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Abstract: A power generation system comprising thermal and pumped
storage hydro plants is considered. Two kinds of models for the cost-optimal 
generation of electric power under uncertain load are introduced: (i) a dy
namic model for the short-term operation and (ii) a power production plan
ning model. In both cases, the presence of stochastic data in the optimization 
model leads to multi-stage and two-stage stochastic programs, respectively. 
Both stochastic programming problems involve a large number of mixed
integer (stochastic) decisions, but their constraints are loosely coupled across 
operating power units. This is used to design Lagrangian relaxation methods 
for both models, which lead to a decomposition into stochastic single unit 
subproblems. For the dynamic model a Lagrangian decomposition based al
gorithm is described in more detail. Special emphasis is put on a discussion 
of the duality gap, the efficient solution of the multi-stage single unit sub
problems and on solving the dual problem by bundle methods for convex 
nondifferentiable optimization. 
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1 Introduction 

The efficient operation and planning of electric power generation systems play 
an important role for electric utilities as well as the whole human activity. 
On the one hand, the efficient use of the available fuel for the production 
of electrical energy is of growing importance, both monetarily and because 
most of the primary energy sources, which today's energy supply is based 
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on, are not renewable and have limited scope. Savings of a small percentage 
in the operation of a moderately large power system represent a significant 
reduction in operation cost as well as in the quantities of fuel consumed. 
On the other hand, in the future, the human community and, in particu
lar, the power supply industry will be confronted with general economic and 
ecological conditions that are partly contradictory and aggravating. Some of 
these conditions are the rise in global energy demand, the scarcity of essen
tial resources and the limits to the local and global environmental damage. 
Another contemporary challenge for the electric utility industry arises from 
the changes of market structures for electric power. There has been a world
wide movement towards deregulation of the electric utility industry and an 
opening of the market to nonutility participants. Moreover, there are plans 
to open the use of the transmission system in the European Community. 
All this has led and will further lead to a growth of the number and size 
of energy transactions. This development raises questions about the prices 
involved which are based on market actions rather than on costs as in tradi
tional delivery contracts. 
These issues have motivated a growing interest in applying mathematical 
modelling and optimization techniques for optimal system operation. In
deed, there is already a long tradition for applying mathematical program
ming methods and software to the solution of many relevant engineering 
problems (e. g. economic dispatch and unit commitment; see [67], [69] and 
the references therein). The recent substantial progress in many areas of 
mathematical optimization (e. g. in linear, mixed-integer, nonlinear, nondif
ferentiable and stochastic programming) opens the road to solving more and 
more involved models (e. g. [22]). Such complex and large optimization mod
els arise, for instance, for the optimal operation of a hydro-thermal system 
when including additional aspects like data uncertainty, other regenerative 
sources of energy, the mid-term management of reservoirs, electricity trad
ing etc. Models of this type are usually characterized by a combination of 
several difficulties like continuous as well as binary decision variables, very 
large dimension, nonlinearities (e. g. in hydro modelling, fuel costs, price 
structures in fuel as well as in electricity purchases) and the uncertainty of 
problem data (e. g. uncertainty of load forecasts, streamflows to reservoirs, 
pricing schemes, generator failures etc.). 
The present paper aims, in particular, at applying a mathematical methodol
ogy, called stochastic programming, for handling uncertain data in optimiza
tion models. Stochastic programming is mostly concerned with problems 
that require a here-and-now decision on the basis of given probabilistic in
formation on random quantities, but without making further observations. 
Possible formulations of stochastic programming models depend on when 
decisions must be taken relative to the realization of the random variables 
(e. g. at several stages in a dynamic model), the degree to which the con
straint structure must be satisfied (e. g. with some probability), and the 



24 

choice of the (stochastic) objective function (e. g. expected costs). 
Stochastic programming approaches for tackling models in electric power 
generation under uncertainty have already found considerable attention (d. 
chapters 24-26 in [17] for earlier works). We briefly mention here some of 
the recent and relevant works in this direction. A multi-stage stochastic op
timization model for the optimal scheduling of a hydro-thermal generation 
system with uncertain inflows is developed in [51]. The authors present a 
solution strategy based on Benders decomposition and test results for a sys
tem comprising 39 hydroelectric plants, one aggregate thermal unit and a 
yearly planning period with monthly stages. The paper [10] offers an aug
mented Lagrangian decomposition technique for scheduling power systems 
under random disturbances which are modelled by scenario trees. In [32] a 
multi-stage stochastic program for scheduling hydroelectric generation under 
uncertainty is described and solved by an enhanced version of nested Benders 
decomposition. The paper also reports on the generation of monthly stream
flow scenario trees and on model validation in the user's environment of the 
Pacific Gas & Electric Company. In [11] stochastic programming techniques 
based on Benders decomposition and importance sampling are applied to 
the facility expansion planning of electric power systems under uncertainty 
of the availability of generators and transmission lines, and on the demand. 
Schemes for the pricing of electric power, which is subject to demand and sup
ply uncertainties, are designed and compared in [31] by means of a two-stage 
stochastic recourse model. The following papers deal with power scheduling 
under uncertain load. A two-stage stochastic program with simple recourse 
for the daily economic dispatch in a thermal power system is developed and 
solved in [8] under the assumption that the marginal distributions of the load 
are normal. In [25] and [26], this model is extended to power systems compris
ing thermal and pumped-storage hydro units and general load distributions. 
The extended model is solved by combining a smooth nonparametric estima
tion procedure for the marginal load distributions with standard nonlinear 
programming methods and it is validated by solving the daily economic dis
patch problem of a system involving 24 thermal and 5 pumped-storage plants. 
Further extensions of the latter model by allowing for more general dynam
ics between decision and observation and for more appropriate recourse cost 
functions are discussed in [23] and [58]. These models do not yet include 
start-up and shut-down decisions into the optimization process. This is real
ized in [65], where a stochastic unit commitment problem for a thermal power 
system and a corresponding solution technique based on progressive hedging 
are developed. The progressive hedging methodology (cf. [57]) leads to a 
successive decomposition into scenario subproblems, which are deterministic 
unit commitment problems, and solved by Lagrangian relaxation and by an 
adapted subgradient method for dual maximization. In [66], the authors re
port on encouraging test runs for large real-life models. 
The present paper aims at the development of two kinds of models for the 
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cost-optimal scheduling of electric power in a hydro-thermal generation sys
tem under uncertain load: a dynamic stochastic recourse model for the short
term operation and a two-stage stochastic production planning model. Both 
models are further extensions of the stochastic models described in [25), [23) 
and [58]. They represent mixed-integer stochastic optimization problems 
which are large-scale for moderately large power systems. The second aim 
of the present paper consists in designing Lagrangian decomposition proce
dures for the two models by exploiting the particular structure of coupling 
constraints. 
The models arise from a cooperation with the electric utility VEAG Vere
inigte Energiewerke AG, which supplies the Eastern part of Germany. The 
VEAG owned generation system (in 1995) consists of 25 (coal-fired or gas
burning) thermal units and 6 pumped-storage hydro plants. Its total capac
ity is about 13.150 megawatts (MW) including a hydrogeneration capacity of 
1.700 MW; the systems peak load amounts to 8.620 MW (in 1995). Hence, 
optimal scheduling of the VEAG-system exhibits two special features: the si
multaneous optimization of thermal and hydro capacity is indispensable and 
the model is more large-scale than ever when including stochasticity. This 
gives rise to the need of solution algorithms for large-scale stochastic opti
mization problems which allow for handling mixed-integer decisions. 
Existing solution procedures for large-scale stochastic programs are mostly 
based on approximating the underlying probability distribution by a dis
crete measure having finite support and on utilizing decomposition tech
niques for solving the large-scale approximate (deterministic) programs. For 
an overview and a discussion of much of the work done in this direction 
we refer to [15], [17], [20], [33], [52], [68]. In addition, we mention some of 
the recent relevant papers on decomposition approaches in stochastic pro
gramming. Primal decomposition techniques are based on the L-shaped or 
Benders decomposition method ([63]), its nested extension for multi-stage 
models ([4], [24]), and on regularized decomposition ([60]). A second group 
of (sometimes called dual or scenario) decomposition methods relax non an
ticipativity constraints by introducing Lagrangian terms. For instance, the 
progressive hedging algorithm ([57]) and the scenario decomposition methods 
in [46], [59] are based on introducing augmented Lagrangians. Another aug
mented Lagrangian method by relaxing the recourse constraints is developed 
in [12]. A third group of methods consists of algorithms that combine decom
position and sampling techniques in various ways. For instance, sampling 
techniques are used for the generation of cuts in stochastic decomposition 
methods ([28]), for the efficient calculation of multivariate expected values 
by importance sampling ([30]), and for reducing the large dimensionality via 
EVPI-sampling ([13]) within nested Benders decomposition. Methods of a 
fourth group combine decomposition schemes and iterated approximations 
via refinement strategies (cf. [20], [21) and chapt. 3.5 in [33]). 
Most of these numerical methods cannot be applied directly to stochastic 
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programs involving integrality constraints. Methods for solving (mixed-) in
teger stochastic programs are rather rare. We refer to [62] for a brief overview 
of some recent approaches to stochastic integer programming. Moreover, let 
us mention a recently developed stochastic branch and bound method ([61]) 
and a dual decomposition method based on relaxing the scenario constraints 
and on (deterministic) branch and bound techniques ([9]), which also applies 
to mixed-integer situations. 
Our paper is organized as follows. We introduce and discuss the two stochas
tic power scheduling models in Section 2. In Section 3 we briefly recall the 
Lagrangian relaxation approach and review some recent progress in solving 
the nondifferentiable duals. In the remaining two sections we develop La
grangian decomposition methods for the dynamic recourse as well as for the 
two-stage stochastic model by relaxing coupling constraints. The dualization 
argument and the duality gap, the separability structure and the solution of 
the stochastic single unit subproblems are discussed in more detail for the 
dynamic model. 

