

Multistage stochastic programs

Let $\{\xi_t\}_{t=1}^T$ be a discrete-time stochastic data process defined on some probability space $(\Omega, \mathcal{F}, I\!\!P)$ and with ξ_1 deterministic. The stochastic decision x_t at period t is assumed to be measurable with respect to $\mathcal{F}_t := \sigma(\xi_1, \ldots, \xi_t)$ (nonanticipativity).

Multistage stochastic optimization model:

$$\min \left\{ \mathbb{I}\!\!E \left[\sum_{t=1}^{T} \langle b_t(\xi_t), x_t \rangle \right] \left| \begin{array}{c} x_t \in X_t, t = 1, \dots, T, A_{1,0} x_1 = h_1(\xi_1), \\ x_t \text{ is } \mathcal{F}_t - \text{measurable}, t = 1, \dots, T, \\ A_{t,0} x_t + A_{t,1} x_{t-1} = h_t(\xi_t), t = 2, ., T \end{array} \right\}$$

where the sets X_t , t = 1, ..., T, are polyhedral cones, the vectors $b_t(\cdot)$ and $h_t(\cdot)$ depend affine linearly on ξ_t .

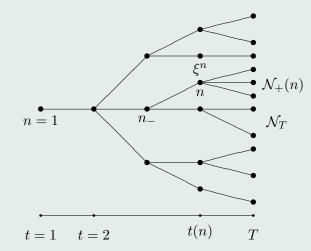
If the process $\{\xi_t\}_{t=1}^T$ has a finite number of scenarios, they exhibit a scenario tree structure.

Typical applications: Power production planning, revenue and portfolio management models.

Home Page
Title Page
Contents
•• ••
Page 2 of 17
Go Back
Full Screen
Close
Quit

Data process approximation by scenario trees

The process $\{\xi_t\}_{t=1}^T$ is approximated by a process forming a scenario tree being based on a finite set $\mathcal{N} \subset \mathbb{N}$ of nodes.



Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n_{-} unique predecessor of node n, $path(n) = \{1, \ldots, n_{-}, n\}$, t(n) := |path(n)|, $\mathcal{N}_{+}(n)$ set of successors to n, $\mathcal{N}_{T} := \{n \in \mathcal{N} : \mathcal{N}_{+}(n) = \emptyset\}$ set of leaves, path(n), $n \in \mathcal{N}_{T}$, scenario with (given) probability π^{n} , $\pi^{n} := \sum_{\nu \in \mathcal{N}_{+}(n)} \pi^{\nu}$ probability of node n, ξ^{n} realization of $\xi_{t(n)}$.

Tree representation of the optimization model

$$\min\left\{\sum_{n\in\mathcal{N}}\pi^n \langle b_{t(n)}(\xi^n), x^n \rangle \left| \begin{array}{l} x^n \in X_{t(n)}, n\in\mathcal{N}, A_{1,0}x^1 = h_1(\xi^1) \\ A_{t(n),0}x^n + A_{t(n),1}x^{n-1} = h_{t(n)}(\xi^n), n\in\mathcal{N} \end{array} \right.\right\}$$

How to solve the optimization model ?

- Standard software (e.g., CPLEX)
- Decomposition methods for (very) large scale models (Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Open question:

How to model and incorporate risk into multiperiod models ?

Risk functionals

Let z be a real random variable on some probability space $(\Omega, \mathcal{F}, I\!\!P)$. Assume that z = z(x) is the revenue depending on a decision x in some stochastic optimization model. The traditional objective of such models consists in maximizing the expected revenue, i.e.,

$$\max_{x} I\!\!E[z(x)].$$

However, the revenue z(x) of some or many decisions x might have fat tails, in particular, to the left. Looking only at the expectation of z hides any tail information.

