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Abstract. We consider multistage stochastic optimization models containing nonconvex constraints, e.g.,
due to logical or integrality requirements. We study three variants of Lagrangian relaxations and of the cor-
responding decomposition schemes, namely, scenario, nodal and geographical decomposition. Based on
convex equivalents for the Lagrangian duals, we compare the duality gaps for these decomposition schemes.
The first main result states that scenario decomposition provides a smaller or equal duality gap than nodal
decomposition. The second group of results concerns large stochastic optimization models with loosely cou-
pled components. The results provide conditions implying relations between the duality gaps of geographical
decomposition and the duality gaps for scenario and nodal decomposition, respectively.

Key words. stochastic programming – nonconvex optimization – Lagrangian relaxation – duality gap –
decomposition – integer programming

1. Introduction

Stochastic dynamic programs arise as optimization models of systems driven by some
discrete-time stochastic process {ξt : t = 1, 2, . . . }, defined on some probability space
(�, F, P) with values in some finite-dimensional Euclidean space. Our modeling time
horizon includes T time periods, and we make sequential decisions xt ∈ R

r at every
time interval t = 1, 2, . . . , T on the basis of the information available at that time. We
shall denote the information available at time period t by ζt := (ξ1, ξ2, . . . , ξt ). The
condition that xt may depend only on ζt is known as nonanticipativity condition. This
property is equivalent to the measurability of xt with respect to the σ -algebra Ft ⊆ F ,
which is generated by ζt . Clearly, the set {Ft } forms a filtration, i.e., Ft ⊆ Ft+1, and
we assume that F1 = {∅, �} and FT = F . Nonanticipativity can be briefly expressed
by the equality constraints

xt = E[xt |Ft ], t = 1, . . . , T , P − a.s. (1)

The dynamics of the system is described by the inequalities

At
t (ζt )xt + At

t−1(ζt )xt−1 ≥ ct (ζt ), t = 1, . . . , T , P − a.s., (2)
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where At
τ (ζt ), τ = t − 1, t , and ct (ζt ) are matrices and vectors, respectively, of appro-

priate dimension and depending measurably on ζt , t = 1, . . . , T .
The remaining constraints associated with each time period are expressed in the form

xt ∈ Xt(ζt ), t = 1, . . . , T , P − a.s., (3)

where it is assumed that the sets Xt(ζt ), t = 1, . . . , T , are measurable w.r.t. ω ∈ �

and compact P-a.s. We do not assume that these sets are convex. Typical examples are
mixed-integer stochastic programs, where some integrality requirements are incorpo-
rated into the definition of the sets Xt(ζt ). The presence of nonconvex functions in the
description of these sets is possible as well.

In this paper, we consider the following stochastic optimization model:

Minimize E

[ T∑
t=1

ft (ζt , xt )
]

subject to the constraints (1), (2) and (3). (4)

Here, we assume that all functions ft (ζt (·), ·), t = 1, . . . , T , are finite normal integrands
on � × R

r . Then the problem (1) – (4) is well defined.
In order to solve such a model, the stochastic process {ξt }Tt=1 is approximated by

a process having a finite number of scenarios. In this way a deterministic optimization
problem is generated, which replaces the stochastic problem. We shall refer to the sce-
nario-based deterministic problem as a multistage problem. The approximation typically
leads to a model of very large dimensions. The large size, the combination of differ-
ent types of constraints, and the nonconvexity (e.g., integrality requirements) turn the
multistage problem into a theoretical and numerical challenge. In recent years various
decomposition methods for solving multistage problems were suggested (see [6, 28]
for an overview). These include the primal nested Benders decomposition and the regu-
larized decomposition methods (see [4, 26]). Dual decomposition techniques associate
Lagrange multipliers with some group of the constraints and make use of the solution
of some “dual” problem. Most of the dual approaches such as progressive hedging [22],
and the augmented Lagrangian decomposition suggested in [27, 19], relax the nonanti-
cipativity constraints (1). Some dual problems are investigated in [21], where Lagrange
multipliers are associated with some inequality constraints describing the sets Xt(ζt ).
Nodal decomposition is a technique that associates Lagrange multipliers with dynamics
constraints (2) (see [25]). Another decomposition approach was suggested for the unit
commitment problem in power generation under uncertain load in [10, 18] (see also [2,
9, 32] for related work). The decomposition exploits the specific structure of many large
systems that each component has a separate model. The joint operation is then coordi-
nated by coupling constraints. Therefore, to a large extent the model of the whole system
has a separable structure. We shall pay special attention to this decomposition approach,
which we call geographical decomposition. For further advances in duality in stochastic
programming problems we refer the interested reader to [20]. Decomposition methods
for stochastic programming models with integrality constraints were suggested in a few
papers. Primal methods based on Benders and test sets for the two-stage situation are
presented in [8] and [15]. Dual schemes for the multistage case are discussed in [7] and
[24].
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Estimates of duality gaps for mixed-integer programs, and comparisons of some
relaxation techniques are found in [1, 3, 13, 12, 14, 17]. The results and techniques of
these papers require separation of constraints into two or more groups, while the decom-
position methods in stochastic programming lead to subproblems where certain sets of
constraints are copied, and others are separated. Moreover, the process of duplicating
constraints within each decomposition scheme is complicated. The specific structure of
the multistage models requires a special approach. Some relevant research on duality
gaps in stochastic programming is contained in [5, 30, 31]. The authors of [5, 31] try to
establish quantitative estimates for the duality gap arising when the scenario decompo-
sition approach is applied to solving mixed-integer multistage stochastic programs. The
relative duality gap per scenario term is estimated in [31]. In [5] the authors state sufficient
conditions that lead to the vanishing of the duality gap in the scenario decomposition
if the number of scenarios tends to infinity. However, an example with non-vanishing
duality gap while increasing the number of scenarios is constructed in [30].

