(KC ;Qµ). Theorem 2.3 then says that there exist constants

L̂ > 0, δ > 0, and r > 0 such that

d(x̄, ψ(Qµ + tv)) ≤ L̂‖v‖L,rt whenever ‖v‖L,rt < δ.

Hence, the strong convexity of Qµ and condition (i)′ imply that condition (i) of the
previous theorem is satisfied and that the first part of the assertion is shown. If C is
polyhedral and g is linear or (convex) quadratic, (ii) is satisfied and Proposition 2.2
implies (i)′ to hold for any x̄ ∈ ψ(Qµ) = σ(ȳ).

Let us consider two illustrative examples to provide some insight into the benefit
and limits of the previous results.

Example 3.6. We revisit Example 2.6 and know that the general assumptions of
Corollary 3.5 and condition (i)′ are satisfied for x̄ = (0, 0). Furthermore, it holds that
T (C; x̄) = R+ × R and

T 2(C; x̄, ξ) =

{
R

2, ξ1 > 0,

{x1 ∈ R : x1 ≥ ξ2
2} × R, ξ1 = 0,

for any ξ ∈ T (C; x̄).

Moreover, C is second-order regular at x̄ (as can be seen from Proposition 4.1 in
[6]) and it holds that b(ξ) = 0 for all ξ ∈ R

2. Hence, Corollary 3.5 implies that
ϕ′′(Qµ; v) exists for any v ∈ T r(KC ;Qµ) and that ϕ′′(Qµ; v) = 1

2v
′(0, ξ̄1), where

ξ̄ = (ξ̄1, ξ̄2) ∈ argmin{ξ2
1 + v′(0, ξ1) : (ξ1, ξ2) ∈ R+ × R}.

Example 3.7. Here we revisit Example 2.9 and have

Qµ(y) =
1

3
|y|3 + 2

3
for all |y| ≤ 1, and ψ(Qµ) = {0}, ϕ(Qµ) =

2

3
.

For the function v(x) = −x (x ∈ R) and t ∈ [0, 1) we obtain

ϕ(Qµ + tv) = inf{Qµ(x)− tx : x ∈ R} = 2

3
(1− t

3
2 ),

ψ(Qµ + tv) = argmin{Qµ(x)− tx : x ∈ R} = {√t}.
Then ϕ′(Qµ; v) = 0 and 1

t2 (ϕ(Qµ + tv) − ϕ(Qµ) − ϕ′(Qµ; v)) = − 2
3 t

− 1
2 . Hence, ϕ

has no second-order directional derivative at Qµ in direction v. Note that there is no
neighborhood of x̄ = 0 where Qµ is strongly convex.
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 103

Finally, we aim at showing that ϕ is even second-order Hadamard directionally
differentiable at Qµ when equipping KC with a suitable topology. To this end we
need a certain counterpart of Lemma 3.2 for the corresponding limes inferior. Since
such a bound does not exist for nonsmooth functions, it is a natural idea to consider
the space C1(Rs), to restrict ϕ to the subset KC ∩C1, and to equip KC ∩C1 with the
C1 topology. Then we are able to show that the assumptions of Corollary 3.5 imply
the second-order Hadamard directional differentiability of ϕ at Qµ.

Theorem 3.8. Let Qµ ∈ KC ∩ C1, and assume that ψ(Qµ) is nonempty and
bounded. Let g be twice continuously differentiable, and let Qµ be strongly convex
on some open convex neighborhood of Aψ(Qµ) and twice continuously differentiable
at ȳ, where {ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ) and assume the conditions (i)′ and (ii)
of Corollary 3.5 to hold. Then the second order Hadamard directional derivative of
ϕ at Qµ exists in any direction v belonging to the tangent cone T (KC ∩ C1;Qµ) in
C1(Rs), i.e., for any such v, and all sequences tn → 0+ and (Qn) in KC such that
vn := 1

tn
(Qn −Qµ) → v in C1(Rs) the limit

ϕ′′(Qµ; v) = lim
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

exists, and it holds that

ϕ′′(Qµ; v) = inf

{
1

2
〈∇2g(x̄)ξ, ξ〉+1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+〈∇v(ȳ), Aξ〉+b(ξ) : ξ ∈ S(x̄)

}
.