2 Models 

2.1 Modelling a :Hydro-Thermal System 

We consider a power generation system comprising (coal-fired and gas-burn
ing) thermal units, pumped-storage hydro plants and interchange contracts 
between interconnected utilities. We will develop and describe a mathemat
ical model for a power system of this kind which has its origin in the earlier 
papers [25], [26]. The models allow for the simultaneous scheduling of all 
units and contracts over a certain time horizon. 
Let T denote the number of time intervals obtained by discretizing the oper
ation horizon. This discretization may be chosen uniformly (e. g. hourly or 
half-hourly) or non-uniformly. Let I and J denote the number of thermal and 
pumped-storage hydro units in the system. Delivery contracts are regarded 
as particular thermal units, but may have cost functions that are essentially 
different (e. g. nonconvex) from typical thermal costs. The decision variables 
in the model correspond to the outputs of each unit, i. e., the electric power 
generated or consumed by each unit of the system. These decision variables 
are denoted by 

, i = 1, .. . ,1 , t = 1, ... ,T, 
, j = 1, ... ,J , t= 1, ... ,T, 

where u~ E {O, I} and p~ are the onloff decisions and the production levels 
of the thermal unit i during the time period t. Correspondingly, s~, w} are 
the generation and pumping levels of the pumped-storage plant j during the 
period t, respectively. Thus, u~ = 0 and u~ = 1 mean that unit i is off
line and on-line during period t, respectively. Further, by i} we denote the 
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storage volume in the upper reservoir of plant j at the end of interval t. All 
variables mentioned above have finite upper and lower bounds representing 
unit capacity limits and reservoir capacities of the generation system: 

min t < t < max t t E {O I} . - 1 I Pit Ui _ Pi _ Pit Ui, Ui " l - , ... , , 

o < st, < sl!'ax 0 < W~ < wmax - i - Jt , - J - Jt , 
0::; i j ::; iTtax,j = 1, ... , J, t = 1, ... , T. 

t = 1, .. . ,T, 
(2.1 ) 

The constants pt,nin pt,nax sl!'ax wl!'ax and il!'ax denote the minimal/maximal tt , tt , Jt , Jt, Jt 

outputs of the units and the maximal storage volumes in the upper reservoirs 
during period t, respectively. The dynamics of the storage volume, which is 
measured in electrical energy, is modelled by the equations: 

it-1 t t = j - Sj + 'TJjWj 
= p,n iT = i end 

J ' J J 

, t = 1,oo.,T, 
j = 1, 00., J. 

(2.2 ) 

Here, i~n and ijnd denote the initial and final volumes in the upper reservoir, 
respectively, and 'TJj is the cycle efficiency of plant j. The cycle efficiency is 
defined as the quotient of the generation and of the pumping load that corre
spond to the same volume of water. The equalities (2.2) show, in particular, 
that there occur no in- or outflows in the upper reservoirs and, hence, that 
the pumped storage plants of the system operate with a constant amount 
of water. Together with the upper and lower bounds for i} the equations 
(2.2 ) mean that certain reservoir constraints have to be maintained for all 
pumped-storage plants during the whole time horizon. 
Further single-unit constraints are minimum up- and down-times and possible 
must-on/off constraints for each thermal unit. Minimum up- and down-time 
constraints are imposed to prevent the thermal stress und high maintenance 
costs due to excessive unit cycling. Denoting by Ti the minimum down-time 
of unit i, the corresponding constraints are described by the inequalities: 

U~-l-u~::;l-ui, T=t+1,oo.,min{t+Ti-1,T}, t=l,oo.,T. (2.3 ) 

Analogous constraints can be formulated describing minimum-up times. Note 
that further single-unit constraints could be added, such as generator fuel 
limit constraints or air quality constraints in the form of limits on emissions 
from fossil-fired units. 
The next constraints are coupling across the units: the loading and reserve 
constraints. The first constraints are essential for the operation of the power 
system and mean that the sum of the output powers is greater than or equal 
to the load demand in each time period. Denoting by dt the load demand 
during period t, the loading constraints are described by the inequalities: 

I J 

LP~ + 2)s} -W}) ~~, t = 1,oo.,T. (2.4 ) 
i=l j=l 

In order to compensate unexpected events within a specified short time pe
riod, a spinning reserve, describing the total amount of generation available 
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from all units synchronized on the system minus the present load, is pre
scribed. For instance, such events are sudden load increases and the outage 
of one or more units. Beyond spinning reserve various classes of off-line re
serves may be involved. These include gas-turbine units and pumped-storage 
hydro plants that can quickly be brought on-line and up to full capacity. 
Hence, the spinning reserve constraints concern the synchronized thermal 
units and are given by the following inequalities: 

I 

L(PuaxU~ - pD ~ rt, t = 1, ... , T, (2.5 ) 
i=1 

where rt > 0 is a specified spinning reserve in period t. 
The objective function is given by the total costs for operating the thermal 
units. These costs consist of the sum of the costs of each individual unit over 
the whole time horizon, i. e., 

I T 

L L [FCit(pL uD + SCit (Ui{t))] , (2.6 ) 
i=1 t=1 
where FCit is the fuel cost function and SCit are the start-up costs for the 
operation of the thermal unit i during period t. We make the natural as
sumption that FCit{O, 0) = 0 and that FCit {·, 1) is strictly monotonically 
increasing. Often fuel cost functions are piecewise linear-quadratic and con-
vex, i. e., they are functions of the form . 