Examples of risk functionals:

Upper semivariance:

$$sV_{+}(z) := I\!\!E[I\!\!E[z] - z]_{+}^{2}] = I\!\!E[\max\{I\!\!E[z] - z, 0\}^{2}]$$

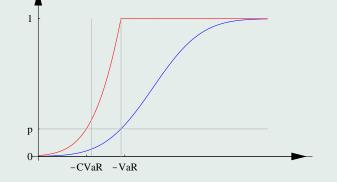
Value-at-Risk:

 $VaR_p(z) := -\inf\{r \in I\!\!R : I\!\!P(z \le r) \ge p\} \quad (p \in (0,1))$

Conditional Value-at-risk:

 $CVaR_p(z) :=$ mean of the tail distribution function F_p

where
$$F_p(t) := \begin{cases} 1 & t \ge -VaR_p(z), \\ \frac{F(t)}{p} & t < -VaR_p(z) \end{cases}$$
 and $F(t) := \mathbb{I}\!P(\{z \le t\})$ is the distribution function of z .



 $VaR_p(z)$ and $CVaR_p(z)$ for a continuously distributed z

Axiomatic characterization of risk:

Let $\mathcal{Z} = L_p(\Omega, \mathcal{F}, I\!\!P)$ for $1 \le p \le +\infty$. A mapping $\mathcal{A} : \mathcal{Z} \to I\!\!R$ is called acceptability functional if it is concave on \mathcal{Z} and satisfies the following two conditions for all $z, \tilde{z} \in \mathcal{Z}$:

- (i) If $z \leq \tilde{z}$, then $\mathcal{A}(z) \leq \mathcal{A}(\tilde{z})$ (monotonicity).
- (ii) For each $r \in \mathbb{R}$ and $z \in \mathbb{Z}$ we have $\mathcal{A}(z+r) = \mathcal{A}(z) + r$ (translation equivariance).

An acceptability functional \mathcal{A} is called positively homogeneous if $\mathcal{A}(\lambda z) = \lambda \mathcal{A}(z)$ holds for all $\lambda \geq 0$ and $z \in \mathcal{Z}$. \mathcal{A} is called strict if $\mathcal{A}(z) \leq I\!\!E[z]$ for each $z \in \mathcal{Z}$.

Given an acceptability functional \mathcal{A} , the mapping $\rho := -\mathcal{A}$ is called a convex risk functional. ρ is called a coherent risk functional if \mathcal{A} is positively homogeneous.

Title Page Contents Page 7 of 17 Go Back Full Screen Close Quit

Home Page

Conditional risk mappings

Let $\mathcal{G} \subset \mathcal{F}$ be σ -fields and $\mathcal{Y} := L_p(\Omega, \mathcal{G}, \mathbb{I}_p)$ be the corresponding subspace of \mathcal{Z} .

A mapping $\mathcal{A} : \mathcal{Z} \to \mathcal{Y}$ is called conditional acceptability mapping or acceptability mapping with observable information \mathcal{G} if it satisfies the following conditions for all $z, \tilde{z} \in \mathcal{Z}$:

- (i) $\mathcal{A}(\lambda z + (1 \lambda)\tilde{z}) \ge \lambda \mathcal{A}(z) + (1 \lambda)\mathcal{A}(\tilde{z})$ for all $\lambda \in [0, 1]$ (((pointwise) concavity)
- (ii) If $z \leq \tilde{z}$, then $\mathcal{A}(z) \leq \mathcal{A}(\tilde{z})$ (monotonicity).
- (iii) If $\tilde{z} \in \mathcal{Y}$, we have $\mathcal{A}(z + \tilde{z}) = \mathcal{A}(z) + \tilde{z}$ ((predictable) translation equivariance).

Notation: $\mathcal{A}(\cdot, \mathcal{G})$ or $\mathcal{A}_{\mathcal{F}|\mathcal{G}}$.

The mapping $\rho = \rho_{\mathcal{F}|\mathcal{G}} := -\mathcal{A}_{\mathcal{F}|\mathcal{G}}$ is called conditional convex risk mapping.

