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Multistage stochastic programs

Let {ξt}T
t=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , IP ) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

IE

[
T∑

t=1

〈bt(ξt), xt〉

]∣∣∣∣∣∣
xt ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),

xt is Ft −measurable, t = 1, . . . , T,

At,0xt + At,1xt−1 = ht(ξt), t = 2, ., T


where the sets Xt, t = 1, . . . , T , are polyhedral cones, the vectors

bt(·) and ht(·) depend affine linearly on ξt.

If the process {ξt}T
t=1 has a finite number of scenarios, they exhibit

a scenario tree structure.

Typical applications: Power production planning, revenue and

portfolio management models.
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Data process approximation by scenario trees

The process {ξt}T
t=1 is approximated by a process forming a scenario

tree being based on a finite set N ⊂ IN of nodes.
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Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,

scenario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N , A1,0x
1 = h1(ξ

1)

At(n),0x
n + At(n),1x

n− =ht(n)(ξ
n), n ∈ N

}

How to solve the optimization model ?

- Standard software (e.g., CPLEX)

- Decomposition methods for (very) large scale models

(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Open question:

How to model and incorporate risk into multiperiod models ?
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Risk functionals

Let z be a real random variable on some probability space (Ω,F , IP ).

Assume that z = z(x) is the revenue depending on a decision x in

some stochastic optimization model. The traditional objective of

such models consists in maximizing the expected revenue, i.e.,

max
x

IE[z(x)].

However, the revenue z(x) of some or many decisions x might have

fat tails, in particular, to the left. Looking only at the expectation

of z hides any tail information.

Examples of risk functionals:

Upper semivariance:

sV+(z) := IE[[IE[z]− z]2+] = IE[max{IE[z]− z, 0}2]

Value-at-Risk:

V aRp(z) := − inf{r ∈ IR : IP (z ≤ r) ≥ p} (p ∈ (0, 1))
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Conditional Value-at-risk:

CV aRp(z) := mean of the tail distribution function Fp

where Fp(t) :=

{
1 t ≥ −V aRp(z),

F (t)
p t < −V aRp(z)

and

F (t) := IP ({z ≤ t}) is the distribution function of z.

-CVaR -VaR
0

1

p

V aRp(z) and CV aRp(z) for a continuously distributed z
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Axiomatic characterization of risk:

Let Z = Lp(Ω,F , IP ) for 1 ≤ p ≤ +∞. A mapping A : Z → IR

is called acceptability functional if it is concave on Z and satisfies

the following two conditions for all z, z̃ ∈ Z :

(i) If z ≤ z̃, then A(z) ≤ A(z̃) (monotonicity).

(ii) For each r ∈ IR and z ∈ Z we have A(z + r) = A(z) + r

(translation equivariance).

An acceptability functional A is called positively homogeneous if

A(λz) = λA(z) holds for all λ ≥ 0 and z ∈ Z .

A is called strict if A(z) ≤ IE[z] for each z ∈ Z .

Given an acceptability functionalA, the mapping ρ := −A is called

a convex risk functional. ρ is called a coherent risk functional if A
is positively homogeneous.

References: Artzner/Delbaen/Eber/Heath 99, Föllmer/Schied 02
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Conditional risk mappings

Let G ⊂ F be σ-fields and Y := Lp(Ω,G, IP ) be the corresponding

subspace of Z .

A mapping A : Z → Y is called conditional acceptability mapping

or acceptability mapping with observable information G if it satisfies

the following conditions for all z, z̃ ∈ Z :

(i) A(λz + (1 − λ)z̃) ≥ λA(z) + (1 − λ)A(z̃) for all λ ∈ [0, 1]

(((pointwise) concavity)

(ii) If z ≤ z̃, then A(z) ≤ A(z̃) (monotonicity).

(iii) If z̃ ∈ Y , we have A(z + z̃) = A(z) + z̃ ((predictable) trans-

lation equivariance).

Notation: A(·,G) or AF|G.

The mapping ρ = ρF|G := −AF|G is called conditional convex risk

mapping.

References: Detlefsen/Scandolo, Finance Stochast. 05, Ruszczynski/Shapiro, Math. OR 06
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Multiperiod risk functionals

Let a filtration of σ-fields Ft, t = 1, . . . , T , and (real) random

variables {zt}T
t=1 with zt ∈ Lp(Ω,Ft, IP ), 1 ≤ p ≤ +∞, be given.

Then it may become necessary to measure their risk by multiperiod

functionals. We assume Ft ⊆ Ft+1 ⊆ F and F1 = {∅, Ω}, i.e. z1

is deterministic.

