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Introduction

• Computational methods for solving stochastic programs require (first) a dis-

cretization of the underlying probability distribution induced by a numerical

integration scheme for the approximate computation of expectations and

(second) an efficient solver for a (large scale) finite-dimensional program.

• Discretization means scenario or sample generation.

• Standard approach: Variants of Monte Carlo (MC) methods.

• Recent alternative approaches to scenario generation:

(a) Optimal quantization of probability distributions

(Pflug-Pichler 11).

(b) Quasi-Monte Carlo (QMC) methods

(Koivu-Pennanen 05, Pennanen 09, Homem-de-Mello 08, Heitsch-Leövey-Römisch 12).

(c) Sparse grid quadrature rules

(Chen-Mehrotra 08).



• Known convergence rates in terms of scenario or sample size n:

MC: ên(f ) = O(n−
1
2) if f ∈ L2,

(a): en(f ) = O(n−
1
d) if f ∈ Lip,

(b): classical: en(f ) = O(n−1(log n)d) if f ∈ BV,

recently: ên(f ) ≤ C(δ)n−1+δ (δ ∈ (0, 1
2]) if f ∈ W (1,...,1),

where C(δ) does not depend on d,

(c): en(f ) = O(n−r(log n)(d−1)(r+1)) if f ∈ W (r,...,r),

where d is the dimension of the random vector and en(f ) the quadrature

error for integrand f and sample size n, i.e.,

en(f ) =
∣∣∣ ∫

[0,1]d
f (ξ)dξ − 1

n

n∑
i=1

f (xi)
∣∣∣

and ên(f ) denotes mean (square) quadrature error.

• Monte Carlo methods and (a) may be justified by available stability results

for stochastic programs, but there is almost no reasonable justification for

(b) and (c) in many cases.

• In applications of stochastic programming dimension d is often large.
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Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (x)dx

by a QMC algorithm

Qn,d(f ) = 1
n

n∑
i=1

f (xi)

with (non-random) points xi, i = 1, . . . , n, from [0, 1]d.

We assume that f belongs to a linear normed space Fd of functions on [0, 1]d

with norm ‖ · ‖d and unit ball Bd.

Worst-case error of Qn,d over Bd:

e(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣



Classical convergence result:

Theorem: (Koksma-Hlawka 61)

If VHK(f ) is the variation of f in the sense of Hardy and Krause, it holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n(x1, . . . , xn)

for any n ∈ N and any x1, . . . , xn ∈ [0, 1]d, where

D∗n(x1, . . . , xn) := ‖disc(x)‖∞, disc(x) = λd([0, x))− 1
n

n∑
i=1

1l[0,x)(x
i),

is the star-discrepancy of x1, . . . , xn (λd denotes Lebesgue’s measure on Rd).



Extended Koksma-Hlawka inequality:

|Id(f )−Qn,d(f )| ≤ ‖disc(·)‖p,p′‖f‖q,q′ ,
where 1 ≤ p, p′, q, q′ ≤ ∞, 1

p + 1
q = 1, 1

p′ + 1
q′ = 1, and

‖disc(·)‖p,p′ =

(∑
u⊆D

(∫
[0,1]|u|

|disc(xu, 1)|p
′
dxu

) p
p′
)1

p

and

‖f‖q,q′ =

∑
u⊆D

(∫
[0,1]|u|

∣∣∣∣∂|u|f∂xu
(xu, 1)

∣∣∣∣q
′

dxu

) q
q′


1
q

with the obvious modifications if one or more of p, p′, q, q′ are infinite.

In particular, the classical Koksma-Hlawka inequality essentially corresponds to

p = p′ = ∞ if f belongs to the tensor product Sobolev space W (1,...,1)
2,mix ([0, 1]d)

which is defined next.
By (xu, 1) we mean the d-dimensional vector with the same components as x for indices in u and the rest of
the components replaced by 1.



The case of kernel reproducing Hilbert spaces

We assume that Fd is a kernel reproducing Hilbert space with inner product 〈·, ·〉
and kernel K : [0, 1]d × [0, 1]d → R, i.e.,

K(·, y) ∈ Fd and 〈f (·), K(·, y)〉 = f (y) (∀y ∈ [0, 1]d, f ∈ Fd).

If Id is a linear bounded functional on Fd, the quadrature error en(Qn,d) allows

the representation

en(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣ = sup

f∈Bd
|〈f, hn〉| = ‖hn‖d

according to Riesz’ theorem for linear bounded functionals.