Proof. Let v ∈ T (KC ∩ C1;Qµ), tn → 0+, and (Qn) be a sequence in KC such
that vn = 1

tn
(Qn−Qµ) → v in C1(Rs). Condition (i)′ together with Theorem 2.3 then

imply that there exist constants L > 0, r > 0, n0 ∈ N, and elements xn ∈ ψ(Qµ+tnvn)
such that

‖xn − x̄‖ ≤ Ltn‖vn‖L,r for all n ∈ N, n ≥ n0.

Since the sequence (vn) converges in C1(Rs), the norms ‖vn‖L,r are uniformly bounded
and we have ‖xn−x̄‖ = O(tn). As in the proof of Theorem 3.4 we select a subsequence
of (tn), which is again denoted by (tn), tending to 0+ such that ξn := 1

tn
(xn −

x̄) −→
n→∞ ξ̄ ∈ S(x̄). Analogously, we obtain for sufficiently large n:

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ b(ξ̄) +
1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 1

tn
(vn(ȳ + tnAξn)− vn(ȳ))+o(1).

Using the mean value theorem for vn we may continue with some ȳn ∈ [ȳ, ȳ + tnAξn]
as follows:

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 〈∇vn(ȳn), Aξn〉+ b(ξ̄) + o(1).

Arguing as in the proof of Theorem 3.4 and using vn → v in C1(Rs), we arrive at the
estimate

lim inf
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 〈∇v(ȳ), Aξ̄〉+ b(ξ̄)
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104 DARINKA DENTCHEVA AND WERNER RÖMISCH

and, using Proposition 3.3, we arrive at the desired result.
Let us finally note that all minimization problems appearing as bounds or formu-

las for second-order directional derivatives represent convex programs. Those in the
results Theorem 3.4, Corollary 3.5, and Theorem 3.8 have convex cone constraints,
which are polyhedral if C is polyhedral. Moreover, the solution sets of the convex min-
imization problems in Theorem 3.4, Corollary 3.5, and Theorem 3.8 are nonempty.
Indeed, we show next that these solution sets represent certain derivatives of the
set-valued mapping ψ at the pair (Qµ, x̄).

4. Differentiability of solution sets. It is well known that second-order dif-
ferentiability properties of optimal values in perturbed optimization are intrinsic for
establishing the differentiability of solutions (see, e.g., [8]). We also pursue this ap-
proach and derive conditions implying directional differentiability properties of the
solution set mapping by exploiting the results of the previous section. Our first re-
sults in this direction concern Gateaux directional differentiability and complement
Theorem 3.4 and its corollary.

Theorem 4.1. Assume that the general conditions on g, Qµ, and C of Theo-
rem 3.4 are satisfied. Let x̄ ∈ ψ(Qµ), v ∈ T r(KC ;Qµ), and suppose the conditions (i)
and (ii) of Theorem 3.4 to be satisfied. In addition, assume that

(iii) there exist a neighborhood V of ψ(Qµ) and constants c > 0, δ > 0 such that
the uniform growth condition

g(x) + (Qµ + tv)(Ax) ≥ ϕ(Qµ + tv) + cd(x, ψ(Qµ + tv))2

for all x ∈ C ∩ V and t ∈ [0, δ) is satisfied.
Then the Gateaux directional derivative of ψ at the pair (Qµ, x̄) into direction v exists,
and it holds that

ψ′(Qµ, x̄; v) = lim
t→0+

1

t
(ψ(Qµ + tv)− x̄)

= argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ) : ξ ∈ S(x̄)

}
.

Proof. Let M(x̄; v) denote the solution set in the assertion. First we show that
lim supt→0+

1
t (ψ(Qµ + tv)− x̄) ⊆ M(x̄; v).

Let ξ ∈ lim supt→0+
1
t (ψ(Qµ + tv) − x̄). Then there exists a sequence (tn, ξn)

converging to (0+, ξ) such that ξn ∈ 1
tn
(ψ(Qµ+tnv)−x̄) and, thus, x̄+tnξn ∈ ψ(Qµ+

tnv) for all n ∈ N. Analogously to the proof of Theorem 3.4 we show that ξ belongs
to S(x̄) and that ϕ′′(Qµ; v) =

1
2 〈∇2g(x̄)ξ, ξ〉+ 1

2 〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ).
Hence ξ ∈ M(x̄; v).