References: Detlefsen/Scandolo, Finance Stochast. 05, Ruszczynski/Shapiro, Math. OR 06

Home Page
Title Page
Contents
•• >>
Page 8 of 17
Go Back
Full Screen
Close
Quit

Multiperiod risk functionals

Let a filtration of σ -fields \mathcal{F}_t , $t = 1, \ldots, T$, and (real) random variables $\{z_t\}_{t=1}^T$ with $z_t \in L_p(\Omega, \mathcal{F}_t, \mathbb{I}^p)$, $1 \leq p \leq +\infty$, be given. Then it may become necessary to measure their risk by multiperiod functionals. We assume $\mathcal{F}_t \subseteq \mathcal{F}_{t+1} \subseteq \mathcal{F}$ and $\mathcal{F}_1 = \{\emptyset, \Omega\}$, i.e. z_1 is deterministic.

A functional $\mathcal{A} : \mathcal{Z} = \times_{t=1}^{T} L_p(\Omega, \mathcal{F}_t, \mathbb{I}^p) \to \overline{\mathbb{I}^n}$ is called multiperiod acceptability functional if it is concave and satisfies the following two conditions for all $z, \tilde{z} \in \times_{t=1}^{T} L_p(\Omega, \mathcal{F}_t, \mathbb{I}^p)$: (i) If $z_t \leq \tilde{z}_t, t = 1, ..., T$, then $\mathcal{A}(z_1, ..., z_T) \leq \mathcal{A}(\tilde{z}_1, ..., \tilde{z}_T)$ (monotonicity), (ii) If $\tilde{z}_t \in L_p(\Omega, \mathcal{F}_{t-1}, \mathbb{I}^p)$, then $\mathcal{A}(z_1, ..., z_t + \tilde{z}_t, ..., z_T) = \mathbb{I}^p[\tilde{z}_t] + \mathcal{A}(z_1, ..., z_T)$ ((predictable) translation equivariance). Notation: $\mathcal{A}(z_1, ..., z_T; \mathcal{F}_1, ..., \mathcal{F}_T)$.

The mapping $\rho := -\mathcal{A}$ is called a multiperiod convex risk functional.

Home Page
Title Page
Contents
Page 9 of 17
Go Back
Full Screen
Close
Quit

Dual representations and properties

Let \mathcal{Z}^* denote the topological dual of \mathcal{Z} for $p \in [1, +\infty)$, i.e., $\mathcal{Z}^* := \times_{t=1}^T L_{p'}(\Omega, \mathcal{F}_t, I\!\!P)$ with $\frac{1}{p} + \frac{1}{p'} = 1$, and let $\langle z^*, z \rangle = \sum_{t=1}^T I\!\!E[z_t^* z_t]$

be the dual pairing between \mathcal{Z}^* and \mathcal{Z} . An acceptability functional \mathcal{A} is called proper if $\mathcal{A}(z) < +\infty$ for all $z \in \mathcal{Z}$ and its domain dom $(\mathcal{A}) := \{Z \in \mathcal{Z} : \mathcal{A}(z) > -\infty\}$ is nonempty. If \mathcal{A} is proper and upper semicontinuous, its domain is closed and convex.

The conjugate $\mathcal{A}^*:\mathcal{Z}^* o\overline{I\!\!R}$ of \mathcal{A} is given by

 $\mathcal{A}^*(z^*) := \inf_{z \in \mathcal{Z}} \{ \langle z^*, z \rangle - \mathcal{A}(Y) \}.$

The Fenchel-Moreau theorem of convex analysis then implies the representation

$$\mathcal{A}(z) = \inf_{z^* \in \mathcal{Z}^*} \{ \langle z^*, z \rangle - \mathcal{A}^*(z^*) \}$$

if \mathcal{A} is proper and upper semicontinuous.