Our analysis will focus on comparing the duality gaps for the three established dual
decomposition techniques in stochastic programming: scenario, nodal and geographi-
cal decomposition. We derive convex programs whose duals are equivalent to the dual
problems associated with three different Lagrangian relaxations. This analysis for the
scenario and nodal decomposition is presented in Section 3. The main result presented in
Section 4 shows that the scenario decomposition provides a better lower bound (smaller
or equal duality gap) than the nodal decomposition. The precise description and the
analysis of the geographical decomposition are presented in Section 5. The geograph-
ical decomposition is compared to the nodal and scenario decomposition in Section 6.
For a general optimization problem we introduce a measure of sensitivity to relaxation
of constraints. This sensitivity measure is used to characterize the relative effectiveness
of the decomposition approaches. Finally, sufficient conditions implying how the dual-
ity gap for geographical decomposition relates to the corresponding gaps for scenario
and nodal decomposition are provided. The latter conditions are discussed for stochastic
integer programs.

2. Formulations of multistage problems

We consider the multistage problem based on an approximation of the stochastic pro-
cess ξ by finitely many scenarios. We may think of it as a special case of the stochastic
program in which the set � is finite, i.e., � = {1, 2, . . . , S} and each scenario is rep-
resented by its index s. We denote the value of the process ξ for the scenario s at t by
ξs,t . Correspondingly, xs,t will denote the value of the decision for the scenario s at t ,
where s = 1, 2, . . . , S and t = 1, 2, . . . , T . Setting P({s}) = ps, s = 1, 2, . . . , S,
with

∑S
s=1 ps = 1, the nonanticipativity constraint corresponds to the following system

of equations
xσ,t = xs,t whenever ζσ,t = ζs,t .

For t = 1 the latter condition reads x1,1 = x2,1 = · · · = xS,1.
The nonanticipativity constraints require the decisions to belong to a certain subspace.
The particular algebraic representation of this subspace is inessential to our study, and,
therefore, we adopt the following general form:



518 D. Dentcheva, W. Römisch

S∑
s=1

Ws,txs,t = 0 , t = 1, 2, . . . , T , (5)

where the Ws,t denote matrices of appropriate dimensions. For particular forms of Ws,t

see [22] and [19].
To simplify notation we set fs,t := f (ζs,t , ·), At

s,τ := At
τ (ζs,t ), τ = t − 1, t , and

Xs,t := Xt(ζs,t ) for s = 1, 2, . . . , S and t = 1, 2, . . . , T .
Then the multistage stochastic program is of the form

min
(x,v)

T∑
t=1

S∑
s=1

psvs,t (6)

subject to

At
s,t xs,t + At

s,t−1xs,t−1 ≥ cs,t , t = 2, . . . , T , s = 1, . . . , S, (7)

xs,t ∈ Xs,t , fs,t (xs,t ) ≤ vs,t , t = 1, . . . , T , s = 1, . . . , S, (8)
S∑

s=1

Ws,txs,t = 0 , t = 1, 2, . . . , T , (9)

where additional variables v = (vs,t ) were introduced to arrive at a model with linear
objective and with all potential nonconvexities contained in (8).

A graphical representation of the relations between the atoms in the filtration leads
to a tree. We can associate nodes of the tree with the realizations of the process as well
as with the decisions. We enumerate the nodes setting n = 1 for the root node. Any other
node n has a unique predecessor node a(n). Every node n has a set of successors S(n),
which is empty for the terminal nodes (leaves). We denote the number of all nodes by N .
There is a unique correspondence β : (s, t) → n assigning a node n to a scenario s at a
certain time t . Furthermore, if n is a terminal node, then the correspondence γ : n → s

is well defined by setting γ (n) = s if n = β(s, T ). Using the probabilities of the scenar-
ios, we may associate probabilities with the nodes of the tree according to the following
recursive procedure:

πn =
{

pγ (n) for all n such that S(n) = ∅∑
m∈S(n)

πm for all other nodes n. (10)

By setting xn = xs,t , vn = vs,t , Xn = Xs,t , fn = fs,t , cn = cs,t , An,n = At
s,t and

An,a(n) = At
s,t−1, respectively, if n = β(s, t), and by using the node probabilities (10),

we arrive at the following scenario-tree-based formulation of the multistage problem:

min
(x,v)

N∑
n=1

πnvn (11)

subject to

An,nxn + An,a(n)xa(n) ≥ cn , n = 2, . . . , N, (12)

xn ∈ Xn, fn(xn) ≤ vn , n = 1, 2, . . . , N. (13)
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The latter form of the multistage problem is commonly called a primal formulation. By
splitting the decision variables in (11)–(13), i.e., by setting xs,t := xn for each node
n at time t and each s ∈ {1, . . . , S} satisfying β(s, t) = n, and by reformulating the
constraints for all splitted variables and introducing the explicit nonanticipativity con-
straint (9), we arrive again at the scenario-based formulation (6)–(9). The constraint
(9) is omitted in the model (11)–(13) because it is reflected in the tree structure of the
decisions.

3. Lagrangian relaxation approaches and their dual equivalent convex problems

We can distinguish three relaxation ideas that lead to the decomposition of the multistage
optimization model:

– Lagrange multipliers are associated with the nonanticipativity constraints (9). This
relaxation is frequently called scenario decomposition or scenario disaggregation.

– Lagrange multipliers are associated with the dynamic constraints (12). This tech-
niques is called nodal decomposition in [25].

– Lagrangian relaxation by decoupling system components when the multistage prob-
lem has a loosely coupled structure. This approach will be called geographical decom-
position.

For more information about the scenario and nodal decomposition the reader is
referred to [25, 22]. In the next subsections we shall review some features of the first
two relaxation approaches. The third approach requires a more precise description, and
we defer its discussion to Section 5.

Recall that the conjugate function f ∗ : R
n → R of a function f : R

n → R is
defined as follows:

f ∗(y) = sup
{〈y, x〉 − f (x) : x ∈ R

n
}
.

Here R = R ∪ {±∞}. We assume that f is not identical to +∞ and that there exists an
affine minorant of f . The latter condition implies that f (x) > −∞ for all x ∈ R

n. The
biconjugate function f ∗∗ of f is defined by

f ∗∗(x) = (f ∗)∗(x) = sup
{〈y, x〉 − f ∗(y) : y ∈ R

n
}
.