In the second step we demonstrate that

M(x̄; v) ⊆ lim inf
t→0+

1

t
(ψ(Qµ + tv)− x̄),

or, equivalently, that it holds for any ξ ∈ M(x̄, v) that

lim
t→0

1

t
d(x̄+ tξ, ψ(Qµ + tv)) = 0.

Let ξ ∈ M(x̄; v) and (tn) be a sequence with tn → 0+. We have to show that
limn→∞ 1

tn
d(x̄+ tnξ, ψ(Qµ + tnv)) = 0.
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 105

Let ε > 0 be given, and let z∈T 2(C; x̄, ξ) be such that 〈∇g(x̄), z〉+〈∇Qµ(ȳ), Az〉≤
b(ξ)+ε. Then there exists a sequence (zn) converging to z with xn = x̄+tnξ+t2nzn ∈ C
for all n ∈ N. Hence, it suffices to show that

lim
n→∞

1

tn
d(x̄+ tnξ + t2nzn, ψ(Qµ + tnv)) = 0.

Condition (iii) implies the following estimate for all sufficiently large n ∈ N:

cd(x̄+ tnξ + t2nzn, ψ(Qµ + tnv))
2

≤ g(x̄+ tnξ + t2nzn) + (Qµ + tnv)(A(x̄+ tnξ + t2nzn))− ϕ(Qµ + tnv).

By expanding g and Qµ as in the proof of Theorem 3.4 and using the fact that ξ
belongs to S(x̄), we may express the right-hand side as

t2n〈∇g(x̄), zn〉+ 1

2
t2n〈∇2g(x̄)(ξ + tnzn), ξ + tnzn〉

+t2n〈∇Qµ(ȳ), Azn〉+ 1

2
t2n〈∇2Qµ(ȳ)(A(ξ + tnzn)), A(ξ + tnzn)〉

−(ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ
′(Qµ; v))

+tn(v(A(x̄+ tnξ + t2nzn))− v(Ax̄)) + o(t2n‖ξ + tnzn‖2).

After dividing by t2n and taking the lim supn→∞, on both sides of the latter inequality,
we obtain

lim sup
n→∞

c

t2n
d(x̄+ tnξ + t2nzn, ψ(Qµ + tnv))

2

≤ 〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉+ 1

2
〈∇2g(x̄)ξ, ξ〉

+
1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉 − ϕ′′(Qµ; v) + v′(ȳ;Aξ) ≤ ε,

where we made use of the choice of z, ξ ∈ M(x̄; v), and Theorem 3.4. This completes
the proof.

Complementing Corollary 3.5, we provide a result on the directional differentia-
bility of ψ at Qµ into any direction v ∈ T r(KC ;Qµ).

Theorem 4.2. Assume that the general conditions on g, Qµ, and C of Corol-
lary 3.5 are satisfied. Let x̄ ∈ ψ(Qµ), and assume the following.

(i)′′ There exists a constant L > 0 such that

dH(σ(y), σ(ỹ)) ≤ L‖y − ỹ‖ for all y, ỹ ∈ A(C),

and, for each r > 0, there exists a constant η(r) > 0 such that

g(x) ≥ π(Ax) + η(r)d(x, σ(Ax))2 for all x ∈ C ∩B(0, r),

where π(y) = inf{g(x) : x ∈ C,Ax = y} and

σ(y) = argmin{g(x) : x ∈ C,Ax = y}, y ∈ A(C).

(ii) C is second-order regular at x̄.
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106 DARINKA DENTCHEVA AND WERNER RÖMISCH

Then the Gateaux directional derivative ψ′(Qµ, x̄; v) of ψ at the pair (Qµ, x̄) exists for
any direction v ∈ T r(KC ;Qµ) and satisfies the formula in Theorem 4.1. Moreover,
conditions (i)′′ and (ii) are satisfied if C is polyhedral and g is linear- or (convex-)
quadratic.

Proof. Let v ∈ T r(KC ;Qµ). Since Qµ is strongly convex on some open con-
vex neighborhood of Aψ(Qµ), we infer from condition (i)′′ and Theorem 2.7 that
condition (iii) of Theorem 4.1 is satisfied. Moreover, condition (i)′′ implies (i)′, and
thus, Corollary 3.5 says that the second-order directional derivative ϕ′′(Qµ; v) exists.
Hence, the first part of the assertion follows from the proof of the previous theorem.
Condition (ii) is satisfied if C is polyhedral, and if, in addition, g is convex-quadratic,
Proposition 2.2 implies condition (i)′′ holds.