The representer hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − 1
n

n∑
i=1

K(x, xi) (∀x ∈ [0, 1]d),

and it holds

e2
n(Qn,d) =

∫
[0,1]2d

K(x, y)dx dy − 2
n

n∑
i=1

∫
[0,1]d

K(xi, y)dy + 1
n2

n∑
i,j=1

K(xi, xj)

(Hickernell 98)



Example: Tensor product Sobolev space

Fd =W (1,...,1)
2,mix ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1])

equipped with the weighted norm ‖f‖2
γ = 〈f, f〉γ and inner product

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂|u|

∂xu
f (x)dx−u

)(∫
[0,1]d−|u|

∂|u|

∂xu
g(x)dx−u

)
dxu

where the sequence (γi) is positive and nonincreasing, and γu is given by

γu =
∏
i∈u

γi

for u ⊆ {1, . . . , d}, is a reproducing kernel Hilbert space with the kernel

Kd,γ(x, y) =

d∏
i=1

(
1 + γi(0.5B2(|xi − yi|) + B1(xi)B1(yi))

)
(x, y ∈ [0, 1]d),

where B1(x) = x− 1
2 and B2(x) = x2 − x + 1

6 are the Bernoulli polynomials of

order 1 and 2, respectively.



Theorem: (Sloan-Woźniakowski 98)

Let Fd =W (1,...,1)
2,mix ([0, 1]d). Then the worst-case error

e2(Qn,d)= sup
‖f‖γ≤1

|Id(f )−Qn,d(f )| =
∑
∅6=u⊆D

∏
j∈u

γj

∫
[0,1]|u|

disc2(xu, 1)dxu

is called weighted L2-discrepancy of ξ1, . . . , ξn.

Note that any f ∈ Fd is of bounded variation VHK(f ) in the sense of Hardy and

Krause and it holds

V (f ) =
∑
∅6=u⊆D

∫
[0,1]|u|

∣∣∣∂|u|f
∂xu

(xu, 1)
∣∣∣dxu .

Problem: Integrands in two-stage stochastic programming do not belong to Fd
(piecewise linear functions are not of bounded variation (Owen 05)).



First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

where ai, di ∈ Z+, 0 ≤ ai < bdi, i = 1, . . . , d.

Let m, t ∈ Z+, m > t. A set of bm points in [0, 1)d is a (t,m, d)-net in base b if

every elementary subinterval E in base b with λd(E) = bt−m contains bt points.

Illustration of a (0, 4, 2)-net with b = 2 s s s s
s s s ss s s s

s s s s

1

0 1

A sequence (ξi) in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ∈ Z+

and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}
is a (t,m, d)-net in base b.



There exist (t, d)-sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1) ≤ C(δ, d)n−1+δ (∀δ > 0).

Specific sequences: Faure, Sobol’, Niederreiter and Niederreiter-Xing se-

quences (Lemieux 09, Dick-Pillichshammer 10).

Recent development: Scrambled (t,m, d)-nets, where the digits are randomly

permuted (Owen 95).

Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

Lattice rules: Let g ∈ Zd and consider the lattice points{
ξi =

{
i
n g
}

: i = 0, . . . , n− 1
}
,

where {z} is defined as componentwise fractional part of z ∈ R+, i.e.,

{z} = z − bzc ∈ [0, 1).

The generator g is chosen such that the lattice rule has good convergence proper-

ties. Such lattice rules may achieve better convergence rates O(n−k+δ), k ∈ N,

for integrands in Ck.



n = 29 pseudo random numbers in [0, 1]2 generated by the Mersenne Twister



Sobol point set with n = 29 in [0, 1]2



Recent development: Randomized lattice rules.

Randomly shifted lattice points:

If 4 is a sample from uniform distribution in [0, 1]d put

Qn,d(f ) = 1
n

n−1∑
i=0

f
(
i
n g +4

)
,

where g ∈ Zd is the generator of the lattice.

Theorem:
Let n be prime, Fd = W (1,...,1)

2,mix ([0, 1]d) and g ∈ Zd be constructed component-

wise. Then there exists for any δ ∈ (0, 1
2] a constant C(δ) > 0 such that the

mean quadrature error attains the optimal convergence rate

ên(Qn,d) =
(
E∆

∣∣Id(f )−Qn,d(f )
∣∣2)1

2 ≤ C(δ)n−1+δ ,

where the constant C(δ) grows when δ decreases, but does not depend on the

dimension d if the sequence (γj) satisfies the condition
∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3
).

(Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)



ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth,

but hopefully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd) with ρ(ξ) =
∏d

j=1 ρj(ξj), where

f ∈ Lp,ρ(Rd) iff

∫
Rd
|f (ξ)|pρ(ξ)dξ <∞ (p ≥ 1).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
(∏
k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering within the

product is not important because of Fubini’s theorem. The function Puf is

constant with respect to all xk, k ∈ u.



ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively (Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u and j ∈ u\v,

respectively. The second representation motivates that fu is essentially as smooth

as P−u(f ).

If f belongs to L2,ρ(Rd), its ANOVA terms {fu}u⊆D are orthogonal in L2,ρ(Rd).

We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .

The normalized ratios σ2u(f)
σ2(f)

serve as indicators for the importance of ξu in f .



Owen’s superposition (truncation) dimension distribution of f : Probability mea-

sure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Effective superposition (truncation) dimension dS(ε) (dT (ε)) of f is the (1− ε)-

quantile of νS (νT ):

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f ) ≥ (1− ε)σ2(f )

}
≤ dT (ε)

dT (ε) = min
{
s ∈ D :

∑
u⊆{1,...,s}

σ2
u(f ) ≥ (1− ε)σ2(f )

}
It holds

max
{∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
,
∥∥∥f − ∑

u⊆{1,...,dT (ε)}

fu

∥∥∥
2,ρ

}
≤
√
εσ(f ).

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



Two-stage linear stochastic programs

We consider the linear two-stage stochastic program

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

where f is extended real-valued defined on Rm × Rd given by

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x), (x, ξ) ∈ X × Ξ,

c ∈ Rm, X ⊆ Rm and Ξ ⊆ Rd are convex polyhedral, W is an (r,m)-matrix, P

is a Borel probability measure on Ξ, and the vectors q(ξ) ∈ Rm, h(ξ) ∈ Rr and

the (r,m)-matrix T (ξ) are affine functions of ξ, Φ is the second-stage optimal

value function

Φ(u, t) = inf{〈u, y〉 : Wy = t, y ≥ 0} ((u, t) ∈ Rm × Rr),

Let posW = W (Rm
+), D ={u ∈ Rm :{z ∈ Rr : W>z ≤ u} 6= ∅}.

Assumptions:
(A1) h(ξ)− T (ξ)x ∈ posW and q(ξ) ∈ D for all (x, ξ) ∈ X × Ξ.

(A2)
∫

Ξ ‖ξ‖
2P (dξ) <∞.



Proposition:
(A1) and (A2) imply that the two-stage stochastic program represents a convex

minimization problem with respect to the first stage decision x with polyhedral

constraints.

Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)

Φ is finite, polyhedral and continuous on the (m+r)-dimensional convex polyhe-

dral cone D×posW and there exist (r,m)-matrices Cj and (m+r)-dimensional

convex polyhedral cones Kj, j = 1, ..., `, such that

⋃̀
j=1

Kj = D × posW and intKi ∩ intKj = ∅ , i 6= j,

Φ(u, t) = 〈Cju, t〉, for each (u, t) ∈ Kj, j = 1, ..., `.

The function Φ(u, ·) is convex on posW for each u ∈ D, and Φ(·, t) is concave

on D for each t ∈ posW . The intersection Ki ∩ Kj, i 6= j, is either equal to

{0} or contained in a (m+r−1)-dimensional subspace of Rm+r if the two cones

are adjacent.



Error estimates for optimal values and solution sets

With v(P ) and S(P ) denoting the optimal value and solution set of

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

it holds

|v(P )− v(Q)| ≤ L sup
x∈X

∣∣∣ ∫
Ξ

f (x, ξ)P (dξ)−
∫

Ξ

f (x, ξ)Q(dξ)
∣∣∣

∅ 6= S(Q) ⊆ S(P ) + ΨP

(
L sup
x∈X

∣∣∣ ∫
Ξ

f (x, ξ)(P −Q)(dξ)
∣∣∣),

where L > 0 is some constant, P the original probability distribution and Q its

perburbation, and ΨP the conditioning function given by

ΨP (η) := η + ψ−1
P (2η) (η ∈ R+),

where the growth function ψP is

ψP (τ ) := min
{∫

Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X
}

with inverse ψ−1
P (t) := sup{τ ∈ R+ : ψP (τ ) ≤ t}. (Römisch 03)



ANOVA decomposition of two-stage integrands

Assumptions: (A1), (A2) and

(A3) P has a density of the form ρ(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd) with continuous

marginal densities ρj, j ∈ D.