FCit(p, u) = max fii(P) + U Ci, 
l=1 ..... L 

(2.7 ) 

where fii are linear or convex quadratic functions having the property 
max fu{O) = 0 and Ci is a fixed cost term. Non-convex set-ups for fuel costs 

l=1 ..... L 
are also possible and of particular importance for modelling costs in delivery 
contracts including discounts. Typical cost functions of this kind are general 
piecewise linear functions. Note that such functions can be modeled using 
binary variables for selecting the correct line segment for a given value of p 
(see e. g. [47]). 
The start-up costs SCit (Ui(t)) , where Ui(t) = (uL ... ,uD, can vary from a 
maximum cold-start value to a much smaller value when the unit i is still 
relatively close to the operating temperature. A simple description for start
up costs is given by 

SCit (Ui(t)) = cf max {u~ - U!-1 ,O}, t = 2, ... ,T, 

where cf are fixed costs. This description has the advantage that it can be 
expressed in linear terms. On the other hand, it does not reflect that the 
costs depend on the cooling time. Alternatively, a more involved start-up 
cost function, which is time-dependent, is given by 

SCit (Ui{t)) = (cf + Of (1- exp{-{t - tS.)/Oi))) max{u~ - u~-1, O}, 
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where C{ are again fixed costs, Cf cold-start costs, O!i the thermal time con
stant for the unit i and t - ts; the down-time of unit i until period t, i. e., 

- { IN. t-j - t-l . - 2 } Si - max S E . ui - ui ,J - , ... , S • 

Altogether, minimizing the objective function (2.6 ) subject to the constraints 
(2.1 )-(2.5 ) leads to a cost-optimal schedule for all units of the power system 
during the specified time horizon. It is worth mentioning that a cost-optimal 
schedule has the following two interesting properties, which are both a conse
quence of the strict monotonicity of the fuel costs. If a schedule (u, p, S, w) is 
optimal, then the loading constraints (2.4 ) are typically satisfied with equal
ity and we have s}w} = 0 for all j = 1, ... ,J, t = 1, ... ,T, i. e., generation 
and pumping do not occur simultaneously (see [27)). 
The minimization problem (2.1 )-(2.6) represents a mixed-integer program 
with (possibly) nonlinear objective, linear constraints, and IT binary and 
(I + 2J)T continuous variables, respectively. For a typical configuration of 
the VEAG owned generation system with I = 22 (thermal), J = 6 (hydro) 
and T = 192 (i. e., 8 days with hourly discretization), this amounts to 4224 
binary and 6528 continuous variables. 

. , 
"-": :: 

'. 
'. 

'::' ':, 
~: 

\--.1 

load ..... . 
thermal generation -

hydro generation ----. 
hydro pumping .......... . 

Fig. 1: load curve and hydro-thermal schedule 

For this park of the power system and for a peak load week, Figure 1 shows a 
typical load curve and a corresponding cost-optimal hydro-thermal schedule. 
Note that the mixed-integer program is solved by the methods described in 
[14], which Figure 1 is taken from. The load curve in Figure 1 shows two 
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types of cycles: In general, the load is higher during the morning and the 
early evening (peak), with a small valley during the early afternoon, and it 
is lower during the night. In addition, the consumption of electric power 
exhibits a weekly cycle, because the load is lower over weekend days than 
weekdays. The efficient operation of pumped-storage hydro plants exploits 
these two cycles. They are designed to save fuel costs by serving the peak 
load with hydro-energy and then pumping to refill the reservoir during off
peak periods, i. e., during the nights and weekends. The hydro schedule in 
Figure 1 reflects this typical operation of pumped-storage plants. They may, 
in fact, be operated on a daily or weekly cycle. Figure 1 records a schedule 
when operating on a weekly cycle. The remaining load, i. e., the difference 
between the original system load and the hydro schedule, shows a much more 
uniform structure than the original load. This portion of the load is covered 
by the total thermal output. Among the thermal plants of the system, the 
base-load units are loaded nearly 100% of the time horizon and the" cycling" 
units are loaded for periods depending on their costs and the shape of the 
load pattern. 
So far we have tacitly assumed that the electrical load is deterministic over 
the whole time horizon. In electric utilities, schedulers forecast the electrical 
load for each time period of the day or week in advance. For this purpose 
they make use of historical load data (e. g. of the same week from previous 
years), of their personal experience and of statistical methods (e. g. time 
series or regression analysis). But, clearly, the actual load demand may devi
ate from the predicted load at any time period for various reasons. Usually 
electric utilities record the actual system load and save the data over several 
years. These statistical data provide a basis for the development of stochastic 
models for the load process and the optimization of power scheduling. 
Next we decribe two stochastic models for the optimal scheduling of electric 
power which differ mainly in the quality of available information on the load 
stochasticity. The first one represents a model for the optimal on-line or 
short-term operation of a power system, where future consequences of actual 
scheduling decisions as well as the future load uncertainty are taken into ac
count. In this model we assume that the load is completely known (i. e., 
deterministic) at the beginning of the time horizon and that the load uncer
tainty increases with the growing number of time periods. Secondly, a model 
for short- or mid-term power production planning is developed. The essential 
difference to the first model is that the quality of available information on 
the load uncertainty does not depend on time. It aims at determining (op
timal) power production schedules for a future planning period (e. g. next 
week or month). The second model represents a two-stage stochastic pro
gram, whereas the first one is a dynamic (multi-stage) stochastic optimization 
problem. Both models involve mixed-integer decisions in all stages. 
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2.2 Dynamic Recourse Model 

We assume that the load {£if : t = 1, ... ,T} forms a (discrete-time) stochastic 
process on some probability space (0, A, p,), that the information on the load 
is complete for t = 1, and that the uncertainty increases with growing t. Let 
{At: t = 1, ... , T} be the filtration generated by the load process, where At 
is the p,-completed IT-field defined by the random vector (dl, ... , £if). Hence, 
we have Al ~ A2 ~ ... ~ At ~ ... ~ AT ~ A and Al is the p,-completion of 
{0,0}. The sequence of scheduling decisions {( ut , pt, st, wt) : t = 1, ... ,T} 
also forms a stochastic process on (0, A, p, ), which is assumed to be adapted 
to the filtration of IT-fields, i.e., nonanticipative. The latter condition means 
that the decision (u t , pt, st, wt) depends only on the data history (dl , ... , £if) 
or, equivalently, that (u t , pt, st, wt) is Armeasurable. We mention that this 
condition is often formulated in terms of a closed linear subspace that is deter
mined by the conditional expectations with respect to the IT-fields At ([55], 
[12]). Since all decision variables are uniformly bounded, we may restrict 
our attention to decisions (u, p, s, w) belonging to £00 (0, A, p,; IRm), where 
m := 2(1 + J)T. Then the nonanticipativity condition can be formulated 
equivalently as 

T 
X = (u, p, s, w) E x £00 (0, At, p,;IRmt) , 

t=1 
(2.8 ) 

where mt := 2(1 + J), and the (stochastic) optimization problem consists in 
minimizing the expected cost (cf. (2.6)) 

F(x) = IE {t, t, [FCit (pL uD + BCit (Ui(t))] } (2.9 ) 

over all decisions (u, p, s, w) satisfying the nonanticipativity constraint (2.8 ) 
and p,-almost surely the constraints (2.1 )-(2.5). Among the constraints 
(2.1 )-(2.5 ), (2.2) and (2.3) reflect the dynamics of the model and (2.4 ), 
(2.5 ) are coupling across units. Altogether, the stochastic program involves 
2(J + J)T stochastic decision variables and, hence, an enormous number of 
stochastic scheduling decisions for real-life power generation systems. It is a 
discrete time dynamic or multi-stage recourse problem, where the" stages" do 
not necessarily refer to time periods, but correspond to steps in the decision 
process where observations of the uncertain environment (i. e. the load) take 
place. The number K of stages of the dynamic model thus corresponds to 
the (maximal) number of time steps h = 1 < t2 < ... < tk < ... < tK+l = T 
such that we have the strict inclusion Atk C A tk+1 , k = 1, ... , K - 1 , for 
the IT-fields belonging to the filtration. 
For the numerical solution of the dynamic recourse model we now assume 
that a discrete multivariate probability distribution of the stochastic load 
vector 
d = (d l , . .. , dT ), whose finite support consists of the atoms or scenarios 
dn = (d;, ... , d'{;), with the probabilities 1rn = P, (d = dn ), n = 1, ... , N, is 
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given. Let nk, k = 1, ... ,K, denote the number of atoms corresponding to 
the a-field Atk • Then we have nl = 1 < n2 < ... < nk < ... < nK = Nand 
the following scenario constraints at each stage k E {I, ... ,K}: 

~k = d~k implies ~ = 4, for all t = 1, ... , tk. (2.10 ) 

Hence, the information on the load can be represented in the form of a sce
nario tree. Each path from the root to a leaf of the tree corresponds to one 
scenario; each branching node corresponds to a (decision) stage. Figure 2 
shows an example of a load scenario tree over a weekly time horizon, where 
observations of the load are made every day, leading to one additional daily 
scenario. 