Home Page
Title Page
Contents
•• ••
•
Page 10 of 17
Go Back
Full Screen
Close
Quit

Theorem:

Let $\mathcal{A} : \mathcal{Z} \to \overline{I\!R}$ be a proper multiperiod acceptability functional. Then the representation

$$\mathcal{A}(z) = \inf_{z^* \in \mathcal{Z}^*} \left\{ \sum_{t=1}^{I} \mathbb{I}\!\!E[z_t^* z_t] - \mathcal{A}^*(z^*) : z_t^* \ge 0, \ \mathbb{I}\!\!E[z_t^* | \mathcal{F}_{t-1}] = 1, \\ t = 2, \dots, T \right\}$$

is valid for every $z \in \mathcal{Z}$ if \mathcal{A} is upper semicontinuous. Conversely, if \mathcal{A} can be represented in the above form for some

function $\mathcal{A}^* : \mathcal{Z}^* \to \overline{\mathbb{R}}$, then \mathcal{A} is an upper semicontinuous multiperiod acceptability functional.

Moreover, \mathcal{A} is locally Lipschitz continuous, superdifferentiable and Hadamard directionally differentiable on int dom(\mathcal{A}). Its directional derivative at $\overline{z} \in \operatorname{int} \operatorname{dom}(\mathcal{A})$ satisfies

$$\mathcal{A}'(\bar{z}, z) = \inf_{\substack{z^* \in \partial \mathcal{A}(\bar{z})}} \langle z^*, z \rangle, \, \forall z \in \mathcal{Z}, \\ \partial \mathcal{A}(\bar{z}) = \{ z^* \in \mathcal{Z}^* : \mathcal{A}(z) \le \mathcal{A}(\bar{z}) + \langle z^*, z - \bar{z} \rangle, \, \forall z \in \mathcal{Z} \}.$$

Reference: Ruszczynski/Shapiro, Math. OR 06 (to appear)

Home Page
Title Page
Contents
•• ••
•
Page 11 of 17
Go Back
Full Screen
Close
Quit

Multiperiod polyhedral risk functionals

Home Page Title Page Contents Page 12 of 17 Go Back Full Screen Close Quit

It is a natural idea to introduce acceptability and risk functionals as optimal values of certain stochastic programs.

Definition:

A multiperiod acceptability functional \mathcal{A} on $\times_{t=1}^{T} L_p(\Omega, \mathcal{F}_t, I\!\!P)$ is called polyhedral if there are $k_t \in I\!\!N$, $c_t \in I\!\!R^{k_t}$, $t = 1, \ldots, T$, $w_{t\tau} \in I\!\!R^{k_{t-\tau}}$, $t = 1, \ldots, T$, $\tau = 0, \ldots, t-1$, a polyhedral set Y_1 and polyhedral cones $Y_t \subset I\!\!R^{k_t}$, $t = 2, \ldots, T$, such that

$$\mathcal{A}(z) = -\inf \left\{ \mathbb{I\!E}\left[\sum_{t=1}^{T} \langle c_t, y_t \rangle\right] \middle| \begin{array}{l} y_t \in L_p(\Omega, \mathcal{F}_t, \mathbb{I\!P}; \mathbb{I\!R}^{k_t}), \ y_t \in Y_t \\ \sum_{\tau=0}^{t-1} \langle w_{t,\tau}, y_{t-\tau} \rangle = z_t, \ t = 1, \dots, T \end{array} \right.$$

A mapping $\rho := -\mathcal{A}$ is called multiperiod polyhedral risk functional.

Remark: A convex combination of the expectation and of a multiperiod polyhedral acceptability functional is again a multiperiod polyhedral acceptability functional. Polyhedral risk functionals preserve linearity and decomposition structures of optimization models. (Eichhorn/Römisch, SIAM J. Optim. 05)

Theorem:

Let \mathcal{A} be a functional on $\times_{t=1}^{T} L_p(\Omega, \mathcal{F}_t, I\!\!P)$ $(p \in [1, +\infty))$ having the form in the previous definition. Assume (i) complete recourse: $\langle w_{t,0}, Y_t \rangle = I\!\!R$, t = 2, ..., T, (ii) dual feasibility: $\left\{ u \in I\!\!R^T : c_t + \sum_{\nu=t}^{T} u_{\nu} w_{\nu,\nu-t} \in -Y_t^* \right\} \neq \emptyset$, where the sets Y_t^* are the (polyhedral) polar cones of Y_t .

