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Abstract

General quantitative stability results for stochastic pro-
grams are formulated in terms of probability metrics, spec-
ified to scenario-based stochastic programs and applied to
a bond portfolio management problem.
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1 INTRODUCTION

Stability and sensitivity studies for stochastic programs
have been motivated by an incomplete information about
the probability measure through which the stochastic pro-
gram is formulated and also by the efforts in designing
various discretization and approximation schemes needed
in connection with the development and evaluation of al-
gorithms. The solved real life stochastic programs are
very complex; in numerical procedures, one uses their spe-
cific structure and is interested in robust solutions: Small
changes in the input (in our case mainly perturbations
of the probability measure) are supposed to cause only
small changes of the output (the optimal value, the set of
optimal solutions). Evidently, such requirements can be
cast under quantitative stability analysis, see for instance
[1], [3] and references therein, [6], [10], [11] and [15]:

For a general stochastic program with a fixed con-
straint set

minimize Epf(x,w) onaset X CR" (1)
where P is a fixed probability measure on (2, B) belong-
ing to a class P, with Ep the corresponding expecta-

tion operator, X C R™ a given nonempty closed set and

f: X xQ— R! a given function, denote

p(P) = inf Epf(x,w) (2)

the optimal value and
»(P) = argmin Epf(x,w) {x € X|f(x,P) = o(P)} (3)

the solution set. To adapt the general quantitative sta-
bility approaches means to select a metric distance d of
probability measures which is suitable from the point of
view of the structure of the considered stochastic pro-
gram and/or of the particular type of approximation of
probability measure P for to get a Lipschitz (or Hoélder)
property of the optimal value

d(P,P") <n = |p(P) —p(P")| < Kn

and possibly also a Lipschitz (or Hélder) property of the
Hausdorff distance of the corresponding solution sets with
respect to perturbations of P measured by d; naturally,
the Lipschitz (or Holder) constants depend on the chosen
metric d.

The first results concerning the optimal value can be
found in [12]. Special assumptions are needed for to ex-
tend these results to the optimal solutions. A Holder sta-
bility result for solution sets of two-stage stochastic pro-
grams with random right-hand side is obtained in [10]. It
is formulated in terms of Wasserstein metric on all prob-
ability measures having finite first moments (and appear-
ing as metric ¢; in Section 2). The result is essentially
based on a strong convexity property of the expected re-
course function which is now well understood, cf. [14].
Later it has been clarified in [15] and [11] that second or-
der growth conditions for the objective function around
the solution set lead to (upper) Lipschitzian stability re-
sults for two-stage models. Unfortunately, such growth



conditions are only available in special situations (cf. also
Section 2). Therefore it is expedient to investigate also
quantitative stability for the sets of e-optimal solutions

$o(P) = £ - arg min Fp f (x,»)

={x e X|Epf(x,w) < o(P) +¢} (4)
which hold true under more general circumstances (cf.
[2]), an idea suggested in [13].

For the purposes of an algorithmic solution, the pre-
vailing approximation technique is discretization of the
initial probability measure: It is replaced by a discrete
probability measure concentrated in a finite numbers of
atoms, called scenarios. To design an approximation which
is representative enough and such that the obtained so-
lution enjoys plausible robustness properties is of a great
importance. Quantitative stability results for these scena-
rio-based programs may help to quantify the desirable ro-
bustness properties also in rather complicated instances
of stochastic programs with random recourse.

The success and applicability of the quantitative sta-
bility results depend essentially on an appropriate choice
of the probability metric used to measure the perturba-
tions in the model input.

Example. Consider the well known newsboy problem:

The newsboy sells newspapers for the cost ¢ each. Be-
fore he starts selling, he has to buy the daily supply at
the cost b a paper, ¢ > b > 0. The demand is random
and the unsold newspapers are returned without refund
at the end of the day. How many newspapers should he
buy?