It is known that this operation provides the close-convexification of f , that is,

epif ∗∗ = co(epif )

(cf. [16, Chapt. X, Theorem 1.3.5], [23, Theorem 11.1]). Here epif refers to the epigraph
of f and co denotes the operation of taking the convex hull and closure.

The following fact can be proved easily and will be used repeatedly.

Lemma 1. Assume that f : R
n → R has an affine minorant. If f is a sum of a linear

and of an extended real-valued nonlinear function g, i.e., f (x) = aT x + g(x) for some
a ∈ R

n, then f ∗∗(x) = aT x + g∗∗(x).
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The indicator of a nonempty set A will be denoted by

δA(x) =
{

0 if x ∈ A

+∞ otherwise.

Clearly, it holds that [δA]∗∗ = δA∗∗ , where A∗∗ = co A.
Consider the optimization problem

min f (x) subject to x ∈ X, aix ≤ bi, i = 1, . . . , l, (14)

where f is a finite lower semicontinuous function on R
n, X a subset of R

n and ai ∈ R
n,

bi ∈ R for i = 1, . . . , l. When relaxing the linear constraints, the dual function is
denoted by D, i.e.,

D(y) = inf
{
f (x) −

l∑
i=1

yi(bi − aix) : x ∈ X
}
, y ∈ R

l
+.

Further, we collect the nonlinearities and nonconvexities of f and X into f using the
indicator function of X. We define

fX = f + δX.

Next we recall a result on convex programs that are dually equivalent to (14). It is due
to the pioneering work in [11] and also formulated in a more general version in [17].

Theorem 1. Assume that X is compact. The function D is also the dual function asso-
ciated with the following problem:

min [fX]∗∗(x) subject to aix ≤ bi, i = 1, . . . , l. (15)

Moreover, assume that there is a feasible point x̄ lying in the relative interior of
dom [fX]∗∗. Then D attains its maximum, which is equal to the infimal value of (15).

3.1. Scenario decomposition

We consider the scenario-based formulation (6)–(9) of the multistage problem and asso-
ciate a Lagrange multiplier µ ∈ R

(T S−N)r with the nonanticipativity constraint (9).
Then the Lagrange function reads

Lna(x, v, µ) =
S∑

s=1

T∑
t=1

[
psvs,t + µtWs,t xs,t

]
.

The dual function is given by

Dna(µ) = inf
{
Lna(x, v, µ) : (x, v) ∈ S×

s=1
X na

s

}
,
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where the set of feasible solutions X na = ×S
s=1X na

s is defined by setting X na
s , for each

scenario s = 1, 2, . . . , S, to be the set

X na
s =

{
ys ∈ R

T (r+1) : xs,t ∈ Xs,t , fs,t (xs,t ) ≤ vs,t , t = 1, . . . T ,

At
s,t xs,t + At

s,t−1xs,t−1 ≥ cs,t , t = 2, . . . T
}
,

where ys = (xs,1, . . . , xs,T , vs,1, . . . , vs,T ). The dual problem is

max
{
Dna(µ) : µ ∈ R

(ST −N)r
}
. (16)

The dual function decomposes into S scenario subproblems. Each subproblem optimizes
the operation of the system when the stochastic process follows a particular scenario.
For each scenario s we introduce its objective

F s(ys) :=
T∑

t=1

psvs,t .

Next we show that the convex program

min
S∑

s=1

[
F s

X na
s

]∗∗
(ys) subject to (9) (17)

is equivalent to the Lagrangian dual (16).

Proposition 1. The function Dna is also the dual function of problem (17). Moreover,
assume that the problem (6)–(9) has a feasible solution lying in the relative interior of
the set [X na]∗∗. Then Dna attains its supremum, which is equal to the infimal value of
(17).

Proof. According to Theorem 1 the function Dna is also a dual function to the problem

min
[( S∑

s=1

F s
)

X na

]∗∗
(y) subject to (9).

Due to the linearity of the functions F s we obtain from Lemma 1 that

[( S∑
s=1

F s
)

X na

]∗∗
(y) = [

S∑
s=1

F s + δX na ]∗∗(y) =
S∑

s=1

F s(ys) + [δX na ]∗∗(y) .

Further, due to the separability of the set X na , the biconjugate of its indicator function
is of the form

[δX na ]∗∗(y) = δ[X na ]∗∗(y) =
S∑

s=1

δ[X na
s ]∗∗(ys) =

S∑
s=1

[
δX na

s

]∗∗
(ys) .
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Combining the two equations, we obtain

[( S∑
s=1

F s
)

X na

]∗∗
(y) =

S∑
s=1

F s(ys) +
S∑

s=1

[δX na
s

]∗∗(ys) =
S∑

s=1

[
(F s + δX na

s
)
]∗∗

(ys)

=
S∑

s=1

[
F s

X na
s

]∗∗
(ys) .

Furthermore, it holds that dom
[( ∑S

s=1 F s
)

X na

]∗∗ =
[
X na

]∗∗
. Thus, the constraint

qualification of Theorem 1 is satisfied and we may conclude that the dual function Dna

attains its supremum, which is equal to the infimum value of (17). �
This result demonstrates that the relaxation of the nonanticipativity constraints is

equivalent to the “convexification” of the objective function and feasible set separately
for each scenario.

3.2. Nodal decomposition

The next relaxation is associated with the primal formulation (11)–(13) of the multistage
problem. The nodal decomposition associates Lagrange multipliers ν ∈ R

(N−1)m with
the dynamic constraints (12), where m is the dimension of cn for each n. The set of
feasible solutions X d becomes

X d = N×
n=1

X d
n = N×

n=1

{
(xn, vn) ∈ R

r+1 : xn ∈ Xn, fn(xn) ≤ vn

}
.

The Lagrange function and the dual function are given by

Ld(x, v, ν) = v1 +
N∑

n=2

πn

[
vn + νn(cn − An,nxn − An,a(n)xa(n))

]

and
Dd(ν) = inf{Ld(x, v, ν) : (x, v) ∈ X d},

respectively, and the dual problem is

sup{Dd(ν) : ν ∈ R
Nm
+ }. (18)

The dual problem decomposes across nodes, i.e., into N − 1 subproblems of dimension
r +1. Each subproblem models the optimal operation of the system under the conditions
determined by the relevant node. It is worth noting that the dimension of X d is much
smaller than that of X na as N << ST .