Then \mathcal{A} is finite, continuous and concave on $\times_{t=1}^{T} L_p(\Omega, \mathcal{F}_t, \mathbb{I}_p)$ and the following dual representation holds whenever $\frac{1}{p} + \frac{1}{p'} = 1$:

$$\begin{aligned} \mathcal{A}(z) &= \inf \\ \begin{cases} I\!\!E \left[\sum_{t=1}^{T} z_t^* z_t \right] \\ - \inf_{y_1 \in Y_1} \left\langle c_1 + \sum_{\nu=1}^{T} I\!\!E \left[z_{\nu}^* \right] w_{\nu,\nu-1}, y_1 \right\rangle & z_t^* \in L_{p'}(\Omega, \mathcal{F}_t, I\!\!P) \\ c_t + \sum_{\nu=t+1}^{T} I\!\!E \left[z_{\nu}^* \right] \mathcal{F}_t \right] w_{\nu,\nu-t} \in -Y_t^* \end{cases} \overset{\text{Go Back}}{\overset{\text{Full Screen}}{\overset{\text{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Screen}}{\overset{Full Scre$$

Close

Home Page

Title Page

Contents

Page 13 of 17

Idea: Determine the parameters k_t , c_t , $w_{t\tau}$ and Y_t such that $c_1 + \sum_{t=2}^T w_{t,t-1} \mathbb{I}\!\!E[z_t^*] \in -Y_1^* \implies \mathbb{I}\!\!E[z_2^*] = 1,$ $c_t + \sum_{t=2}^T w_{\tau,\tau-t} \mathbb{I}\!\!E[z_{\tau}^*|\mathcal{F}_t] \in -Y_t^* \implies \mathbb{I}\!\!E[z_{t+1}^*|\mathcal{F}_t] = 1 \text{ and } z_t^* \ge 0$

Home Page

Title Page

Contents

Page 14 of 17

$$z_T + w_{T,0} z_T^* \in -Y_T^* \quad \Rightarrow \quad z_T^* \ge 0.$$

 $\tau = t + 1$

We assume $k_1 \ge 2$, $k_t \ge 3$, t = 2, ..., T - 1, and $k_T \ge 2$.

Furthermore, let the sets Y_t be of the form $Y_1 = I\!\!R \times \hat{Y}_1, Y_t = I\!\!R \times I\!\!R_+ \times \hat{Y}_t, t = 2, \dots, T-1, Y_T = I\!\!R_+ \times \hat{Y}_T,$ where \hat{Y}_1 is polyhedral and the sets $\hat{Y}_t, t = 2, \dots, T$, are polyhedral cones. Finally, we set $c_1 = (-1, \hat{c}_1), c_t = (-1, 0, \hat{c}_t), t = 2, \dots, T-1, c_T = (0, \hat{c}_T),$ $w_{1,1} = (1, \hat{w}_{1,1}), w_{t,t} = (0, \hat{w}_{t,t}), t = 2, \dots, T, w_{T,1} = (1, \hat{w}_{T,1}),$ $w_{t,1} = (0, 1, \hat{w}_{t,1}), w_{t,1} = (1, 0, \hat{w}_{t,1}), w_{t,\tau} = (0, 0, \hat{w}_{t,\tau}), \tau =$ $2, \dots, T-t, t = 1, \dots, T-1.$

Corollary:

Let \mathcal{A} be a functional on $\times_{t=1}^{T} L_p(\Omega, \mathcal{F}_t, \mathbb{I}^p)$ $(p \in [1, +\infty))$ with parameters chosen as above. Assume complete recourse and dual feasibility. Then \mathcal{A} is a finite, continuous and multiperiod acceptability functional having the representation