k=1 k=8 

Mon The Wed Thu Fri Sat Sun 

Fig. 2: Load scenario tree 

The scenario information may have various origins. It can be obtained as 
an approximation of the multivariate load distribution, based on sampling 
from empirical data or on scenarios provided by experienced schedulers. We 
do not go into detail here, but refer to [16] (and the references therein) for a 
discussion of various approaches to the generation of scenarios that reflect the 
structure of the model as well as the information available on the underlying 
probability distribution. We also refer to [65] where several strategies for 
generating load scenarios (e. g. handling forecast uncertainty) are discussed. 
Although the primary aim of generating a scenario tree is to obtain a reason
able approximation for the underlying probability distribution, a compromise 
between the quality of approximation and the size of the approximate prob
lem has to be taken into consideration, too. The size of the scenario based 
multi-stage model easily grows out of hand with increasing number of scenar
ios and stages. In order to illustrate this fact, let Ui,n, Pi,n, Sj,n, Wj,n, and 
lj,n, denote the n-th scenario of the variables Ui, Pi, Sj, Wj, and lj. Then 
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the scenario based model consists in minimizing the objective function 

NIT 

L L L 1l"n [FCit (ptn' utn) + SCit (Ui,n(t))] (2.11 ) 
n=l i=l t=l 

over all decisions {(un, Pn, Sn, Wn) : n = 1, ... ,N} satisfying the bound and 
integrality constraints (2.1 ), the system dynamics 

I t - It-l t + t lO - lin IT - lend . - 1 J j,n - j,n - Sj,n 'f/jWj,n, j,n - j' j,n - j ,J - , ... , , 

U~~l -utn ~ 1-ui,n' T = t+ 1, ... ,min{t+Ti -l,T}, 

t = 1, ... ,T, n = 1, ... ,N, 

the loading and reserve constraints 

I J I 

LPtn + L(stn - w!,n) ~ tt;, L (PUaxu!,n - pD ~ rt, 
i=l j=l i=l 

t = 1, ... , T, n = 1, ... , N, 

and the scenario nonanticipativity constraints, i.e., the equality 

( t t t t) (t t t t) 
~,~,~,wn = ~,~,~,wft 

(2.12 ) 

(2.13 ) 

for t = tk implies that the same equality holds for all t = 1, ... , tk, k = 
1, ... ,K. 
When regarding the nonanticipativity constraints and introducing decision 
variables at each node of the scenario tree, the number of decisions in the 
(deterministic) optimization model (2.11 )-(2.13 ) amounts to 

K 
2(1 + J) E nk (tk+l - tk)' Hence, the model may easily become extremely 

k=l 
large if the scenario tree contains too many paths. Even for the (very) small 
scenario tree in Figure 2 (i. e., with K = 7, nK = K and tk+1 - tk = 24) 
the model involves 672·1 binary and 672· (1 + 2J) continuous variables and 
standard methods including those reviewed in Section 1, may not be able to 
solve the problem in reasonable time. This requires other techniques that 
exploit the underlying structure of the original stochastic model. 

2.3 Two-Stage Stochastic Model 

Again we assume the load {£if: t = 1, ... ,T} to be given as a (discrete-time) 
stochastic process on some probability space (0, A, J.L). However, this time 
the load process does not involve an information structure and the decision 
process consists of two stages where the first-stage decisions correspond to 
the here-and-now schedules for all power generation units over the whole time 
horizon. The second-stage decisions correspond to future compensation or 
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recourse actions of each unit in each time period in response to the environ
ment created by the chosen first-stage decision and the load realization in 
that specific time period. Hence, the aim of such a two-stage dynamic model 
can be formulated as follows: Find an optimal schedule for the whole power 
system and planning horizon such that the uncertain demand can be com
pensated by the system, all system constraints are satisfied and the sum of 
the total generation costs and the expected compensation costs is minimal. 
In order to give a mathematical formulation of the model, let (u, p, s, w) de
note the first-stage scheduling decisions as in Section 2.1 and (u, p, 5, w) de
note the stochastic compensation decisions having the components u~, p~, 5~, 
w~, i = 1, ... ,1, j = 1, ... , J, t = 1, ... , T, which correspond to the com
pensation actions of each unit at time period t. 
In addition to the (non-stochastic) constraints for (u, p, s, w), (2.1) (ca
pacity limits), (2.2 ) (storage dynamics), (2.3) (minimum down-time con
straints) and (2.5 ) (reserve constraints), we have to require that the compen
sation actions also satisfy certain system constraints. These are the unit ca
pacity limits, minimum-down time constraints and reservoir capacity bounds 

(2.14 ) 

u:-1 - u! ~ 1- ui, T = t + 1, ... ,min{t + Ti -1, T}, i = 1, ... ,1, (2.15 ) 

o < w~ + w~ < w~ax 
- J J - Jt , 

(2.16 ) 

j = 1, ... , J, t = 1, ... , T, Jl. - a. s. 

In other words, the constraints (2.16) for the hydro scheduling decisions 
mean that the sum of first-stage decisions and recourse actions is feasible, 
too. The formulation (2.14 ) of the thermal unit capacity limits for the com
pensation stage becomes more involved because the term p~u~ introduces a 
nonlinear constraint connecting first- and second-stage variables. The non
linearity in (2.14 ) is avoided when requiring that a thermal unit, which is 
scheduled to be on-line in the first-stage, must not be off-line in the compen
sation action. In this case, (2.14 ) can be replaced by the (linear) constraints: 

(2.17 ) 

This formulation of the thermal unit capacity limits seems to be quite natural 
and realistic because generation systems often possess sufficient flexibility 
to compensate load decreases by lowering output levels of thermal units. 
However, there might be a need for new on-line units in order to compensate 
unpredictable load increases. Another possible compensation strategy could 
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be based on a subdivision of the set of available thermal units into two sets 
Ii and I2 such that Ii U I2 = {1, ... , I} and the conditions 

u~=uLiEI1' andu~~uL iEI2,t=1, ... ,T,/-L- a.s., 

are satisfied. This means that only some of the available thermal units may 
change their on/off state when compensating uncertain load. From a mod
elling point of view this strategy would lead to a reduction of the number of 
binary variables. 
In the following, we always assume that (2.17) instead of (2.14 ) is satisfied. 
Observe that the conditions (2.15) and (2.17) imply (2.3). 
The loading constraints (2.4 ) are modified by requiring that the sum of the 
first-stage power outputs of all generation units satisfies the load with some 
probability 7ft E (0,1) in period t, t = 1, ... , T, and that the sum of the total 
power outputs satisfies the load with probability one. Denoting by Fdt the 
distribution function of a:, the (modified) loading constraints are given by 
the following inequalities: 

I J 

LP~ + L(8; - w;) ~ Fa; 1 (7ft), t = 1, ... , T, (2.18 ) 
i=l j=l 

I J 

L(P~ + pD + L(8; + S; - (w; + w;)) ~ dt , t = 1, ... ,T,/-L - a.s. (2.19) 
i=l j=l 

A variant of (2.18 ), which will be considered in Section 5, is that the term 
Fa;l(7ft) is replaced by the expected load IE(dt ), t = 1, ... , T. In both cases, 
the constraint (2.18 ) means that the sum of the first-stage output power 
satisfies a certain predicted or approximated load and the second-stage deci
sions take care of satisfying the stochastic load with probability one. 
Since the real operation of the system takes place during the compensation 
action, the objective function corresponds to the total average costs for op
erating the thermal units, i. e., 

IE {t, t, [FCit (p~ + pL un + sCit (Ui(t))] } (2.20 ) 

where FCit and SCit denote the fuel cost and start-up cost functions, respec
tively, for the operation of unit i during period t, and Ui(t) := (ut,···, uD. 
The stochastic power production planning model consists then in minimiz
ing the objective function (2.20 ) over all deterministic decisions (u, p, 8, w) 
and all stochastic decisions (u, p, s, w) E £00(0" A, /-L; JRm) satisfying the 
constraints (2.1 ), (2.2 ), (2.5 ), (2.15 )-(2.19 ). The model represents a two
stage stochastic mixed-integer program involving 2(1 + J)T deterministic and 
2(1 + J)T stochastic decision variables. Similar to the dynamic model in the 
previous section, only the loading constraints (2.18 ), (2.19 ) and the reserve 
constraints (2.5 ) are coupling across units. 
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3 Lagrangian Relaxation Approach 

lagrangian relaxation.is a solution technique primarily for minimizing a non
smooth function. We would like to recall the basic ideas and some facts in 
order to clarify the reasons that make this approach appropriate for solving 
the problems introduced in the previous section. Our presentation is inspired 
by [40]. Let us consider an optimization problem 

min f(x) subject to x E C, g(x) ~ 0, (3.1 ) 

where f : lRn -+ lR, C ~ lRn, 9 : lRn -+ lRm. We make the general 
assumption that f and gj, j = 1, ... , m are convex functions and there exists 
an x E C: g(x) ~ o. 
We suppose that the functions f and 9 and the set C have some special 
structure, which makes the Lagrangian problem 

min [L(x, oX) = f(x) + oXg(x)] subject to x E C (3.2 ) 

much easier to solve than the problem (3.1 ), where oX E lR+. Let us assume 
the following: 

(A) For all oX E lR+ there exists an element X A E C such that 
e(oX) = minL(x, oX) = L(XA' oX). 

xEC 

Be aware that L(·, oX) may have several minima for some oX, but e(oX) is well
defined, since the minimal value is non-ambiguous. By the weak duality 
theorem, we have 

e(oX) ~ micnL(x, oX) ~ f(x) 
xE 

for all feasible points x in (3.1 ). The following statement is straight-forward 
but important. 