We introduce the notation F̃ n(yn) = πnvn, where yn = (xn, vn), and consider the
convex optimization problem

min
N∑

n=1

[
F̃ n

X d
n

]∗∗
(yn) subject to (12) (19)

and show that it is equivalent to the dual problem in the Lagrange relaxation of the
dynamic constraints.
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Proposition 2. The function Dd is also the dual function of problem (19). Moreover,
assume that there is a feasible solution of the problem (11)–(13) lying in the relative
interior of the set [X d ]∗∗. Then Dd attains its maximum, which is equal to the infimal
value of (19).

Proof. We follow the same line of arguments as in the proof of Proposition 1. According
to Theorem 1 the dual function Dd is also a dual function to the problem

min
[( N∑

n=1

F̃ n
)

X d

]∗∗
(y) subject to (12).

Arguing analogously to the proof of Proposition 1, we obtain

[( N∑
n=1

F̃ n
)

X d

]∗∗
(y) =

N∑
n=1

F̃ n(yn) +
N∑

n=1

[δX d
n

]∗∗(yn) =
N∑

n=1

[
F̃ n

X d
n

]∗∗
(y) .

Since the constraint qualification of Theorem 1 is satisfied, the second assertion follows,
too. �

The proposition demonstrates that this relaxation is equivalent to the “convexifica-
tion” of the objective function and of the feasible set separately for each node of the
scenario tree.

4. Scenario versus nodal decomposition

Now, we are ready to compare the duality gap of the introduced Lagrangian relaxations
for multistage stochastic programs.

Theorem 2. Assume that the convex hull of the feasible set of the problem (11)–(13)
has nonempty relative interior, then the scenario decomposition provides a better bound
for the optimal value of the multistage problem than the nodal decomposition, i.e., the
following inequality holds true:

sup
ν

Dd(ν) ≤ sup
µ

Dna(µ).

Proof. Let us introduce the following notation, which will simplify the presentation.
The following set is associated with the dynamics constraints:

G = {
y = (x, v) ∈ R

N(r+1) : An,nxn + An,a(n)xa(n) ≥ cn, n = 2, . . . , N
}
.

For each scenario s set xs := (xs,t ) and vs = (vs,t ). We consider the sets

Gs = {
ys = (xs, vs) ∈ R

T (r+1) : At
s,t xs,t + At

s,t−1xs,t−1 ≥ cs,t , t = 2, . . . , T
}

and
Ys,t = {

(xs,t , vs,t ) ∈ R
r+1 : xs,t ∈ Xs,t , fs,t (xs,t ) ≤ vs,t

}
.
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Furthermore, let Ys = ×T
t=1Ys,t . Clearly, it holds for each scenario s that

X na
s = Gs ∩ Ys .

Furthermore, if the problem (11)–(13) has a feasible solution in the relative interior of
the set [X d ∩G]∗∗, then this solution is contained in the set G and in the relative interior
of the larger set [X d ]∗∗. Consequently, the constraint qualification of Proposition 2 is
satisfied. Moreover, we can split the variables as described shortly after (13) and obtain
a feasible solution of the problem (6)–(9). This solution will be contained in the relative
interior of [X na]∗∗ by construction. Therefore, the assumptions of Proposition 1 are sat-
isfied as well. By relaxing the nonanticipativity constraints one obtains a lower bound
D̂na of the objective function, where

D̂na = max
µ

Dna(µ) . (20)

According to Proposition 1 there exists a solution ȳ = (x̄, v̄) ∈ R
T S(r+1) of the convex

equivalent problem (17) such that

D̂na = inf{
S∑

s=1

[
F s

X na
s

]∗∗
(ys) : subject to (9)} =

S∑
s=1

[
F s

X na
s

]∗∗
(ȳs) (21)

and ȳ satisfies the nonanticipativity constraint. Using the linearity of Fs and the separa-
bility of the set X na , we continue (21) and obtain

D̂na =
S∑

s=1

[
F s + δGs∩Ys

]∗∗
(ȳs) =

S∑
s=1

[
F s(ȳs) + δ[Gs∩Ys ]∗∗

]
(ȳs). (22)

Observe that [Gs ∩ Ys]∗∗ ⊆ (Gs)
∗∗ ∩ (Ys)

∗∗ = Gs ∩ (Ys)
∗∗ and, thus,

δ[Gs∩Ys ]∗∗(ȳs) ≥ δGs∩(Ys)∗∗(ȳs) = δGs (ȳs) + δ(Ys)∗∗(ȳs)

holds. Hence, we may continue the chain (22) of transformations as follows

S∑
s=1

[
F s(ȳs) + δ[Gs∩Ys ]∗∗(ȳs)

]
≥

S∑
s=1

[
F s(ȳs) + δGs (ȳs) + δ(Ys)∗∗(ȳs)

]

=
S∑

s=1

F s(ȳs) + δ
(

S×
s=1

Gs)
(ȳ) + δ S×

s=1
(Ys)∗∗(ȳ). (23)

Let us define an element ỹ = (x̃, ṽ) ∈ R
N(r+1) by setting ỹn := ȳs,t if n = β(s, t). This

definition is non ambiguous because ȳ satisfies the nonanticipativity constraint. We also
set πn = ∑

s:β(s,t)=n ps and obtain

S∑
s=1

F s(ȳs) =
N∑

n=1

F̃n(ỹn).
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The set ×S
s=1Ys can be represented in the form ×S

s=1Ys = ×S
s=1 ×T

t=1 Ys,t =: ×s,tYs,t .
Furthermore, due to the definition of the models (11)–(13) and (6)–(9), the sets Ys,t

satisfy the condition Ys,t = Yσ,t whenever ζs,t = ζσ,t for all s, σ = 1, 2, . . . , S and
t = 1, 2, . . . , T . Therefore, we may replace Ys,t by X d

n for the node n = β(s, t). Since
ȳs ∈ [X na

s ]∗∗ holds, we have

ỹn ∈ [Xn]∗∗ and δG(ỹ) = 0. (24)