Assume that the demand is random with a known dis-
crete distribution P concentrated at S points wy,...,ws
of a closed interval [D;, D2], D; > 0 with probabilities
ps >0,s=1,...,5 7 ps =1. The problem is

rmnznol Epf(z,w):=[b-c)z+ chs(x —ws)t]

S

Let an additional scenario w. € [D1, D2] be taken into
account; it corresponds to the degenerated probability
measure ) = d,,. The considered perturbed problem
is related to a probability measure carried by the ini-
tial scenarios wg, s = 1,...,S5 and by w,. Assuming that
the proportions between the initial probabilities ps,s =
1,...,S are kept we can specify this probability mea-
sure as Py = (1 — A\)P + AQ where A € (0,1) is the
probability of w,. Evidently, the difference between the
initial and the perturbed objective values Epf(z,w) —
Ep, f(z,w) = M(Epf(2,w) — Eq f(z,w)) can be non-zero
only on the interval [D;, D»] and at each = € [Dy, D»], its
value depends on the probability A\ of the additional sce-
nario and on the difference of the two objective functions

Epf(z,w),Eqf(x,w) = f(z,ws). It is easy to bound
the differences of the values of the random objectives
flz,w) = (b — )z + c(x — w)t for two different real-
izations:

[ (,0) — F(,0")] = el(@—w)* — (1—)*| < clw—w'| Va

(5)
so that the difference of the two considered objective func-
tions

|Epf(z,w) = Eqf(z,w)| =] Y ps(z—w,)t = (z—w.) |

<Y polws — wi (6)
s

The difference between the function values depends
obviously on the position of the additional scenario with
respect to the initial ones. Let us have a look how is this
fact reflected by common distances of the one-dimensional
probability measures.

Let F,G denote the distribution functions associated
with P, Q. The Kolmogorov (or uniform metric)

di (P,Q) :=sup |F(t) — G(t)|
teR

equals
8 8
max[ij, 1-— ij] if wy € (ws,wst1) for some s
j=1 j=1

and equals 1 otherwise.

Contrary to our expectations and the above results
the Kolmogorov distance does not distinguish the magni-
tude of the (positive) distance of the additional scenario
from the convex hull of the initial ones! The least influ-
ential additional scenario w, € (w1,wg) should minimize
the maximal value of [2%_, p;j,1—>27_, p;], a condition
which is fulfilled for median & of the distribution P.

An important class of probability metrics in our con-
text, are the Fortet-Mourier metrics (,, p > 1, which are
defined in Section 2. Here we use the explicit formulas
which are available for (, in the one-dimensional case.
With the notation from above, it holds that (cf. Chapter
5 in [7])
+o0

&(P.Q) = / max {1, [t}P~1}|F(t) — G(t)|dt

— 00

The metric ¢; forms the Lj-counterpart of the Kolmogo-
rov metrics and is called (L;-) Wasserstein or Kantorovich
metric. Similarly as for the Kolmogorov metric we have
Cl(P,P)\) = ACl(PaQ) and

S
j=1



Notice that the distance between the additional scenario
w, and all original ones is taken into account and that the
least influential additional scenario coincides again with
the median & of P. For w, € [Dy, D3],

> pjlwi—&| < G(P,Q) < max{Epw — Dy, Dz — Epw} .
J

The next section summarizes the general quantita-
tive stability results and provides their specification to
scenario-based programs. The last section is devoted to
an application to a bond portfolio management problem.

2 QUANTITATIVE STABILITY
RESULTS

We assume that the constraint set X’ is convex and closed,
and that the function f : X x Q@ — R! has the properties
that f(e,w) is convex for each w and f(x, ) is measurable
for each x. Then the objective function

x s Bp f(x,w) = / £(x,w) P(dw) (7)

Q

is convex on R" for any probability measure P (on (2, B))
such that (7) is finite. Later we only consider probability
measures having this property.

The structure of the convex program (1) suggests to
consider a probability semimetric of the form

dr(P,Q) := sup]] / F(@)(P(dw) — Q(dw))] : f € F)
®)

where F := {f(x, ) : x € X'} is the class of all measurable
functions from ) to R' that appear as integrands in (7).
The probability distance dz(P,Q) is finite whenever P
and @ belong to the set

Pr(Q) == {Q: sup | / F(@)Q(dw)] < 20}
feF Q

of probability measures (on (12, B)) satisfying a uniform
moment condition with respect to F.

Now, (1) is regarded as a convex parametric program
with parameter P belonging to the semimetric space
(P£(92),dr). The following stability result is a conse-
quence of a more general perturbation theorem in [8].

Theorem 1. In addition to the general assumptions, let
¥(P) be nonempty and bounded, P € Px(Q) and the
function x — Epf(x,w) be locally Lipschitzian on X
Then the solution set mapping ¢ is (Berge) upper semi-
continuous at P and there exist constants L > 0, >
0 such that ¢ (Q) is nonempty and |p(P) — ¢(Q)| <
Ldr(P,Q) whenever € Px(Q) and dr(P,Q) < 0.