Proposition 3.1 ([18]) Any solution x of the Lagrangian problem (3.2) 
solves the perturbed problem (3.3 ): 

min f(x) subject to x E C, -g(oX) ~ g(x), 

where g(oX) = -g(x). 

Proof: For any feasible x in (3.3) and oX E lR+ we have 

f(x) > f(x) + oX[g(x) + g(oX)] 
= L(x, oX) + oXg(oX) ~ L(x, oX) - oX . g(x) 

f(x) 

(3.3 ) 

o 
We conclude that if x is "almost feasible" , it is "almost a solution" of (3.1 ). 
If we succeed in finding a solution to (3.2 ) which is also feasible for (3.1 ), 
then we have a solution to (3.1 ), because the inequality of (3.3 ) is satisfied. 
Having in mind the weak duality theorem, it is clear that any feasible point 
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x of (3.1 ) produces an upper bound f(x) for 6(A). Hence, to solve (3.1 ) 
via (3.2 ) it is necessary to maximize 6 on IWf. 
We call 60 the dual function, A the dual variable, and the problem 

max 6(A) subject to A E lR~ (3.4 ) 

the dual problem to (3.1). We show that 6 is a concave function having 
subgradients at all A by virtue of the assumption (A). Let us denote a solution 
of (3.2 ) for 5. by x. 

6(A) min L(x, A) ::; L(x, A) 
",EO 

L(x, 5.) + (A - 5.)g(x) 
= 6(5.) - (A - 5.)g(5.) 

The latter inequality characterizes concavity and implies 

g(5.) E 8[-6(5.)] 

where 8[-6(5.)] stands for the sub differential of -6 with respect to A calcu
lated at the point 5.. 
Let us suppose that the problem under consideration has a separable struc
ture, i. e., the problem is of the following form: 

the variables x = (Xl, ... ,XfiJ and Xi E lRni i = 1, ... ,'ii, 
n 

the objective function f(x) = L fi(Xi) + fo, 
i=l 

n 
the related constraints gj(x) = L g}(Xi) + gJ, j = 1, ... , m, 

i=l 
where fo and gJ (j = 1, ... ,m) are constants. 
Let us further suppose some special structure of the set C. We assume the 
set C to be the following product 

C = (.~ {a, l}ni) x (. ~ Bi ), 
.=1 '='0+1 

where Bi ~ lRni are compact convex sets. This means that Xl, ... ,Xio are 
binary variables and we consider a mixed-integer problem. 
Furthermore, let us assume the functions Ii and g} to be convex piecewise 
linear or (piecewise) quadratic functions. Then L(·, A) is a convex function, 
too. 
The strong duality theorem does not apply due to the presence of integrality, 
i. e. the structure of the set C. However, we are in a favourable situation to 
have 

• the assumption (A) is satisfied, 

• decomposable structure of the relaxed problem, 

• description of the subgradients of 6(A). 
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We call the following optimization problem a continuous relaxation of the 
problem (3.1 ) 

minf(x) subject to x E 6, g(x) ~ 0, 
where 6 = (x~~dO, l]ni) x (Xf=io+l Bi). 

Proposition 3.2 The Lagrangian relaxation provides a better lower bound 
of the optimal value of (3.1 ) than the continuous relaxation of the problem. 

Proof: The following sequence of inequalities holds true for each A E 1R+: 

min f(x) ~ minL(x, A) ~ miI)L(x, A) 
xEC xEC xEC 

g(x):::;o 

This implies 
min f(x) ~ max miI)L(x, A) 
xEC AER+ xEC 

g(x):::;O 

The maximum above is attained at some AO since miI)L(x, .) is concave 
xEC 

piecewise linear or (piecewise) quadratic function bounded from above on 
1R+. Consequently, L(x, A) has a saddle point (AO,XAO ) and we obtain by 
virtue of the saddle point theorem: 

min f(x) ~ m~ miI)L(x, A) = L(AO,XAO ) = mil) f(x) 
xEC AER+ xEC xEC 

g(x):::;o g(x):::;o 

This proves the assertion. o 

Observe that L(x, A) has a separable structure with respect to the compo
nents Xi, which together with the special structure of G leads to a decom
position of the problem 3.2 into n subproblems of dimension ni each. The 
subproblems read 

m 

Pi (A) : min fi(Xi) + L Ajg} (Xi) subject to Xi E Gi, 
j=l 

where: C. _ { {o,l}ni 
t - Bi 

if l~i~io 
if io ~ i ~ ni 

Denoting the marginal functions ofthe problems above by 8 i (A) (i = 1, ... , n) 
we obtain for the dual function 

n m 

8 i (A) = L 8 i (A) + fo + L AjgJ 
i=l j=l 

Consequently, the dual problem has a separable structure, too. The latter 
observations make an approach to problems with decomposable structure via 
Lagrangian relaxation attractive. A solution procedure should include: 
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• a method for solving the non-smooth concave optimization problem 
(3.4 ). 

• fast algorithms for minimizing the Lagrange-function L(x, A) at a given 
point A, i. e., for solving the subproblems Pi(A), i = 1, ... , n. The 
solution provides then the value of e and its subgradients. 

• a technique to obtain a primal feasible solution. 

The latter point needs separate investigations. As already mentioned, a dual 
method does not provide a primal feasible solution due to the integrality 
conditions. Thus, we have to use the information on the dual solution to 
calculate a primal feasible point close to the dual solution efficiently. Due 
to the first proposition, such a procedure will obtain a fairly good point. In 
[2], it is shown that the relative duality gap for mixed integer problems with 
special structure becomes small under certain assumptions. We will see later 
how the estimate given there is modified for the dynamic recourse problem. 
Methods for non smooth optimization have been the subject of intensive devel
opment during the last 15 years. An algorithm for minimizing a convex func
tion known for a long time is the cutting-plane method. It develops the nat
ural idea to use subgradient-information and to generate a linear approxima
tion of the function associated with it. Let us suppose that, at a certain mo
ment, values f(xt}, ... , f(Xk) and subgradients Zl E 8f(xd,···, Zk E 8f(Xk) 
are available. We define 

ik(X) = max{f(xi)+ < Zi, x - Xi >, i = 1, ... , k} 

and, minimizing ik, obtain a further point XkH. It is assumed that ik is 
bounded from below on C and we are able to compute values and subgradi
ents of f. 
However, this algorithm has some well-known drawbacks. The initial itera
tions are inefficient. The number of cuts increases after each iteration and 
there is no reliable rule for deleting them. The minimization of the approx
imate function is sensitive when approaching a point of nondifferentiability. 
Further developments have led to the so-called bundle methods which offer 
a stabilizing device based on the following ingredients: 

• a sequence {xn} of stabilized iterates; 

• a criterion (test) deciding whether a new iterate has been found and (or) 
whether the bundle of information, i.e., the approximation ik, should 
be enriched; 

• a sequence {Mn} of positive definite matrices used for a stabilizing 
term. 