Thus, we obtain that

S∑
s=1

F s(ȳs)+δ×s,t (Ys,t )∗∗(ȳ)+δ×S
s=1Gs

(ȳ) =
N∑

n=1

F̃n(ỹn) + δ×N
n=1X ∗∗

n
(ỹ) + δG(ỹ)

=
N∑

n=1

[
F̃n + δXn

]∗∗
(ỹn) + δG(ỹ)

=
N∑

n=1

[
F̃nXn

]∗∗
(ỹn) + δG(ỹ)

≥ min
{ N∑

n=1

[
F̃nXn

]∗∗
(yn) + δG(y)

}
. (25)

According to Proposition 2 the right-hand side of the latter inequality is equal to
the optimal value maxν Dd(ν) of the dual problem associated with the relaxation of the
dynamic constraints. From the chain of inequalities (22), (23), and (25), we obtain

max
µ

Dna(µ) =
S∑

s=1

[F s
X na

s
]∗∗(ȳs) ≥

N∑
n=1

[
F̃nXn

]∗∗
(ỹn) + δG(ỹ) ≥ max

ν
Dd(ν),

which is the desired inequality. �
In general, the estimate in Theorem 2 is strict, as we will see in the next example.

Example 1. We consider a two-stage model with two scenarios (three nodes in the sce-
nario tree) in a primal formulation:

min −0.2x1 − 1

2
x2 − x3

subject to

x1 + x2 ≤ 1.5 (dynamics in the first scenario)

x1 + x3 ≤ 1.2 (dynamics in the second scenario)

xn ∈ [0, 2], n = 1, 2, 3; x2, x3 integer (local constraints)

The feasible set of the problem is:
{
x ∈ R

3 : x2 ∈ {0, 1}, x3 ∈ {0, 1}, x1 ∈ [0, min{1.5−
x2, 1.2 − x3}]

}
. The optimal solution of this problem is obtained for x1 = 0.2, x2 =

x3 = 1 and the optimal value is −1.54. The relaxation of the nonanticipativity yields
the same optimal value and, therefore, no duality gap. The same optimal solution can



526 D. Dentcheva, W. Römisch

be obtained by solving the convex problem equivalent to the dual of the scenario
decomposition according to Proposition 1. The feasible set of the latter problem is{
x ∈ R

3 : x2 ∈ [0, 1], x3 ∈ [0, 1], x1 ∈ [0, min{1.5 − x2, 1.2 − x3}]
}

. In contrast, the

nodal decomposition results in a smaller optimal value −1.95, which creates a duality
gap of 0.41. The convex problem equivalent to the dual of the nodal decomposition
according to Proposition 2 has a larger feasible set, namely

{
x ∈ R

3 : x2 ∈ [0, 2], x3 ∈
[0, 2], x1 ∈ [0, min{1.5 − x2, 1.2 − x3}]

}
, which creates the gap in this example.

5. Geographical decomposition

In this section, we turn to complex systems with loosely coupled components. We shall
assume that system components require their own models, which are coordinated by
several linking constraints. Furthermore, we assume that the objective function is sep-
arable with respect to components. We would like to associate geographical locations
with the components and refer to them as locations in the following. Let us assume
that the modeling system comprises I locations and xi

n ∈ R
ri is the decision at node n

associated with location i, i = 1, 2, . . . , I , and
∑I

i=1 ri = r .
We shall deal with the following multistage stochastic optimization problem, written

in a primal formulation with the transformations we have adopted in the previous section

min
(x,v)

N∑
n=1

I∑
i=1

πnv
i
n (26)

subject to (27)

Ai
n,n(x

i
n) + Ai

n,a(n)x
i
a(n) ≥ ci

n, n = 2, . . . , N, i = 1, . . . , I, (28)

xi
n ∈ Xi

n, f i
n(xi

n) ≤ vi
n, n = 1, . . . , N, i = 1, . . . , I, (29)

I∑
i=1

Bi
nx

i
n ≥ dn, n = 1, . . . , N. (30)

Here Bi
n are K ×ri-dimensional matrices and dn are K-dimensional vectors. Thus, there

are K constraints (30) for each sequential decision that are coupling the models of the
locations. The assumption that the modeled system consists of loosely coupled locations
means that K << I .

As the third decomposition approach we consider the decoupling of locations. Let
us associate Lagrange multipliers λ ∈ R

NK with the coupling constraints (30). Then we
obtain the following Lagrangian and dual function

Lc(x, v, λ) =
N∑

n=1

[ I∑
i=1

πnv
i
n + πnλn(dn −

I∑
i=1

Bi
nx

i
n)

]

and

Dc(λ) = inf{Lc(x, v, λ) : y ∈ X c},
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respectively. Here the set of feasible solutions X c = ×I
i=1X c

i decomposes into I com-
ponents, defined by

X c
i = {

yi = (xi, vi) ∈ R
N(r+1) : xi

n ∈ Xi
n, f i

n(xi
n) ≤ vi

n , n = 1, 2, . . . , N,

Ai
n,n(x

i
n) + Ai

n,a(n)x
i
a(n) ≥ ci

n , n = 2, . . . , N
}
.

The dual problem reads

sup
{
Dc(λ) : λ ∈ R

KN
+

}
. (31)

The dual function decomposes into I subproblems representing the operation models of
each location. For each i = 1, . . . , I we introduce the functions

F̂ i(yi) :=
N∑

n=1

πnv
i
n.

The following convex optimization problem will turn out to be the dual equivalent to
the Lagrangian relaxation of the coupling constraints.

min
I∑

i=1

[
F̂ i

X c
i

]∗∗
(yi) subject to (30). (32)

Proposition 3. The function Dc is also the dual function of problem (32). Moreover,
assume that there is a feasible solution of the problem (26)–(30) lying in the relative
interior of [X c]∗∗. Then Dc attains its maximum, which is equal to the infimal value of
(32).

Proof. The proof follows the same lines of arguments as the proofs of the Proposition 1
and Proposition 2. �

The proposition shows that the Lagrange relaxation of the coupling constraints is
equivalent to the convexification of the objective function and of the feasible set, sepa-
rately for each geographical location.