Full Screen

Home Page

Title Page

Contents

Close

Quit

Example: (value-of-information approach)

Let $k_t = 3$ for $t = 1, \ldots, T$, $\bar{c}_1 = (0,0)$, $\hat{Y}_1 = I\!\!R_+ \times I\!\!R_+$, $\bar{c}_t = \frac{1}{\alpha_t}$, $\hat{w}_{t,0} = -1$ and $\hat{Y}_t = I\!\!R_+$, $t = 1, \ldots, T - 1$, $\bar{c}_T = (0, \frac{1}{\alpha_T})$, $\hat{Y}_T = I\!\!R_+ \times I\!\!R_+$ and $\hat{w}_{T,1} = (0, -1)$, where $\alpha_t \in (0, 1)$. Then we obtain the following acceptability functional

$$\mathcal{A}(z) = \inf \Big\{ \sum_{t=2}^{T} I\!\!E[z_t^* z_t] : z_t^* \in L_{p'}(\Omega, \mathcal{F}_t, I\!\!P), I\!\!E[z_t^* | \mathcal{F}_{t-1}] = 1, \\ z_t^* \in [0, \frac{1}{\alpha_t}], t = 2, \dots, T \Big\}.$$

$$\mathcal{A}(z) = \mathbb{I}\!\!E\Big[\sum_{t=2}^{T} \inf\Big\{z_t^* z_t : \mathbb{I}\!\!E[z_t^* | \mathcal{F}_{t-1}] = 1, z_t^* \in [0, \frac{1}{\alpha_t}]\Big\}\Big]$$
$$\rho(z) = \mathbb{I}\!\!E\Big[\sum_{t=2}^{T} AVaR_{\alpha_t}(z_t, \mathcal{F}_{t-1})\Big]$$

Home Page Title Page Contents Page 16 of 17 Go Back Full Screen Close Quit

Reference: Pflug/Ruszczynski 04, 05

Iterated conditional risk mappings

Let $\mathcal{A}_{\mathcal{F}_t|\mathcal{F}_{t-1}}$, $t = 2, \ldots, T$, be conditional acceptability mappings and we define an acceptability functional \mathcal{A} on $\times_{t=1}^T L_p(\Omega, \mathcal{F}_t, I\!\!P)$

$$\begin{aligned} \mathcal{A}(z) &:= z_1 + \mathcal{A}_{\mathcal{F}_2|\mathcal{F}_1} \left[z_2 + \dots + \mathcal{A}_{\mathcal{F}_{T-1}|\mathcal{F}_{T-2}} [z_{T-1} + \mathcal{A}_{\mathcal{F}_T|\mathcal{F}_{T-1}}(z_T)] \right] \\ &= \mathcal{A}_{\mathcal{F}_2|\mathcal{F}_1} \circ \dots \circ \mathcal{A}_{\mathcal{F}_{T-1}|\mathcal{F}_{T-2}} \circ \mathcal{A}_{\mathcal{F}_T|\mathcal{F}_{T-1}}(z_1 + \dots + z_T), \end{aligned}$$

where the latter representation is a consequence of the (predictable) translation equivariance.

Example: (polyhedral conditional acceptability mappings) $\mathcal{A}_{\mathcal{F}_t|\mathcal{F}_{t-1}}(z) = -\inf\left\{ \langle c_1, y_1 \rangle + I\!\!E[\langle c_2, y_2 \rangle | \mathcal{F}_{t-1}] : y_1 \in L_p(\Omega, \mathcal{F}_{t-1}, I\!\!P), \\ y_1 \in Y_1, y_2 \in L_p(\Omega, \mathcal{F}_t, I\!\!P), y_2 \in Y_2, \langle w_1, y_1 \rangle + \langle w_2, y_2 \rangle = z \right\}$

and select the parameters such that $\mathcal{A}_{\mathcal{F}_t|\mathcal{F}_{t-1}}$ is a conditional acceptability mapping.

Reference: Ruszczynski/Shapiro, Math. OR 06 (to appear)