Bundle methods are pioneered by Wolfe and Lemarechal. A detailed study 
on the subject can be found in [35] and [29]. A comprehensive review is given 
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in [43]. One description of the main idea of (first-order) bundle methods is 
the following: 
Suppose iterate Xn and a bundle of subgradients Zk E 8f{Yk) have been 
computed. As above, we use the bundle of information to formulate a lower 
approximation of the function f, i. e., 
in{x) = max{f{Yi)+ < Zi, x - Yi >, i = 1, ... ,k}, and 

1. minimize in{x) + ~ < Mn{x - xn), x - Xn > 
and let the point x be its minimal point. 

2. compute a nominal decrease 
Q n = f{xn) - A{x) - ~ < Mn{x - xn),x - Xn > . 
A constant C E (O, 1) being chosen, we perform the descent test: 
f{x) ~ f{xn) - CQn 
If the inequality is satisfied we set Xn+1 = Xj Yk+l = x 
and increase n and k by 1. 
Otherwise, n is kept fixed, we set Yk+l = x and increase k by 1. In 
some versions (cf. [42]) an additional test is made before increasing k. 

3. The choice of {Mn} given in the literature is: 
- an abstract sequence, as in [39], 
- Mn == I, as in [34], 
- Mn = /LnI with heuristic rules for computing /Ln, in [36], [64], 
- solving a quasi-Newton equation in [42]. 

This description of the bundle methods corresponds to the proximal point 
concept (i. e., the Moreau-Yosida regularization). Recall that, given a positive 
semi-definite matrix M, 

F(x) = inf {f(Y) + ~ < M{y - x), Y - X> } (3.5 ) 

is the Moreau-Yosida regularization of the function f. In the classical frame
work M should be positive definite. In [42], it is suggested to allow a degen
erate proximal term and it is shown there that the essential properties can 
be reproduced also in this case. A relationship between these concepts and 
certain first order bundle methods was observed by several authors, e.g. [29]. 
Methods of order higher than one are studied in [36] and [64] where a single 
stabilizing parameter is varied. 
In [36] the choice of weights /L for updating the matrix in the proximal term 
is considered. The matrix M is intended to accumulate information about 
the curvature of f around the point x. Safeguarded quadratic interpolation is 
proposed for choosing the weights /Ln+1 so that the curvature of f between Xn 
and x is estimated. The algorithm computes a direction for the next iterate 
xn+1 by solving a quadratic program, then the descent test and the update 
of the bundle of subgradients are modified accordingly. The reported compu
tational experiments indicate that this technique can decrease the number of 
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objective evaluations necessary for reaching a desired accuracy in the optimal 
value significantly. 
The algorithms presented in [7], [42], [44], referred to as variable metric bun
dle methods, make use of the Moreau-Yosida regularization of the objective 
function and develop some quasi-Newton formulas. Two strategies for updat
ing the matrix M in the minimization procedure are suggested in [42]. In the 
first version, called diagonal quasi-Newton method, M is proportional to the 
identity matrix, while the second version uses a full quasi-Newton matrix. 
The matrix is updated at the end of a descent-step, when a new stabilizing 
iterate point is computed. The updating procedure corresponds to a regular
izing scheme for the gradient of F. 
In [44] M is a positive definite matrix and, thus, there is a unique solution 
of (3.5 ), which is denoted by y(x). The main idea is to approximate y(x) 
and to vary the matrix M in order to use the information gathered in finding 
one approximation to help in finding the next one. Let J be some approxi
mation of the Jacobian J(x) of y(x). A Newton step - [V2 FI'(x)r1 V F(x) 
is approximated there by 

[M(I - J)r 1 M(y(x) - x) = [1 - J]-l(y(X) - y), 

where 1 is the identity matrix. M could be fixed or updated by 

Mn =J.LnGn, 

where J.Ln is some constant and Gn is an estimate of V F computed by in
formation from previous iterations. How to compute the necessary estimate 
J of the Jacobian matrix of y(x) is discussed in detail in [44]. The method 
developed there is called approximate Newton-method. 
A precise study of the second-order properties of the Moreau-Yosida regu
larization is presented in [45] for the problem of minimizing a closed proper 
convex function, which is a selection of a finite number of twice continuously 
differentiable functions. It is proved that under certain constraint qualifica
tion the gradient V FM is piecewise smooth. Further conditions are formu
lated that guarantee a super linear (quadratic) convergence of an approximate 
Newton method for minimizing F. 
Generally, one can consider any Newton-type method for nonsmooth equa
tions in order to solve optimization problems. Newton-type methods in such 
a generality are considered in e. g. [38], [50], [53], [54]. The methods pre
sented there are applied to solving optimization problems via augmented 
Lagrangians [54], via the Karush-Kuhn-Thcker equations [38], [53] or via the 
Moreau-Yosida regularization [5]. 
Our review is not an attempt to comment all recent developments of solution 
techniques for nonsmooth optimization problems. We only wish to present 
the main ideas of the well-established methods in order to clarify which of 
them are appropriate for solving the nonsmooth problems studied in the next 
two sections. 
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4 Lagrangian Relaxation for the Dynamic 
Recourse Problem 

In this section, we consider the Lagrangian relaxation approach for the dy
namic recourse model (2.1 )-(2.9 ) in detail and sketch a conceptual algorithm 
for solving the problem. The decision variables are uniformly bounded func
tions (u, p, s, w) E X;=l Loo (0, At, J..L;IRmt), mt = 2(1 + J). The variables 
(Ui' Pi), i = 1, ... ,1, and (Sj, Wj), j = 1, ... , J, are associated with one sin
gle operation unit i, and j, respectively. All constraints except for (2.4 ) and 
(2.5 ) are associated with a single operation unit. Thus, natural candidates 
for the relaxation are the coupling constraints (2.4 ) and (2.5). We asso
ciate Lagrange multipliers Al and A2 with the load- and reserve-constraints, 
respectively. Setting x = (u, p, s, w) and 

L(x, A) IE Lt t~ [Feit (PL uD + seit (Ui(t))) 

+Ai (£if - it p~ - jtl (s; - Wj)) (4.1 ) 

+A~ (rt -it (U~ pilax - pD) } , 
we have to clarify what kind of objects Al and A2 are. Duality theorems 
for dynamic models that are relevant for our setting are considered in [56), 
[58). We utilize the results of [56). For stating a duality result we neglect 
integrality and substitute u~ E {O, 1} by u~ E [0, 1) in (2.1 ) for a moment. 
We denote the modified constraint by (2.1 )*. 
First, let us recall that the dynamic recourse problem has relatively complete 
recourse if the following procedure leads to a choice of decisions Xk, k = 
1, ... , K, almost surely for all stages k: Let Xl be a feasible solution of the 
first stage. In the second stage (having a new observation of the load), we 
can choose X2 satisfying the constraints and the dynamics of the system, i. e., 
in particular, (2.2 ) and (2.3 ) hold true with the corresponding components 
of Xl and X2. And so forth: In the k-th stage, we are able to choose a feasible 
decision X k . 

Nonanticipativity and relatively complete recourse provide sufficient condi
tions for considering Ll to be the space of Lagrange multipliers A, instead of 
working with esoteric objects from (Loo)* (cf. [56)). 
Suppose, additionally, that strict feasibility holds true. It means, that the 
feasible set determined by (2.1 )*-(2.5 ) has a non-empty interior in 
X7=1 Loo(O, At, J..L; IRmt ), i. .e., there exists a positive real number c, a point 
x E X7=1 Loo (0, At, J..L;IRmt) and a neighbourhood U of x such that any 
point X = (u,p,s,w) E U satisfies (2.1 )*-(2.3) and the inequalities: 

I J 

LP~+L(s;-w;)?:.d!+c, t=1, ... ,T, 
i=l j=l 
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I 

L(U!Puax-pD ~rt+c, t=I, ... ,T. 
i=l 

In terms of a power generation system, strict feasibility means that the gen
eration system should have the capacity to produce power that satisfies ev
ery slightly changed demand and reserve-condition regarding the other con
straints. This is a reasonable and acceptable restriction, which can be as
sumed to be satisfied. 
We denote 

x = { x E iE1 L oo (0, At, It; JRmt ): (2.1)* - (2.5) are fulfilled} ; 

The following duality statement holds true. 

Proposition 4.1 The Langrange function (4.1 ) has at least one saddle point 
(x, X) E X x A assuming (2.6 ), (2.7), relatively complete recourse and strict 
feasibility. In order that the function x E X be an optimal solution of the 
problem (2.1 ) - (2.9 ) it is necessary and sufficient that the following condi
tions be satisfied a.s. for some X E A : 

[df - t fi! - t (st, - w~)l = 0 
i=l j=l J J 

[rt - t (u!Puax - fin] = 0 
0=1 
( -t - t) E 8x L x ,A, t = 1, ... ,T. 