6. Geographical decomposition versus scenario and nodal decomposition

We shall derive necessary and sufficient conditions for comparing the geographical
decomposition with the two other approaches. For this purpose we need a measure of
stability of a problem with respect to Lagrange relaxations when its feasible set (and pos-
sibly also its objective function) is nonconvex. Given a real-valued function on R

n and
subsets A and B of R

n, we consider the problem min fA∩B. We can evaluate the change
of the optimal value of the Lagrangian dual problems when the constraints defining the
set B are relaxed, i.e., inf [(fA)∗∗ + δB∗∗ ], compared to the optimal value of the dual
problem with no relaxation, i.e., inf [fA∩B]∗∗. It provides us also with some measure of
effectiveness of the particular relaxation.
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Definition 1. The measure of sensitivity of the problem min fA∩B with respect to the
relaxation of the constraint set B is given by

ρ(f, A; B) = inf [fA∩B]∗∗ − inf [(fA)∗∗ + δB∗∗ ],

where it is assumed that at least one of the infima is finite.

Obviously, problems where f is a convex function and A and B are closed convex
sets satisfying a constraint qualification, are insensitive to relaxations by virtue of the
strong duality theorem. One can easily see that in this case also ρ(f, A; B) = 0.

In [14] the notion of “convexity with respect to a set” is introduced for a similar
purpose. There, a set A is called B-convex if (A ∩ B)∗∗ = A∗∗ ∩ B∗∗. Note that if the
set A is B-convex, then also the set B is A-convex. This property is a kind of constraint
qualification as we will see in the following example.

Example 2. First, let us consider convex subsets A and B of some Euclidean space.
Then the B-convexity of A translates into the condition

cl(A ∩ B) = clA ∩ clB ,

which is valid if ri A ∩ ri B �= ∅ [16, Proposition 2.1.10], where cl and ri denote closure
and relative interior, respectively.

Secondly, let A be the set of all r-dimensional integral vectors, i.e, A := Z
r , and B

be a polyhedral subset of R
r . Then B-convexity of A reads

(Zr ∩ B)∗∗ = B (33)

and means that the integer hull of B, i.e., the closed convex hull of the set of all integral
vectors contained in B, coincides with B. The integer hull of B is polyhedral if B is a
rational polyhedron [29, Theorem 16.1]. If B is rational and condition (33) is satisfied, B
is said to be an integral polyhedron. The polyhedron B is integral iff each face of B con-
tains an integral vector. Important concepts for detecting the integrality of a polyhedron
are the total unimodularity of matrices and the total dual integrality of rational linear
inequalities (see [29, Part IV]). Here, we briefly recall the first concept. A matrix B is
called totally unimodular if each subdeterminant of B is 0, +1 or −1. In particular, each
entry in a totally unimodular matrix is 0, +1 or −1. A polyhedron B = {x : Bx ≤ b} is
integral if B is totally unimodular and b is integral (cf. [29, Theorem 19.1]). A complete
characterization of total unimodularity is provided by the Hoffman–Kruskal theorem:
If B is an integral matrix, then B is totally unimodular if and only if for each integral
vector b the polyhedron B = {x : x ≥ 0, Bx ≤ b} is integral (cf. [29, Corollary 19.2a]).
In particular, network matrices are totally unimodular [29, Section 19.3].

Lemma 2. For any linear function f the sensitivity measure ρ(f, A; B) is nonnegative
if it is finite, and it vanishes if the set A is B-convex.

Proof. Using Lemma 1 and the inclusion (A ∩ B)∗∗ ⊆ A∗∗ ∩ B∗∗ we have

inf [fA∩B]∗∗ = inf [f + δA∩B]∗∗ = inf [f + (δA∩B)∗∗]

≥ inf [f + (δA)∗∗ + (δB)∗∗] = inf [(fA)∗∗ + δB∗∗ ].

If A is B-convex, the only inequality in this chain becomes an equality. �
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In order to compare the relaxations, we shall need a dual formulation of the model
(26)–(30), where the variables are split for all scenarios as described after (13), and the
nonanticipativity is formulated as a system of equality constraints. We introduce the set
M of points in R

T S(r+I ) that satisfy the coupling constraints, and the set N of points in
R

T S(r+I ) satisfying the nonanticipativity constraints. We define

Ms =
{
y = (x, v) ∈ R

T S(r+I ) :
∑I

i=1 Bi
s,t x

i
s,t ≥ ds,t , t = 1, . . . , T

}
,

N i =
{
y = (x, v) ∈ R

T S(r+I ) :
∑S

s=1 Ŵ i
s,t y

i
s,t = 0, t = 1, . . . , T

}
,

M = S∩
s=1

Ms and N = I∩
i=1

N i .

Here the matrices Ŵ i
s,t give the corresponding algebraic formulation of the non-

anticipativity subspace for the vectors yi
s,t . For each scenario s = 1, . . . , S and each

location i = 1, . . . , I we define the cylindrical sets

�̂i
s = {

y = (x, v) ∈ R
T S(r+I ) : xi

s,t ∈ Xi
s,t , f

i
s,t (x

i
s,t ) ≤ vi

s,t , t = 1, 2, . . . , T ,

A
t,i
s,t x

i
s,t + A

t,i
s,t−1x

i
s,t−1 ≥ ci

s,t , t = 2, . . . , T
}
.

Furthermore, for each i = 1, . . . , I and s = 1, . . . , S we set

�i = S∩
s=1

�̂i
s , �s = I∩

i=1
�̂i

s and � = I∩
i=1

�i.

We denote the objective function of the multistage problem by F : R
T S(r+I ) → R, i.e.,

F(y) =
S∑

s=1

I∑
i=1

T∑
t=1

psv
i
s,t .

Theorem 3. Assume that the convex hull of the feasible set for the problem (26)–(30)
has nonempty relative interior. The geographical decomposition provides a better bound
for the optimal value than the scenario decomposition, i.e.,

sup
µ

Dna(µ) ≤ sup
λ

Dc(λ)

if and only if the following inequality holds true:

ρ(F, � ∩ M, N ) − ρ(F, � ∩ N , M) ≥ 0.