A functional A : Z = ×T
t=1Lp(Ω,Ft, IP ) → IR is called mul-

tiperiod acceptability functional if it is concave and satisfies the

following two conditions for all z, z̃ ∈ ×T
t=1Lp(Ω,Ft, IP ):

(i) If zt ≤ z̃t, t = 1, . . . , T , then A(z1, . . . , zT ) ≤ A(z̃1, . . . , z̃T )

(monotonicity),

(ii) If z̃t ∈ Lp(Ω,Ft−1, IP ), then A(z1, . . . , zt + z̃t, . . . , zT ) =

IE[z̃t] +A(z1, . . . , zT ) ((predictable) translation equivariance).

Notation: A(z1, . . . , zT ;F1, . . . ,FT ).

The mapping ρ := −A is called a multiperiod convex risk func-

tional.
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Dual representations and properties

Let Z∗ denote the topological dual of Z for p ∈ [1, +∞), i.e.,

Z∗ := ×T
t=1Lp′(Ω,Ft, IP ) with 1

p + 1
p′ = 1, and let

〈z∗, z〉 =

T∑
t=1

IE[z∗t zt]

be the dual pairing between Z∗ and Z .

An acceptability functional A is called proper if A(z) < +∞ for

all z ∈ Z and its domain dom(A) := {Z ∈ Z : A(z) > −∞} is

nonempty. If A is proper and upper semicontinuous, its domain is

closed and convex.

The conjugate A∗ : Z∗ → IR of A is given by

A∗(z∗) := inf
z∈Z

{〈z∗, z〉 − A(Y )}.

The Fenchel-Moreau theorem of convex analysis then implies the

representation

A(z) = inf
z∗∈Z∗

{〈z∗, z〉 − A∗(z∗)}

if A is proper and upper semicontinuous.
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Theorem:
Let A : Z → IR be a proper multiperiod acceptability functional.

Then the representation

A(z) = inf
z∗∈Z∗

{ T∑
t=1

IE[z∗t zt]−A∗(z∗) : z∗t ≥ 0, IE[z∗t |Ft−1] = 1,

t = 2, . . . , T
}

is valid for every z ∈ Z if A is upper semicontinuous.

Conversely, if A can be represented in the above form for some

function A∗ : Z∗ → IR, then A is an upper semicontinuous multi-

period acceptability functional.

Moreover, A is locally Lipschitz continuous, superdifferentiable and

Hadamard directionally differentiable on int dom(A). Its directional

derivative at z̄ ∈ int dom(A) satisfies

A′
(z̄, z) = inf

z∗∈∂A(z̄)
〈z∗, z〉, ∀z ∈ Z,

∂A(z̄) = {z∗ ∈ Z∗ : A(z) ≤ A(z̄) + 〈z∗, z − z̄〉, ∀z ∈ Z}.

Reference: Ruszczynski/Shapiro, Math. OR 06 (to appear)
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Multiperiod polyhedral risk functionals

It is a natural idea to introduce acceptability and risk functionals

as optimal values of certain stochastic programs.

Definition:
A multiperiod acceptability functional A on ×T

t=1Lp(Ω,Ft, IP ) is

called polyhedral if there are kt ∈ IN , ct ∈ IRkt, t = 1, . . . , T ,

wtτ ∈ IRkt−τ , t = 1, . . . , T , τ = 0, . . . , t − 1, a polyhedral set Y1

and polyhedral cones Yt ⊂ IRkt, t = 2, . . . , T , such that

A(z)=−inf

{
IE[

T∑
t=1

〈ct, yt〉]
∣∣∣∣ yt ∈ Lp(Ω,Ft, IP ; IRkt), yt ∈ Yt∑t−1

τ=0〈wt,τ , yt−τ〉 = zt, t = 1, . . . , T

}
.

A mapping ρ := −A is called multiperiod polyhedral risk functional.

Remark: A convex combination of the expectation and of a mul-

tiperiod polyhedral acceptability functional is again a multiperiod

polyhedral acceptability functional.

Polyhedral risk functionals preserve linearity and decomposition struc-

tures of optimization models. (Eichhorn/Römisch, SIAM J. Optim. 05)
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Theorem:
Let A be a functional on ×T

t=1Lp(Ω,Ft, IP ) (p ∈ [1, +∞)) having

the form in the previous definition. Assume

(i) complete recourse: 〈wt,0, Yt〉 = IR, t = 2, ..., T ,

(ii) dual feasibility:

{
u ∈ IRT : ct +

T∑
ν=t

uνwν,ν−t ∈ −Y ∗
t

}
6= ∅,

where the sets Y ∗
t are the (polyhedral) polar cones of Yt.