(4.2 ) 

Proof: The assertion follows by Theorem 1 and the arguments of Theorem 
7 from [56]. 0 

Now we consider the relaxed problem: 

min L(u, p, 8, w) subject to (2.1 ) - (2.3 ). 
(U,p,8,W) 

(4.3 ) 

Denoting the marginal function of the latter problem by 8()'), the dual prob
lem reads 

max 8()') subject to ). E A. (4.4 ) 

Now, we show that the dual problem is decomposable with respect to the 
single units. Using the notations of the previous section, we define 

Xi = (Ui' Pi), i = 1, ... ,1, x/+j = (8j, Wj), j = 1, ... ,J, fi = 1+ J, 
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and observe that all functions are separable with respect to Xi, i = 1, ... ,n. 
We define functions 8 i O and Sj(·): 

T 

= min IE 2: 
Ui t=l 

[ min {FCit (P}, uD - (Ai - A~)pH 
p~ 

+SCit (Ui(t)) - A~ u~ pit'ax] 

The latter equality holds by the separable structure of the functions FCit 

with respect to p~ and u~ (cf.(2.7 )) and the possibility to exchange min and 
IE in the above expression. 

Consequently, the function 8(A) can be expressed as: 

I J T 

8(A) = L 8 i (A) + L Sj(A) + IE L [Ai d! + A~ rt] 
i=l j=l t=l 

It has a separable structure with respect to the single units as do the con
straints (2.1 ) - (2.3 ), (2.6) - (2.8). Thus, the value and subgradients of 
8(A) can be computed for a given argument A by solving the subproblems 
PiCA), i = 1, ... ,I and Pj(A) j = 1, ... , J: 

T 

Pi(A): ~~nIE t'f [~~n {FCit (pL uD - (Ai - A~) pH + SCit(Ui(t)) 

T 
min IE 2: [-Ai (s) - w})] subject to (2.1 ), (2.2), (2.6) 

(Sj,Wj) t=l 

Note that these are dynamic recourse problems themselves associated with 
the single generation units. The subgradients of 8(A) with respect to Al and 
A2 are given by 

I J 

If - 2: p~ - 2: (s) - w}) and 
i=l j=l 

I 
rt - 2: (U~ pit'ax - pD, 

i=l 

where (uLpD and (s), wj) are solutions of PiCA) ,i = 1 ... , I, and Pj(A), j = 
1, ... ,J, respectively. 
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Now, we suppose that the measure f..L has a finite support. Then the dynamic 
recourse problem can be viewed as a large-scale finite-dimensional optimiza
tion problem. Let us check the properties of 0 discussed in the previous 
section. The concavity of 0 follows immediately. The assumptions of Propo
sition 3.1 and Proposition 3.2 are satisfied for this problem. Observe that the 
assumption (A) of Section 3 is satisfied, too, i. e., the feasible set with respect 
to the continuous variables is a compact set because of (2.1 ). Therefore, the 
necessary properties for a nonsmooth optimization method of the kind dis
cussed in Section 3 are at hand provided that efficient algorithms for solving 
the subproblems are available. Consequently, we shall have established an 
algorithm for solving the problem (2.1 ) - (2.9 ) if the following points are 
clarified: 

• approximation of the stochastic process d!- by a scenario tree; 

• choice of an appropriate method for solving the dual problem (4.4 ); 

• efficient algorithms for solving the subproblems Pi (.) , Pj (.), 

• gaining information from the solution of the dual problem (4.4 ) for 
computing a primal feasible solution (Lagrangian heuristics) and pro
viding an estimation of the occurring relative duality gap. 

Let us comment on all of these points. The stochastic process dt can be 
approximated by means of an analysis of statistical data using also expert 
knowledge. The first thing to clarify is the nature of the demand random
ness. In order to estimate the load of the system one usually uses the data of 
the same week from previous years, data of days with similar weather condi
tions, and the experience of experts. The strategy of creating scenarios has 
to reflect truly all possible future demands. The number of scenarios that 
approximate the demand has to be chosen in such a way that a fairly good 
approximation is obtained but the speed of the optimization procedure is not 
affected critically since the execution time of the algorithm grows rapidly as 
the number of scenarios included increases. The probability assigned to each 
scenario can be calculated according to the likelihood of its occurrence. 
The functions FGit and SGit i = 1, ... , I, t = 1, ... , T are assumed to be 
piecewise linear or quadratic. Consequently, the function 0(A) is piecewise 
twice continuously differentiable. Therefore, any method of non-smooth op
timization of those discussed in the previous section could be applied. The 
methods developed as bundle methods of order higher than one could be ap
plied successfully, e. g. [36], [42], [44]. Unfortunately, for those guaranteeing 
superlinear convergence ([45]), no computational code is available up to now. 
The variable metric bundle methods [36], [42], [44] provide convergence but 
no estimate of the rate is given. We would like to emphasize that those meth
ods are finite for piecewise linear convex functions. The published experience 
with NOA Version 3.0 ([37]) reports fast convergence in practice (cf. [36]). 
The efficiency of the optimization algorithm depends to great extent on the 
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fast computation of the values and subgradients of the objective function 
S(A). Therefore, the development of fast algorithms for solving the problems 
Pi(A) and Fj(A), i = 1, ... ,1, j = 1, ... , J, is important. An algorithm 
for solving the problems Fj(A), j = 1, ... , J, has been developed in [48]. It 
regards Fj(A) as a network-flow problem and suggests a procedure adapted 
to the structure called EXCHA. The crucial point in this procedure is the 
selection of a proper direction from a prescribed subset of descent direc
tions for minimizing the objective of Fj(A). Let us consider the problems 
Pi(A), i = 1, ... ,I. The inner minimization (with respect to Pi) can be done 
explicitly or by one-dimensional optimization. Further, a dynamic program
ming procedure can be used to minimize the expected costs with respect to 
the integer variables Ui. A state transition graph of the unit to each scenario 
regarding the nonanticipativity constraint can be considered. Then the so
lution corresponds to a tree in this graph that has minimal weighted length. 
In order to reduce the number of nodes, we can include the constraints (2.3 ) 
into the process of generating the state transition graph by setting nodes 
"ofF' for at least Ti periods. 
Another substantial part of the solution procedure for the dynamic recourse 
problem consists in developing an algorithm for the determination of a pri
mal feasible solution after one has found a solution of the dual problem. As 
already established, if we find an "almost" feasible point, it is "almost" a 
solution (Proposition 3.1). In addition, the optimal value S(A) of the dual 
problem is a better lower bound of the objective function of the primal prob
lem than the value of its continuous relaxation. It is possible to use some 
modification of the heuristic procedure presented for this purpose in [70] and 
further modified as in [14]. Recent publications [19], [41] suggest heuris
tics based on relaxed convexified primal problems These procedures are not 
directly applicable to the problem considered here due to the presence of 
pumped-storage hydro plants. An adaptation of these ideas to our setting 
needs further investigation. 
In our case, the Lagrangian heuristics could work as follows: 

• try to satisfy the reserve-constraints by using pumped-storage hydro 
plants in those time intervals, where the largest values of df + rt occur. 
If the reserve-constraints are still violated, use the procedure of [70]. 

• improve the feasible solution found at the end of the procedure above by 
solving the problem keeping the integer variables fixed. An algorithm 
for the latter problem is suggested in [49] that is a modification of 
the network-flow algorithm in [48]. The problem is considered as a 
network-flow problem again and the algorithm makes use of its special 
structure. 

Summarizing, the presented solution technique includes the following basic 
steps: 

• generation of a scenario tree (discrete approximation of d) 
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• solving the problem (4.4 ) e.g. by NOA Version 3.0, 
solving the problems Pi(,x), i = 1, ... , I, by dynamic programming and 
Pj(,X), j = 1, ... , J, by EXCHA. 

• determination of a primal feasible solution by the procedure described 
above. 