Proof. According to the Propositions 3 and 1 by relaxing the coupling and nonanticip-
ativity constraints, one obtains a lower bound D̂c and D̂na , respectively, of the objective
function such that

D̂c = sup
λ

Dc(λ) = inf
{ I∑

i=1

[
F̂ iX c

i

]∗∗
: subject to (30)

}
,

D̂na = sup
µ

Dna(µ) = inf
{ S∑

s=1

[
F s

X na
s

]∗∗
: subject to (9)

}
.
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The latter problem is transformed by using the definition of the sensitivity measure. Let
V denote the optimal value of the multistage problem before relaxation. Then

D̂na = inf
{ S∑

s=1

[
F s

X na
s

]∗∗ + δN
}

= V − ρ(F, � ∩ M, N )

= inf
{ S∑

s=1

[ I∑
i=1

T∑
t=1

psv
i
s,t + δ(�s)∗∗

]
+ δN∩M

}

+ρ(F, �, N ∩ M) − ρ(F, � ∩ M, N )

= inf
{ S∑

s=1

I∑
i=1

T∑
t=1

psv
i
s,t +

S∑
s=1

δ(�s)∗∗ + δM + δN
}

+ρ(F, �, N ∩ M) − ρ(F, � ∩ M, N ) .

We claim that

S∑
s=1

δ(�s)∗∗ =
S∑

s=1

I∑
i=1

δ
(�̂i

s )
∗∗ =

I∑
i=1

δ(�i)∗∗ . (34)

Indeed, the sum
∑S

s=1 δ(�s)∗∗(y) on the left hand side vanishes for the point y ∈ R
ST (r+I )

if and only if y ∈ �∗∗
s for all s. Furthermore, the �s are cylindrical sets of the form

R
T (r+I )(s−1) × Cs × R

T (r+I )(S−s) for some set Cs . Consequently, we have �∗∗
s =

R
T (r+I )(s−1) × C∗∗

s × R
T (r+I )(S−s). Using the separability of the sets Cs this implies

that

�∗∗ =
( S∩

s=1
�s

)∗∗ =
( S×

s=1
Cs

)∗∗ = S×
s=1

C∗∗
s = S∩

s=1
�∗∗

s .

We obtain by the same arguments

�∗∗ =
S∑

s=1

I∑
i=1

δ
(�̂i

s )
∗∗ and �∗∗ =

I∑
i=1

δ(�i)∗∗ .

In case
S∑

s=1
δ(�s)∗∗(y) = ∞, then y �∈ �∗∗

s for some s which implies the the equality

(34). Therefore, we can continue the transformation of the dual equivalent problem as
follows:

D̂na = inf
{ I∑

i=1

S∑
s=1

T∑
t=1

psv
i
s,t +

I∑
i=1

δ(�i)∗∗ + δM + δN
}

+ρ(F, �, N ∩ M) − ρ(F, � ∩ M, N )

= inf
{ I∑

i=1

[ S∑
s=1

T∑
t=1

psv
i
s,t + δ(�i)∗∗ + δN i

]
+ δM

}

+ρ(F, �, N ∩ M) − ρ(F, � ∩ M, N ) . (35)
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On the other hand, with each y = (x, v) ∈ R
ST (r+I ) such that y ∈ (�i ∩ Ni )

∗∗ we can
associate a point ŷ = (x̂, v̂) ∈ R

N(r+1) having the property

I∑
i=1

[ S∑
s=1

T∑
t=1

psv
i
s,t + δ(�i∩Ni )

∗∗
]
(y) =

I∑
i=1

[ N∑
n=1

πnv
i
n + δX c

i
∗∗(ŷi)

]
=

I∑
i=1

F̂ iX c
i
(ŷi ),

where n = β(s, t) because the nonanticipativity is satisfied. Using again the measure of
sensitivity we obtain

D̂c = inf
{ I∑

i=1

[ S∑
s=1

T∑
t=1

psv
i
s,t + δ(�i∩Ni )

∗∗
]

+ δM

}

= V − ρ(F, � ∩ N , M)

= inf
{ I∑

i=1

[ S∑
s=1

T∑
t=1

psv
i
s,t + δ(�i)∗∗ + δN i

]
+ δM

}

+ρ(F, �, N ∩ M) − ρ(F, � ∩ N , M) . (36)

Putting the two equalities (35) and (36) together yields

D̂na = D̂c + ρ(F, � ∩ N , M) − ρ(F, � ∩ M, N ) .

This completes the proof. �
The next corollary is an immediate consequence of Theorem 3 and Lemma 2.

Corollary 1. Assume that the convex hull of the feasible set for the problem (26)–(30)
has nonempty relative interior.

(1) If the set �∩N is M-convex, then the geographical decomposition provides a better
bound for the optimal value than the scenario decomposition, i.e.,

sup
λ

Dc(λ) ≥ sup
µ

Dna(µ) .

(2) If the set � ∩ M is N -convex, then the scenario decomposition provides a better
bound for the optimal value than the geographical decomposition, i.e.,

sup
λ

Dc(λ) ≤ sup
µ

Dna(µ) .

Now, we turn to the relations between the geographical and the nodal decomposition.
We shall use the relations and properties of the following sets:

Cn =
{
y = (x, v) ∈ R

N(r+I ) :
∑I

i=1 Bi
nx

i
n ≥ dn

}
,

Gi =
{
y = (x, v) ∈ R

N(r+I ) : Ai
n,n(x

i
n) + Ai

n,a(n)x
i
a(n) ≥ ci

n , n = 2, . . . , N
}
,

C = N∩
n=1

Cn and G = I∩
i=1

Gi .
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For each node n = 1, . . . , N and each location i = 1, . . . , I , we define the sets:

Ŷ i
n =

{
y = (x, v) ∈ R

N(r+1) : xi
n ∈ Xi

n, f i
n(xi

n) ≤ vi
n

}
,

Y i = N∩
n=1

Ŷ i
n , Yn = I∩

i=1
Ŷ i

n, and Y = I∩
i=1

Y i.