We note that Example 3.7 shows that, in general, the directional differentiability
property of ψ gets lost at pairs (Qµ, x̄), x̄ ∈ ψ(Qµ), where Qµ is not strongly convex
on some neighborhood of Aψ(Qµ). Our next example demonstrates that Theorem 4.2
applies to situations where the solution set and its Gateaux directional derivatives are
not singletons.

Example 4.3. We revisit the Examples 1.1 and 2.5 and observe that the assump-
tions of Theorem 4.2 are satisfied for any x̄ ∈ ψ(Qµ). Hence, the Gateaux direc-
tional derivative ψ′(Qµ, x̄; v) exists at any pair (Qµ, x̄), x̄ ∈ ψ(Qµ) and any direction
v ∈ T r(KC ;Qµ). Since it holds that ∇2g(x̄) = 0, 〈∇g(x̄), ξ〉+ 〈∇Qµ(Ax̄), Aξ〉 = 0 for
all ξ ∈ R

3, and ∇2Qµ(Ax̄) = 2 ( 1 0
0 1 ), it takes the form ψ′(Qµ, x̄; v) = argmin{‖Aξ‖2+

v′(Ax̄;Aξ) : ξ ∈ T (C; x̄)}. Since the function y �→ ‖y‖2 + v′(Ax̄; y) is strongly convex
on A(T (C; x̄)), it has a unique minimizer ȳ(v) ∈ A(T (C; x̄)). Hence, there exists an
element ξ̄(v) ∈ T (C; x̄) such that Aξ̄(v) = ȳ(v) and ψ′(Qµ, x̄; v) = (ξ̄(v) + kerA) ∩
T (C; x̄). In particular, the Gateaux directional derivative ψ′(Qµ, x̄; .) is a set-valued
mapping of the direction.

Remark 4.4. The approach we followed for deriving Gateaux directional differ-
entiability of solution sets to (1.1) into directions v ∈ T r(KC ;Qµ) is based on lower
and upper estimates for the optimal value function. Compared to the work in [5],
[8], and [32], where this approach is developed and reviewed, we assume neither that
the data of the perturbed problems min{g(x) +Q(Ax) : x ∈ C} is differentiable nor
that solutions to (1.1) are unique. The (set-valued) Gateaux directional derivatives
ψ′(Qµ, x̄; v) in the previous results are valid for the case v = Q −Qµ with a general
Q ∈ KC . Hence, the results complement earlier work on contaminated distributions
(e.g., [13], [14]). They apply to situations where Q is an expected recourse function
with respect to a Dirac measure with unit mass placed at ω∗, i.e., Q(y) = Q̃(ω∗ − y),
and, hence, are relevant to study the influence of a specific scenario on changes of
solution sets.

Another prominent approach to sensitivity analysis of optimization problems is
based on the perturbation analysis of first-order necessary optimality conditions writ-
ten as generalized equations (e.g., [17], [22], [24]). Applying this technique to study
sensitivity of (1.1) requires C1-properties of perturbed expected recourse functions Q.
In the case of (1.1) and Q ∈ C1, the parametric generalized equation reads

0 ∈ ∇g(x) +AT∇Q(Ax) +NC(x),

where NC(x) denotes the normal cone to C at x and Q plays the role of a param-
eter. Relevant conditions in this context implying Lipschitz and differentiability
properties of solutions at some (Qµ, x̄) are the strong regularity of the generalized
equation at parameter Qµ [24], and the subinvertibility of the set-valued mapping
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 107

F (x) = ∇g(x)+AT∇Qµ(Ax)+NC(x) [17] together with the single-valuedness of the
inverse of the contingent derivative of F at (x̄, 0) (cf., [2]), respectively. To see that
both conditions are violated in general, we consider the linear case (i.e., g is linear
and C is polyhedral). Then both conditions are equivalent if Qµ ∈ C2 (Theorem
6.1 in [17]). The contingent derivative of F at (x̄, 0) has the form DF (x̄, 0)(u) =
AT∇2Qµ(Ax̄)Au+DNC(x̄,−∇g(x̄)−AT∇Qµ(Ax̄))(u) (cf., Section 5.1 in [2]), where
the contingent derivative DNC is again a polyhedral multifunction. Since the first
summand remains constant on translates of the null space of the matrix A, single-
valuedness of the inverse of DF (x̄, 0)(u) fails to hold in general. This is essentially
due to the same structural property, which leads to multiple solutions in Example 1.1
and to set-valued Gateaux directional derivatives in Example 4.3.