An illustrative example for an approximation of the load is given in Figure 3 
and Figure 4 expresses the corresponding stochastic schedule for fixed binary 
variables. The values of the approximative load are generated by using the 
value of a given load, and a standard normal random variable (see [49] for 
details). 
A final remark is due. There is an estimate for the occurring duality gap. We 
use the description of the problem (2.11 )-(2.13) based on scenarios. At this 
place, we incorporate the nonanticipativity condition into the representation 
of the model. More precisely, we consider decisions x~n = (u!n,P!n, s~n' w!n) 
and x~n that correspond to scenarios n and n fulfilling ~ = ~ for all t = 
1, ... , tk as indistinguishable up to the stage k. We use only one notation for 
the decisions at stage k for all scenarios that are indistinguishable up to that 
stage. Recall that the number of scenarios at the stage k is denoted by nk and 

K 
the number of load and reserve-constraints amounts to 2 I: nk(tkH - tk). 

k=l 
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Fig. 3: Sampled load scenarios 



48 

demand ..... . 
high Ih.power -

medium 

low 

generaling 

pumping 

o 20 40 60 80 100 120 140 160 
Time periods 

Fig. 4: Solution for the load given in Figure 3 

Proposition 4.2 Assume relatively complete recourse for the dynamic re
course problem. Let its optimal value be denoted by F* and the optimal value 
of its dual problem by 6*. Then there exists a constant p such that the fol
lowing estimate holds true: 

K 

F* - 6* ::; (2 L nk (tk+1 - tk) + I)p 
k=1 

Proof: The proof follows from Proposition 5.26 in [2]. We only have to 
show that the assumptions (AI)-(A3) made there are satisfied in our situa
tion. (AI) is just the feasibility of the problem, which holds due to relatively 
complete recourse. (A2) and (A3) are easily checked specifying the required 
conditions. 0 

We consider the same dynamic recourse problem with a modified objective 
function: 

1 I T 

I N IE L L [FCit(pL uD + SCit (Ui(t))] 
i=1 t=1 

The objective function in this case represents the average costs per scenario
term. We have the same optimal solution for both problems and the duality 
gap becomes 

K 
2 2:: nk(tk+1 - tk) + 1 

F* - 6* ::; -".k=-=..1 ---::--::-:-----p 
IN 
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The latter inequality implies that the duality gap goes to zero as I ---t 00. 

Consequently, the duality gap becomes small for large systems independently 
of making the discrete approximation of the load finer (N ---t 00). 

5 Lagrangian Relaxation for the Two-Stage 
Model 

We consider the two-stage stochastic power production planning model elab
orated in Section 2.3 under the assumption that the fuel cost functions 
exhibit the form (2.7). Setting x := (u,p, s, w) and x := (ft, p, s, w) E 
L OO (f1, A, 1-"; JRm) the optimization problem consists in minimizing the ob
jective function 

(5.1 ) 

over all decisions x E JRmand X E LOO(f1, A, 1-", JRm) such that the unit 
capacity limits (2.1 ), (2.2), (2.16), (2.17) the minimum down-time con
straints (2.15 ) and the loading and reserve constraints 

I J 

l: p~ + l: (s; - w;) ~ JE(df), 
i=l j=l 

I J 

l:(p~+pD+ l: (s;+s;-(w;+wj)) ~df, 1-"- a.s., 
i=l j=l 

(5.2 ) 

I 
l: (u~pit'ax - pD ~ rt, t = 1, ... T, 
;=1 

respectively, are satisfied. The constraints (5.2 ) are coupling across units 
while all remaining constraints are associated with the operation of sin
gle (thermal or hydro) units. With a similar argument based on a duality 
statement as in the previous section, we relax the constraints (5.2 ) by in
troducing Lagrange multipliers A = (A1' A2, A3), where A1, A3 E JRT and 
A2 E L1(f1, A, 1-"; JRT). The dual problem is then of the following form: 

max {8(A) : A E JRT X L1(0, A, 1-"; JRT) x JRT, A ~ 0,1-"- a. s.} (5.3) 

where 

8(A) := inf {L(x, x; A) : x and x satisfy (2.1 ), (2.2) and (2.15 ) - (2.17) }, 
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L(x, xi A) := 

T ( I J ) F(x, X) + t~ Ai IE{df) - i~ p~ - j;;1 {s} - w}) 

+ IE {t~ A~ (df - it (p~ + fi~) - j~1 (s} + S} - (w} + ill}) )) } 

I T 

L L [IE {FCit (p~ + fiL un + SCit (Ui(t)) - A~{p~ + fi~)} 
i=1 t=1 

( \ t \ t )pt \ t ut pmax) 
- Al - A3 i - A3 i it 

J T 
- L L [Ai {s} - w}) + IE {A~ (s} + s} - (w} + ill}) ) } ] 

j=1 t=1 

T 
+ L [AiIE{df) + IE{A~df) + A~rt). 

t=1 

Hence, the dual function 8 decomposes into the form 

I J T 

8('x) = L 8 i (A) + L ej(A) + L [AiIE(dt ) + IE{A~~) + A~rt] . (5.4 ) 
i=l j=l t=1 

Here 8 i (A) is the optimal value of a two-stage stochastic program for the 
(single) thermal unit i, which has the form: 

min {IE {t [FCit (p~ + fiL uD -,x~ (p~ + fiD + SCit (Ui{t)) 
t=1 

(5.5 ) 

Pt.ninu~ < p~ < pt.naxu~ and minimum down-times (2 15 )} ,t ,-, - ,t , , . 

Introducing the optimal value function for the second-stage problem and 
taking into account the special form (2.7 ) of the fuel costs, the two-stage 
mixed-integer stochastic program (5.5 ) may be rewritten as 

T 
min { L [(A~ - ADp~ - A~u~pflax) + IE {<I>i(Ui,Pii A2)} : 

t=l (5.6 ) 

pflinu~ :::; p~ :::; pflaxuL t = 1, ... ,T, and (2.3 ) } , 



where 
T 

CPi(Ui,Pi; >'2) := inf { E 
t=l 
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[ max fil(P~ + pD - >'~(p~ + pD+ £=l, ... ,L 

SCit(Ui(t)) + CiUn : pfiinu~ ::; p~ + p~ ::; pfiaxuL 
t = 1, ... , T, and (2.15) }. 

Since the minimization with respect to Pi and Pi (J1,- a. s.) in (5.5) or 
(5.6 ) can be performed explicitly, the models represent two-stage stochastic 
combinatorial programs and can be solved by dynamic stochastic program
ming. Problem (5.6 ) simplifies essentially for the case of I2 = 0, i. e., 
u~ = u~ (i = 1, ... , I, t = 1, ... , T), because the compensation program does 
not contain binary decisions, CPi enjoys a separability structure and can be 
computed explicitly. In the latter case (5.6 ) takes the form 

T 

mm {t~ [SCit(Ui(t)) + (>'~ - >.i)p~ - (>'~pfiax - Ci)U~] + 

IE ~,i.. (t t. \ t). min t < t < max t t - 1 T d (2 3 )} U ~it Ui,Pi' "2 . Pit Ui _ Pi _ Pit Ui , - , ... , ,an . , 
t=l 

where ~it(uLp~; >.~) := inf { 

The term 8j (>') in the representation (5.4 ) of the dual function e is the 
optimal value of the following stochastic pumped-storage subproblem for the 
plant j: 

min {- tt (>.i + IE(>'~)) (8; - w;) + IE [tt >.~ (s; - w;)] : 
(5.7 ) 

o ::; e; ::; eTtax , t = 1, ... ,T, and (2.2 ), (2.16 )} . 

Problem (5.7) represents a linear two-stage stochastic program, which can 
be solved by standard solution techniques (d. [17], [20]). 
These facts motivate a Lagrangian relaxation-based conceptual solution me
thod for the two-stage stochastic model, which is similar to the algorithm 
developed in the previous section. Its basic steps are: 

• Generation of scenarios dn , n = 1, ... , N, for the load process d and 
replacing d by this discrete approximation; 

• solving the concave dual problem (5.3 ) by applying appropriate nondif
ferentiable optimization methods (d. Section 3), where function values 
and subgradients of e are computed by solving the single unit subprob
lems (5.5) and (5.7). Note that (5.3) has dimension 2TN and e is 
piecewise linear or quadratic, 
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• determining a primal feasible solution for the first-stage variables by a 
procedure that is similar to the method described in Section 4. 
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