ThenA is finite, continuous and concave on ×T
t=1Lp(Ω,Ft, IP ) and

the following dual representation holds whenever 1
p + 1

p′ = 1:

A(z) = inf
IE

[
T∑

t=1
z∗t zt

]
− inf

y1∈Y1

〈
c1 +

T∑
ν=1

IE [z∗ν ] wν,ν−1, y1

〉
∣∣∣∣∣∣
z∗t ∈ Lp′(Ω,Ft, IP )

ct +
T∑

ν=t+1
IE [z∗ν |Ft] wν,ν−t∈−Y ∗

t

.
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Idea: Determine the parameters kt, ct, wtτ and Yt such that

c1 +

T∑
t=2

wt,t−1IE[z∗t ] ∈ −Y ∗
1 ⇒ IE[z∗2 ] = 1,

ct +

T∑
τ=t+1

wτ,τ−tIE[z∗τ |Ft] ∈ −Y ∗
t ⇒ IE[z∗t+1|Ft] = 1 and z∗t ≥ 0

cT + wT,0z
∗
T ∈ −Y ∗

T ⇒ z∗T ≥ 0.

We assume k1 ≥ 2, kt ≥ 3, t = 2, . . . , T − 1, and kT ≥ 2.

Furthermore, let the sets Yt be of the form

Y1 = IR× Ŷ1, Yt = IR× IR+ × Ŷt, t = 2, . . . , T−1, YT = IR+ × ŶT ,

where Ŷ1 is polyhedral and the sets Ŷt, t = 2, . . . , T , are polyhedral

cones. Finally, we set

c1 = (−1, ĉ1), ct = (−1, 0, ĉt), t = 2, . . . , T − 1, cT = (0, ĉT ),

w1,1 = (1, ŵ1,1), wt,t = (0, ŵt,t), t = 2, . . . , T , wT,1 = (1, ŵT,1),

wt,1 = (0, 1, ŵt,1), wt,1 = (1, 0, ŵt,1), wt,τ = (0, 0, ŵt,τ ), τ =

2, . . . , T − t, t = 1, . . . , T − 1.
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Corollary:
Let A be a functional on ×T

t=1Lp(Ω,Ft, IP ) (p ∈ [1, +∞)) with

parameters chosen as above. Assume complete recourse and dual

feasibility. Then A is a finite, continuous and multiperiod accept-

ability functional having the representation

A(z) = inf
{ T∑

t=1

IE[z∗t zt]− inf
ŷ1∈Ŷ1

〈c̄1, ŷ1〉|z∗t ∈ Lp′(Ω,Ft, IP ), z∗t ≥ 0,

IE[z∗t |Ft−1] = 1, c̄t + ŵt,1z
∗
t + ∈ −Ŷ ∗

t , t = 2, . . . , T},

where c̄1 := ĉ1 +
T∑

t=2
ŵt,t−1 ∈ Y1, c̄t := ĉt +

T∑
τ=t+1

ŵτ,τ−t, t =

2, . . . , T − 1, c̄T := ĉT .



Home Page

Title Page

Contents

JJ II

J I

Page 16 of 17

Go Back

Full Screen

Close

Quit

Example: (value-of-information approach)

Let kt = 3 for t = 1, . . . , T , c̄1 = (0, 0), Ŷ1 = IR+ × IR+,

c̄t = 1
αt

, ŵt,0 = −1 and Ŷt = IR+, t = 1, . . . , T − 1, c̄T = (0, 1
αT

),

ŶT = IR+ × IR+ and ŵT,1 = (0,−1), where αt ∈ (0, 1). Then we

obtain the following acceptability functional

A(z) = inf
{ T∑

t=2

IE[z∗t zt] : z∗t ∈ Lp′(Ω,Ft, IP ), IE[z∗t |Ft−1] = 1,

z∗t ∈ [0,
1

αt
], t = 2, . . . , T

}
.

A(z) = IE
[ T∑

t=2

inf
{

z∗t zt : IE[z∗t |Ft−1] = 1, z∗t ∈ [0,
1

αt
]
}]

ρ(z) = IE
[ T∑

t=2

AV aRαt(zt,Ft−1)
]

Reference: Pflug/Ruszczynski 04, 05
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Iterated conditional risk mappings

Let AFt|Ft−1, t = 2, . . . , T , be conditional acceptability mappings

and we define an acceptability functional A on ×T
t=1Lp(Ω,Ft, IP )

A(z) := z1 +AF2|F1

[
z2 + · · · +AFT−1|FT−2[zT−1 +AFT |FT−1(zT )]

]
= AF2|F1 ◦ · · · ◦ AFT−1|FT−2 ◦ AFT |FT−1(z1 + · · · + zT ),

where the latter representation is a consequence of the (predictable)

translation equivariance.

Example: (polyhedral conditional acceptability mappings)

AFt|Ft−1(z) = − inf
{
〈c1, y1〉+IE[〈c2, y2〉|Ft−1] :y1∈Lp(Ω,Ft−1, IP ),

y1 ∈ Y1, y2 ∈ Lp(Ω,Ft, IP ), y2 ∈ Y2, 〈w1, y1〉+〈w2, y2〉=z
}

and select the parameters such that AFt|Ft−1 is a conditional ac-

ceptability mapping.

Reference: Ruszczynski/Shapiro, Math. OR 06 (to appear)