Upper semicontinuity of ) at P means that for any
1 > 0 there exists a 6 = §(n) > 0 such that whenever
Q € Pr(2) and dr(P, Q) < 6, Subxey(q) d(x,%(P)) <.
Of course, it would be desirable to quantify the semiconti-
nuity behavior of ¥, i.e., to derive an explicit representa-
tion of the function §(n) (e.g. of the form §(n) = (n/K)]c
with constants k > 1 and K > 0). To obtain such quanti-
tative stability results, it is well known that growth con-
ditions for the objective function Epf(e,w) near ¢(P)
play an important role. So far growth conditions have
been explored only for stochastic programs with linear
recourse and random right-hand sides or certain situa-
tions of random technology matrices ([14], [11]). Besides
further conditions, the existence of a density to P be-
ing positive on certain sets related to ¢ (P) is decisive
for growth conditions in two-stage models. Since we are
interested in models with random recourse and also in
purely atomic measures P, these results do not apply.
Fortunately, the set of e-optimal solutions . (P) of (1)
enjoys a much better stability behavior when perturbing
the probability measure P.

Theorem 2. Adopt the setting of Theorem 1. Then, for
any €o > 0, there exists a constant L > 0 such that for
each ¢ € (0,29) the estimate

dr (¥ (P),¢-(Q)) < (L/)dr(P,Q)

holds whenever @ € P£(2) and dx(P, Q) < e.

(Here dp denotes the Hausdorff distance on subsets of
R™)

The result is taken from [13]. Its proof is based on
estimates for e-optimal solution sets of convex programs
(cf. Theorem 7.69 of [9] or [2]) and on further properties
of level sets. It is worth mentioning that the Lipschitzian
stability result for ¢, at P is valid without assuming a
growth condition for Epf(e,w) and, hence, applies to
many convex stochastic programs.

It is also useful to note that both theorems remain
valid true if the class F of measurable functions from
(2, B) to R! is replaced by a suitable larger class FOF
leading to favorable properties of the distances dz (e.g.
to nice representations or explicit formulas). For two-
stage stochastic programs, classes of locally Lipschitzian
functions with a prescribed growth of Lipschitz moduli
are of particular interest. We assume in the following
that Q is a subset of a Euclidean space and B is the o-
algebra of Borel sets relative to {2. We denote by F, with
p > 1 the class of real-valued functions f on () satisfying
the Lipschitzian property

|f(w) = f(@)] < max{L, lw]” [|0]I"~ Hlw — @]

for all w,& € Q, and by P,(Q) the class of all proba-
bility measures @ on (Q,B) having p-th order moments,



Le., [ lw]PQ(dw) < oo. Then the distance (p(P,Q) :=
dr,(P,Q) is called Fortet-Mourier metric and ((p, Pp(£2))
forms a metric space. The metric (, enjoys a well devel-
oped duality theory and convergence analysis (cf. [7]). In
particular, the following dual representation of ¢, is valid:

G(P.@) =nt{ [ max{, ol ol )
QxQ

llw — @l R(dw, de) }
over all Borel probability measures R on 2 x 2 such that
R(BxQ)—R(OxB) = P(B)—Q(B)Y B € B (cf. Chapter
5in [7]). A consequence of this result for Q := R is the

explicit formula for ¢, that is used in Section 1.
The next result is a conclusion from Theorem 2 in case

of discrete probability measures and of integrands f(x,e)
that satisfy a certain Lipschitz property.

Theorem 3. Adopt the setting of Theorem 2 and let
P be a discrete probability measure on (€2, 5) having the
form P = Zle Pidw,; - Assume that there exist constants
p > 1and Ly > 0 such that the function (Ly)~! f(x,e)
belongs to F, for each x € X'. Then, for any €9 > 0, there
exists a constant L > 0 such that for each € € (0,¢¢) the
estimate

I, s 8
— inf Y3 pijllw: — @l max{ 1L, [|ws| P, |17~}

i=1 j=1
(9)
subject to
s S
pij € [0,1], ZZﬂij =1,
i=1 j=1
and
s

S S S
Z (Zﬂij_pi): Z (Zpij_q]')VBEB

i=lw;€B j=1 j=1,5;€B i=1
holds whenever @ is a probability measure on (2, B) hav-
ing the form Q = Zle 405, and the property (,(P, Q) <
;"
Proof: Let ¢g > 0. We choose L > 0 as in Theorem 2
and select some ¢ € (0,&9). Then Theorem 2 implies that

whenever (,(P, Q) < Lif, where we used that dz(P,Q) <
L, (P, Q). Due to the duality result for ¢,, we have that