Finally, we turn to directional differentiability properties of ψ where the deriva-
tives exist uniformly with respect to directions taken from compact sets of certain
functional spaces. For our first result we consider the space C1(Rs) and equip the set
KC ∩ C1 with the C1-topology.

Proposition 4.5. Let Qµ ∈ KC ∩C1 and assume that the general conditions on
g, Qµ, and C in Proposition 3.3 are satisfied. In addition, we suppose condition (ii)
of Theorem 3.4 to be satisfied. Let x̄ ∈ ψ(Qµ), tn → 0+, and let (Qn) be a sequence
in KC such that vn := 1

tn
(Qn −Qµ) → v in C1(Rs).

Then the upper set limit of the sequence ( 1
tn
(ψ(Qµ + tnvn)− x̄) of closed convex

subsets in R
m, i.e., lim supn→∞

1
tn
(ψ(Qµ + tnvn) − x̄)), is contained in the closed

convex set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ), Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}
.

Proof. Let Dn := 1
tn
(ψ(Qµ+tnvn)−x̄) for all n ∈ N, and let ξ̄ belong to the upper

set limit lim supn→∞ Dn. Then there exist a subsequence (again denoted by (Dn))
and elements ξn ∈ Dn such that ξn → ξ̄. Since x̄ + tnξn ∈ ψ(Qµ + tnvn) ⊆ C, we
have that ξ̄ ∈ T (C; x̄), and as in the proof of Theorem 3.4, we deduce that ξ̄ ∈ S(x̄).
By expanding g and Qµ as in the proof of Theorem 3.4 we obtain analogously

ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ
′(Qµ; vn)

= g(x̄+ tnξn) +Qµ(A(x̄+ tnξn)) + tnvn(A(x̄+ tnξn))− g(x̄)−Qµ(Ax̄)

− tnvn(Ax̄)

≥ t2nb(ξ̄) +
1

2
t2n〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
t2n〈∇2Qµ(Ax̄)Aξ̄,Aξ̄〉

+tn(vn(A(x̄+ tnξn))− vn(Ax̄)) + o(t2n).

After dividing by t2n and taking the lim supn→∞ on both sides of the inequality, we
obtain, as in the proof of Theorem 3.8,

lim sup
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(Ax̄)Aξ̄,Aξ̄〉+ 〈∇v(Ax̄), Aξ̄〉+ b(ξ̄).

Hence, we may conclude from Proposition 3.3 that ξ̄ belongs to the set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ),Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}
,
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108 DARINKA DENTCHEVA AND WERNER RÖMISCH

and we are done.
Remark 4.6. The upper limit of the sequence ( 1

tn
(ψ(Qµ + tnvn)− x̄) in Proposi-

tion 4.5 is nonempty if the mapping d(x̄, ψ(·)) from KC into the extended reals has the
Lipschitzian property of Theorem 2.3 at Qµ. Indeed, we may select xn ∈ ψ(Qµ+tnvn)

for large n ∈ N such that for some constants L̂ > 0 and r > 0, ‖x̄ − xn‖ =
d(x̄, ψ(Qµ + tnvn)) ≤ L̂tn‖vn‖L,r. Hence, the sequence ( 1

tn
(xn − x̄)) is bounded and

has a convergent subsequence whose limit belongs to lim supn→∞
1
tn
(ψ(Qµ+tnvn)−x̄).

If the Lipschitz property of d(x̄, ψ(·)) is violated, the upper set limit may be empty.
This is illustrated by Example 3.7, in which we have x̄ = 0, ψ(Qµ + tnv) = {√tn},
and, thus, 1

tn
(ψ(Qµ + tnv)− x̄) = {t− 1

2
n }.