Abusing notation, we denote the objective function of the multistage problem in the
primal form by F : R

N(r+I ) → R:

F(y) =
I∑

i=1

N∑
n=1

πnv
i
n .

Theorem 4. Assume that the convex hull of the feasible set for the problem (26)–(30)
has nonempty relative interior. The geographical decomposition provides a better bound
for the optimal value than the nodal decomposition, i.e.,

sup
ν

Dd(ν) ≤ sup
λ

Dc(λ) ,

if and only if the following inequality holds true:

ρ(F, Y ∩ C, G) − ρ(F, Y ∩ G, C) ≥ 0.

Proof. According to Propositions 3 and 2 by relaxing the coupling and dynamic con-
straints one obtains a lower bound of the objective functions D̂c and Dd , respectively,
such that

D̂c = supλ Dc(λ) =
{

inf
∑I

i=1

[
F̂ iX c

i

]∗∗
(yi) : subject to (30)

}
,

D̂d = supν Dd(ν) =
{

inf
∑N

n=1

[
F̃ n

X d
n

]∗∗
(yn) : subject to (28)

}
.

We shall transform the latter problem by using the definition of the sensitivity measure.
Observe that X d

n = Yn ∩ Cn and X d = Y ∩ C. Let V denote the optimal value of the
multistage problem before relaxation. Then we have

D̂d = inf
{ N∑

n=1

[
F̃ n

X d
n

]∗∗ + δG

}

= inf
{ N∑

n=1

[ I∑
i=1

πnv
i
n + δYn∩Cn

]∗∗ + δG

}

= inf
{ N∑

n=1

I∑
i=1

πnv
i
n +

N∑
n=1

δ(Yn∩Cn)∗∗ + δG

}

= V − ρ(F, Y ∩ C, G)

= inf
{ N∑

n=1

I∑
i=1

πnv
i
n +

N∑
n=1

δ(Yn)∗∗ + δC + δG

}

+ρ(F, Y, G ∩ C) − ρ(F, Y ∩ C, G)
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On the other hand,

D̂c = inf
{ I∑

i=1

[
F̂ iX c

i

]∗∗ + δC

}

= inf
{ I∑

i=1

[ N∑
n=1

πnv
i
n + δY i∩Gi

]∗∗ + δC

}

= inf
{ I∑

i=1

N∑
n=1

πnv
i
n +

I∑
i=1

δ(Y i∩Gi)∗∗ + δC

}

= V − ρ(F, Y ∩ G, C)

= inf
{ N∑

n=1

I∑
i=1

πnv
i
n +

I∑
i=1

δ(Y i )∗∗ + δC + δG

}

+ρ(F, Y, G ∩ C) − ρ(F, Y ∩ G, C).

By using the same arguments as in the previous proof, we obtain that

N∑
n=1

δ(Yn)∗∗ =
N∑

n=1

I∑
i=1

δ
(Ŷ i

n)∗∗ =
I∑

i=1

δ(Y i )∗∗

Therefore, we arrive at the following chain of equalities:

D̂d = inf
{ N∑

n=1

I∑
i=1

πnv
i
n +

N∑
n=1

δ(Yn)∗∗ + δC + δG

}

+ρ(F, Y, G ∩ C) − ρ(F, Y ∩ C, G)

= inf
{ N∑

n=1

I∑
i=1

πnv
i
n +

I∑
i=1

δ(Y i )∗∗ + δC + δG

}

+ρ(F, Y, G ∩ C) − ρ(F, Y ∩ C, G)

= D̂c + ρ(F, Y, G ∩ C) − ρ(F, Y ∩ C, G) − ρ(F, Y, G ∩ C) + ρ(F, Y ∩ G, C)

= D̂c − ρ(F, Y ∩ C, G) + ρ(F, Y ∩ G, C) .

This proves the assertion. �
Analogously to the comparison of scenario and geographical decomposition we

obtain the following corollary.

Corollary 2. Assume that the convex hull of the feasible set for the problem (26)–(30)
has nonempty relative interior.

(1) If the set Y ∩G is C-convex, then the geographical decomposition provides a better
bound for the optimal value than the nodal decomposition, i.e.,

sup
λ

Dc(λ) ≥ sup
ν

Dd(ν) .
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(2) If the set Y ∩ C is G-convex, then the nodal decomposition provides a better bound
for the optimal value than the geographical decomposition, i.e.,

sup
ν

Dd(ν) ≥ sup
λ

Dc(λ) .

In general, the calculation or estimation of the measure ρ is a difficult task. A general
method for evaluating the measure is beyond the scope of this paper. However, the suffi-
cient conditions in terms of set-convexity provided in both corollaries are verifiable for
some stochastic integer optimization problems.

Example 3. We consider a multistage stochastic integer program with a linear objective
function and loosely coupled locations. Since there is no need to introduce the variable
v, the set � in Theorem 3 is of the form

� = X ∩ G = I∩
t=1

S∩
s=1

[
(

T∩
t=1

Xi
s,t ) ∩ Gi

s

]
,

where Gi
s := {

x ∈ R
T Sr : A

t,i
s,t x

i
s,t + A

t,i
s,t−1x

i
s,t−1 ≥ ci

s,t , t = 2, . . . , T
}
. Let M

denote the polyhedron given by the coupling constraints and N be the nonanticipativity
subspace of R

T Sr . We assume that G ∩ M ∩ N is a rational and bounded polyhedral
subset of R

T Sr . Then we may assume that X is a bounded subset of the set Z
T Sr of all

integral vectors of dimension T Sr having the property

Z
T Sr ∩ G ∩ M ∩ N = X ∩ G ∩ M ∩ N .

If the polyhedron G ∩ M ∩ N is integral (cf. Example 2), we have
(
Z

T Sr ∩ G ∩ M ∩ N )∗∗ = G ∩ M ∩ N .

In this case, both set-convexity conditions of Corollary 1 are satisfied. Hence, if the
relative interior of G ∩ M ∩ N is nonempty, the duality gaps of scenario and geograph-
ical decomposition are identical and both are smaller than for nodal decomposition
(Theorem 2).
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