G(P,Q) < /Q

max{L, [[w]|"~4, |0]P~ Hlw—5l| R(dw, do)
xXQ

holds for any probability measure R on {2 x {2 of the form
R=Y7, Ele pijdw; 05, such that for any B € B

R(BxQ)-R(QxB) =)

i=1j

pl] (5u.)i (B) - 65)]‘
1

(B))

S

s S
P(B) = Q(B) = Y piduu(B) = 3 1;05,(B).

Taking the infimum subject to all such p;; € [0,1] and

putting L := ﬁLf completes the proof.
O

The theorem provides an estimate for the Hausdorff
distance of e-optimal sets to (1) associated with two dis-
crete probability measures in terms of the optimal value of
a certain linear program. This estimate can be exploited
to develop procedures for deleting scenarios of a given dis-
crete probability measure or for studying the influence of
certain scenarios to changes of the problem. To discuss
this in more detail, let P = Zle pidy,; play the role of
a discrete approximation to a certain original probability
measure. P might be obtained by a suitable statistical es-
timation procedure based on a finite (but large) sample.
Hence, one might wish to reduce that large number S of
scenarios wi, - ..,wg in order to obtain moderately sized
programs in practical applications. Deleting the scenario
wg of P could be done if the distance dg (V- (P), Y- (Qr))
is small, where @ = Zf:L#k qj0.; with properly cho-
sen probabilities ¢;. Theorem 3 indicates that minimizing
the optimal value of the linear program in the right-hand
side of the estimate (9) (with S = S—1, {&1,...,0s5_1} =
{w1, ..., Wg=1,Wk+1,- .., ws}) subject to all weights ¢; €
[0, 1], Zj g; = 1, is such an appropriate choice. A strat-
egy for deleting scenarios could then be based on repeat-
ing this argument successively. Finally, we study the in-
fluence of an additional scenario w, € 2 by looking at the
probability measure Py = (1 — A\)P + A\Q, where Q = 4,
and A € (0,1), cf. [4]. For small A > 0, Theorem 3
provides the estimate

A
A (e (P),ve(P) < ZG(P, Py) = 26, (P,Q)
LA &
S -
€ 1

Y pillwi = willmax{1, [lwil 7 [lod P71}, (10)

where (10) contains the explicit solution of the linear pro-
gram in (9). The least influential additional scenario w,
then corresponds to the minimizer of the function in (10)
subject to wy € Q.



3 AN APPLICATION

The main purpose of the considered bond portfolio man-
agement problem is to preserve the value of a bond port-
folio of a risk averse or risk neutral institutional investor
over time. It has been formulated as a multiperiod two-
stage scenario-based stochastic program with complete
random recourse (e.g., [5]). The main random element
is the evolution of the short interest rate over time which
is regarded as the only factor that drives the prices of the
considered default free government bonds:

Given a sequence of equilibrium future short term in-
terest rates r; valid for the time interval (¢,t + 1],¢ =
0,...,7 — 1, the fair price of the j-th bond at time ¢
just after the coupon was paid equals the total cashflow
fjrvT =t+1,...,T generated by this bond in subsequent
time instances discounted to t:

T T—1
mi) = > fir [+ (11)
T=t+1 h=t

where T is greater or equal to the time to maturity.

In formulation of the stochastic program one works
with a suitable discrete distribution of the T - dimensional
vector r of the short rates r;,t = 0,...,7 — 1, where rg
(the rate valid in the first period) is known. The possi-
ble finitely many realizations of r are called scenarios; we
shall index them asr®, s = 1,...,S and assign them prob-
abilities p; > 0,5 = 1,...,5, > . ps = 1. Generation of
scenarios is a rather demanding estimation, callibration
and sampling procedure. The applied input distribution
is thus burdened by various inherent errors and our pri-
mal goal is to analyze the influence of these errors on the
obtained optimal decisions and on the optimal value of
the portfolio.