In order to establish the semidifferentiability of ψ at a pair (Qµ, x̄) belonging to
the graph of ψ, it remains to show, according to Proposition 4.5, that the solution set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ), Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}

is contained in the lower set limit lim infn→∞ 1
tn
(ψ(Qµ + tnvn) − x̄), where vn :=

1
tn
(Qn−Qµ), Qn ∈ KC , for all n ∈ N, and (vn) converges to v. To this end, a uniform

quadratic growth condition of the objective functions g(·)+ (Qµ+ tnvn)(A ·) for large
n ∈ N is significant. In view of Theorem 2.7, the uniform strong convexity of Qµ and
its approximations Qn for large n ∈ N is decisive for the growth condition. The next
example and the following result show that the approximations Qn do not maintain
the strong convexity property of Qµ in general if the sequence (Qn) converges to Qµ

in C1(Rs), but that the situation is much more advantageous when considering the
C1,1-topology.

Example 4.7. Let Qµ(y) = y2 for all y ∈ R and let Qn be the following differen-
tiable convex function:

Qn(y) := max
{
0,−y − 1

n

}2

+max
{
0, y − 1

n

}2

for all y ∈ R, n ∈ N.

Note that Qn(y) = 0 for all y ∈ [− 1
n ,

1
n ], and Qn is not strongly convex for each

n ∈ N, but (Qn) converges to Qµ in C1(Rs).
Lemma 4.8. Let Qµ ∈ KC ∩C1,1(Rs) be strongly convex on some bounded convex

set U ⊆ R
s (with some constant κ > 0). Then there exists a neighborhood N of Qµ

in C1,1(Rs) such that each function Q belonging to N is strongly convex on U with
constant κ

2 .
Proof. The strong convexity of Qµ on U (with constant κ > 0) is equivalent to

the condition 〈∇Qµ(y) − ∇Qµ(ỹ), y − ỹ〉 ≥ κ‖y − ỹ‖2 for all y, ỹ ∈ U . Let r > 0
be chosen such that cl U ⊆ B(0, r), and let N be a neighborhood of Qµ in C1,1(Rs)
having the property ‖∇(Qµ − Q)‖L,r ≤ κ

2 for all Q ∈ N . Let y, ỹ ∈ U , with y �= ỹ.
Then we obtain for any Q ∈ N

κ ≤ 〈∇Qµ(y)−∇Qµ(ỹ), y − ỹ〉
‖y − ỹ‖2

=
〈∇Q(y)−∇Q(ỹ), y − ỹ〉

‖y − ỹ‖2
+

〈∇(Qµ −Q)(y)−∇(Qµ −Q)(ỹ), y − ỹ〉
‖y − ỹ‖2

≤ 〈∇Q(y)−∇Q(ỹ), y − ỹ〉
‖y − ỹ‖2

+
‖∇(Qµ −Q)(y)−∇(Qµ −Q)(ỹ)‖

‖y − ỹ‖2

≤ 〈∇Q(y)−∇Q(ỹ), y − ỹ〉
‖y − ỹ‖2

+ ‖∇(Qµ −Q)‖L,r,
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 109

and, hence,

κ

2
‖y − ỹ‖2 ≤ 〈∇Q(y)−∇Q(ỹ), y − ỹ〉.

This means that Q is strongly convex on U with constant κ
2 .

Now we are able to show that the solution set mapping ψ is semidifferentiable on
KC ∩ C1,1 at some pairs (Qµ, x̄), x̄ ∈ ψ(Qµ), into any direction v from the tangent
cone T (KC ∩ C1,1;Qµ) to KC ∩ C1,1(Rs) at Qµ in C1,1(Rs). The assumptions are
essentially the same as in Theorem 4.2.

Theorem 4.9. Let Qµ ∈ KC ∩ C1,1, and assume that ψ(Qµ) is nonempty and
bounded. Let g be twice continuously differentiable, and let Qµ be strongly convex on
some open convex neighborhood U of Aψ(Qµ) and twice continuously differentiable at
ȳ, where {ȳ} = Aψ(Qµ). Assume that condition (i)′′ of Theorem 4.2 is satisfied.

Then the solution set mapping ψ from KC ∩C1,1 into R
m is semidifferentiable at

any pair (Qµ, x̄), x̄ ∈ ψ(Qµ), such that C is second-order regular at x̄, and into any
direction v ∈ T (KC ∩ C1,1;Qµ), i.e., for any such x̄ and v, tn → 0+, and (Qn) in
KC ∩ C1,1 with vn = 1

tn
(Qn −Qµ) → v in C1,1(Rs) the set limit

Dψ(Qµ, x̄; v) = lim
n→∞

1

tn
(ψ(Qµ + tnvn)− x̄)

exists. The semiderivative Dψ(Qµ, x̄; v) is equal to the set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ), Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}
.

Moreover, ψ is semidifferentiable at any pair (Qµ, x̄), x̄ ∈ ψ(Qµ), into any direction
v ∈ T (KC ∩ C1,1;Qµ) if C is polyhedral. Condition (i)′′ is satisfied if C is polyhedral
and g is linear- or (convex-) quadratic.

Proof. Let x̄ ∈ ψ(Qµ) be such that C is second-order regular at x̄, v ∈
T (KC ∩C1,1;Qµ), and vn = 1

tn
(Qn−Qµ) → v in C1,1(Rs), where tn → 0+ and (Qn)

is a sequence in KC ∩ C1,1. We may assume that the neighborhood U is bounded.
Since (Qn) converges to Qµ in C1,1(Rs), we obtain from Lemma 4.8 that there exists
an n0 ∈ N such that Qn is strongly convex on U for each n ≥ n0 with a uniform con-
stant κ > 0. Moreover, we choose n0 sufficiently large such that ψ(Qn) is nonempty
for each n ≥ n0. Arguing as in the proof of Theorem 2.7, we obtain a constant c > 0
and a neighborhood V of ψ(Qn) such that the growth condition

g(x) +Qn(Ax) ≥ ϕ(Qn) + cd(x, ψ(Qn))
2

holds for all x ∈ C ∩ V and n ≥ n0.
Let ξ̄ ∈ S(x̄) be a minimizer of the function 1

2 〈∇2g(x̄)ξ, ξ〉+ 1
2 〈∇2Qµ(ȳ)Aξ,Aξ〉+

〈∇v(ȳ), Aξ〉+ b(ξ) subject to ξ ∈ S(x̄). Because of Proposition 4.5 it remains to show
that ξ̄ belongs to the lower limit lim infn→∞ 1

n (ψ(Qµ+tnvn)−x̄) = lim infn→∞ 1
tn
(ψ(Qn)

− x̄). To this end we argue as in the proof of Theorem 4.1. Let ε > 0 be given, and
let z ∈ T 2(C; x̄, ξ̄) be such that 〈∇g(x̄), z〉 + 〈∇Qµ(ȳ), Az〉 ≤ b(ξ̄) + ε. Then there
exists a sequence (zn) converging to z with xn = x̄ + tnξ + t2nzn ∈ C for all n ∈ N.
Then it suffices to show that

lim
n→∞

1

tn
d(x̄+ tnξ̄ + t2nzn, ψ(Qn)) = 0.
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110 DARINKA DENTCHEVA AND WERNER RÖMISCH

By using the above growth condition and by expanding the function g and Qµ, we
obtain, similar to the proof of Theorem 4.1, that

lim sup
n→∞

c

t2n
d(x̄+ tnξ̄ + t2nzn, ψ(Qn))

2

≤ 〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉+ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉

+
1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉 − ϕ′′(Qµ; v) + 〈∇v(ȳ), Aξ̄〉 ≤ ε .

This implies ξ̄ ∈ lim infn→∞ 1
tn
(ψ(Qn)−x̄) and the semidifferentiability of ψ at (Qµ, x̄)

in direction v is shown. The remaining part of the assertion follows as in the proof of
Theorem 4.2.

For the linear-quadratic case, the essential assumptions in Theorem 4.9 are the
strong convexity of Qµ, and the smoothness properties of Qµ and its perturbations Q,
respectively. While criteria for strong convexity were already discussed in section 2,
we now add some comments on C1,1 and C2 properties of expected recourse functions.
Later we close by indicating some conclusions of the results of sections 3 and 4 on
asymptotic properties of statistical estimators of optimal values and solution sets.