We denote

j =1,...,J indices of the considered bonds and T}
the dates of their maturities; T' = max; Tj.

t =0,...,Tp the considered discretization of the plan-
ning horizon;

b; > 0 the initial holdings (in face value) of bond j;

bo > 0 the initial holding in riskless asset;

[ cashflow generated from bond j at time ¢ under
scenario s expressed as a fraction of its face value;

5 and n7, are the selling and purchasing prices of
bond j at time ¢ for scenario s obtained from the corre-
sponding fair prices (8) by adding the acrued interest A%,
and by subtracting or adding scenario independent trans-
action costs and spread; the initial prices £;o and n;o are
known, i. e., scenario independent;

xj/y; are face values of bond j purchased/sold at the
beginning of the planning period, at ¢ = 0; xjt/y]s.t are
the corresponding values for period ¢ under scenario s.

zjo is the face value of bond j held in portfolio after
the initial decisions z;,y; have been made; zj, are the
corresponding holdings for period ¢ under scenario s.

The first-stage decision variables z;,y;, zjo are non-
negative,
Y; + zjo = b]' + x; V7, (12)

ya + > mjer; =bo+ D Eov; (13)
j j

where the auxilliary nonnegative variable yaL denotes the
surplus.

Provided that an initial trading strategy determined
by feasible scenario independent first-stage decision vari-
ables x;,y;,yd (and zjo) for all j has been accepted,
the subsequent second-stage scenario dependent decisions
have to be made in an optimal way regarding the goal of
the model, i. e., to maximize the final wealth subject to
constraints on conservation of holdings and rebalancing
the portfolio:

maximize V7 = Z ijO ijO + y;os — ay;ﬁs (14)
J
subject to
2ty =20 a5 Vi, 1<t < T, (15)

Zf;'ty]s't + Z fitzhems + (=00 + i)y +y7° =
j J

J
S omgat + (L+ 6 +1f )y, ") +yf 5 1<t < To, (16)
J

w5 > 0,y5 > 0,25, > 0,577 > 0,57 > 0Vj, 1 <t < Ty

(a7)
with 5% = 0,yd* = y0+,z3?0 = zjo Vj; the auxilliary vari-
ables y;"* /y; ® describe the (unlimited) lending /borrow-
ing possibilities for period ¢ under scenario s and with
parameters §; > 0,92 > 0,a > 1 fixed according to the
background of the solved problem.

With Vr,(x,¥,20,yq ;r*) the corresponding maximal
value of the second-stage scenario subproblem (14)-(17),
the full stochastic program can be now written in the
form which allows to apply the general results of Section
2: The probability measure P = Zsszl psOps, the vec-
tor of the original decision variables x +— [X, ¥, Zo, ¥ ],
the set of feasible solutions X’ is defined by nonnegativity
constraints on all first-stage variables and by constraints
(12)—(13), the random objective function f(x,w) —
U(Vr,(x,y,20,yg ;1)) with U a concave nondecreasing
utility function. (The symbol <— relates the notation
used in Section 2 to that used in the application.) No-
tice that set of feasible first-stage solutions is nonempty
and bounded and that the function Vr,(e;r) is concave



in x,y,%0,y7 for any r € RT. In this notation, the con-
sidered stochastic program maxycy Ep f(x,w) reads

S
maximize Z psU (Vi (x,y, 20, iyo+; r))

s=1

(18)

subject to nonnegativity constraints on all variables and
subject to (12)—(13).

The stochastic program (18) obviously fits into the
setting of Section 2. In order to apply the quantitative
stability results of Section 2 to study the behavior of (18),
we introduce the class F of relevant integrands as

F={UVp, (x,y,zo,ya'; o)) : x,y,zo,y()" are feasible}

and the semimetric dz on the class Px(RT) of probability
measures as in Section 2. Moreover, let 1. (P) be the set
of e-optimal solutions to (18). Then Theorem 2 applies
and we obtain the following stability result for (18).

Theorem 4. For any ¢¢ > 0, there exists a constant
L > 0 such that for each ¢ € (0,&p) the estimate

L
9

dr (¥=(P),¥:(Q)) < —d7(P,Q)

holds whenever () is another discrete probability measure
on RT and d#(P,Q) < «.

For the proof it remains to note that all discrete prob-
ability measures having finite support in R” belong to
Px(RT) and that the assumptions of Theorem 1 are sat-
isfied.

Of course, it would be desirable to identify classes of
functions (like the class F, in Section 2), that contain
F and allow dual representations for the corresponding
metrics. So far this remains an open problem.
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