Remark 4.10. Assume (A1)–(A3) and µ to have a density with respect to the
Lebesgue measure on R

s. Then the function Qµ in (1.2) is continuously differentiable

on R
s and its gradient is of the form ∇Qµ(y) =

∑�
i=1 diµ(y+Bi(R

s
+)) for all y ∈ R

s,
where Bi, i = 1, . . . , <, are certain basis submatrices of the recourse matrix W such
that the simplicial cones Bi(R

s
+), i = 1, . . . , <, are linearity regions of Q̃ and −di is

the gradient of Q̃ on int Bi(R
s
+), i = 1, . . . , < (cf., [15], [39]). Denoting by Fµ the

distribution function of µ and using the formula

µ(y +B(Rs
+)) = Fµ◦(−B)(−B−1y) for all y ∈ R

s,

for any nonsingular (s, s)-matrix B, C1,1 and C2 properties of Qµ may thus be formu-
lated in terms of Lipschitz and differentiability properties of the distribution functions
Fµ◦(−Bi) to the linear transforms µ ◦ (−Bi), i = 1, . . . , <, of the measure µ.

The distribution function Fµ of a probability measure µ on R
s is locally Lips-

chitzian if all one-dimensional marginal distribution functions of µ are locally Lips-
chitzian (cf. [26], [38]). Fµ is continuously differentiable if µ has a continuous density
function and all one-dimensional marginal distribution functions of µ are continuously
differentiable (cf. [21], [38]). If µ has a continuous density function, then µ ◦B has a
continuous density for any nonsingular (s, s)-matrix B, too. Hence, we may conclude,
for instance, that Qµ belongs to C1,1(Rs) (and C2(Rs)) if µ has a (continuous) den-
sity and the above-mentioned conditions on the one-dimensional marginal distribution
functions for Fµ◦B belonging to C0,1(Rs) (and C1(Rs), respectively) are satisfied for
any nonsingular (s, s)-matrix B. This criterion is particularly useful for probability
distributions µ which have the property that all one-dimensional marginal distribu-
tions of µ and all linear transforms µ ◦ B for all nonsingular matrices B belong to
the same class of measures. For instance, all multivariate normal and all logarithmic
concave probability measures (e.g., [15]) form classes having this property.

Remark 4.11. We consider a sequence (Qn) of nonparametric estimators of Qµ

and assume that each Qn is a random variable with values in some linear metric
(function) space Z and in KC . Furthermore, we assume that a central limit result of
the form

τ−1
n (Qn −Qµ) →d ζ
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DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 111

is satisfied for some sequence of positive numbers (τn) decreasing to 0 and for some
random variable ζ taking values in a separable subset of Z. Here, we denote by→d the
convergence in distribution of Z-valued random variables. Then versions of the delta-
method (see, e.g., [36]) together with the second-order Hadamard differentiability of
the optimal value ϕ at Qµ (Theorem 3.8 and Z = C1(Rs)) and the semidifferentia-
bility of the solution set ψ at Qµ (Theorem 4.9 and Z = C1,1(Rs)) lead to central
limit formulas for the sequence (ϕ(Qn)) of real random variables and the sequence of
random sets (ψ(Qn)), respectively. In particular, we obtain from Theorem 3.8 and a
second-order version of the delta-method that

τ−2
n (ϕ(Qn)−ϕ(Qµ)−ϕ′(Qµ;Qn−Qµ)) = τ−2

n (ϕ(Qn)−g(x̄)−Qn(Ax̄)) →d ϕ′′(Qµ; ζ),

where x̄ ∈ ψ(Qµ) and →d refer to convergence in distribution of real-valued random
variables. Theorem 4.9 and a set-valued version of the delta-method [16], [20] imply

τ−1
n (ψ(Qn)− x̄) →d Dψ(Qµ, x̄; ζ),

where x̄ ∈ ψ(Qµ) and→d refer to convergence in distribution of closed-valued measur-
able multifunctions in R

m (cf. [29]). The asymptotic distributions in both central limit
results are the probability distributions of the optimal value and of the solution set,
respectively, of the random convex program that consists in minimizing the (random)
objective 1

2 〈∇2g(x̄)ξ, ξ〉+ 1
2 〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇ζ(ȳ), Aξ〉+b(ξ) subject to ξ satisfy-

ing the (deterministic) constraints ξ ∈ T (C; x̄) and 〈∇g(x̄), ξ〉 + 〈∇Qµ(ȳ), Aξ〉 = 0 .
Furthermore, in the linear-quadratic case the set-valued central limit result may be
complemented by limit theorems for selections forming a Castaing representation of
ψ (cf. [11]).
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