(A4) All common faces of adjacent convex polyhedral sets

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(ξ)− T (ξ)x) ∈ Kj} (j = 1, . . . , `)

do not parallel any coordinate axis for all x ∈ X (geometric condition).

Proposition:
(A1) implies that the function f (x, ·), where

fx(ξ) := f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) (x ∈ X, ξ ∈ Ξ)

is the two-stage integrand, is continuous and piecewise linear-quadratic.

For each x ∈ X , f (x, ·) is linear-quadratic on each convex polyhedral set Ξj(x),

j = 1, . . . , `. It holds int Ξj(x) 6= ∅, int Ξj(x) ∩ int Ξi(x) = ∅, i 6= j, and the

sets Ξj(x), j = 1, . . . , `, decompose Ξ. Furthermore, the intersection of two

adjacent sets Ξi(x) and Ξj(x), i 6= j, is contained in some (d − 1)-dimensional

affine subspace.



To compute projections Pkf for k ∈ D, let ξi ∈ R, i = 1, . . . , d, i 6= k, be

given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξk(s) = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd (s ∈ R).

We fix x ∈ X and consider the one-dimensional affine subspace {ξk(s) : s ∈ R}:

�
�
�
�
�
@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�

Ξ2(x) Ξ1(x)

Ξ3(x)

0

ξ1(s) q q
s1 s2

Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets Ξi(x) and

Ξj(x), i 6= j, at finitely many points si, i = 1, . . . , p if all (d − 1)-dimensional

subspaces containing the intersections do not parallel the kth coordinate axis.



The si = si(ξ
k), i = 1, . . . , p, are affine functions of ξk. It holds

si = −
p∑

l=1,l 6=k

gil
gik
ξl + ai (i = 1, . . . , p)

for some ai ∈ R and gi ∈ Rd belonging to an intersection of polyhedral sets.

Proposition:
Let k ∈ D, x ∈ X and assume (A1)–(A4).

Then the kth projection Pkf has the explicit representation

Pkf (ξk) =

p+1∑
i=1

2∑
j=0

pij(ξ
k;x)

∫ si

si−1

sjρk(s)ds,

where s0 = −∞, sp+1 = +∞ and pij(·;x) are polynomials in ξk of degree 2− j,

j = 0, 1, 2, with coefficients depending on x, and is continuously differentiable

on Rd. Pkf is s-times continuously differentiable almost everywhere on Rd if the

marginal density ρk belongs to Cs−1(R).



Theorem:
Let x ∈ X , assume (A1)–(A4) and f = f (x, ·) be the two-stage integrand.

Then the second order ANOVA approximation of f

f (2) :=
∑
|u|≤2

fu where f = f (2) +

d∑
|u|=3

fu

belongs to W
(1,...,1)
2,ρ,mix (Rd) if all marginal densities ρk, k ∈ D, belong to C1(R).

Remark:
The second order ANOVA approximation f (2) is a good approximation of f if the

effective superposition dimension dS(ε) is at most 2. Then∥∥∥ d∑
|u|=3

fu

∥∥∥2

2,ρ
=

d∑
|u|=3

‖fu‖2
2,ρ ≤ εσ2(f )

and f belongs essentially to the tensor product Sobolev space W (1,...,1)
2,mix (Rd).

Hence, a favorable behavior of randomly shifted lattice rules may be expected.



Example: Let m̄ = 3, d = 2, P satisfy (A2) and (A3), h(ξ) = ξ, q and T be

fixed and W be given such that (A1) is satisfied and the dual feasible set is

{z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0}.

@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�

qq
q

q�
�
�
�@

@
@
@

K2 K1

K3

0

v3

v2 v1

Dual feasible set, its vertices vj and the normal cones Kj to its vertices

The function Φ and the integrand are of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

f (ξ) = 〈c, x〉 + Φ(ξ − Tx) = 〈c, x〉 + max{|ξ1− [Tx]1|, ξ2 − [Tx]2}

and the convex polyhedral sets are Ξj(x) = Tx +Kj, j = 1, 2, 3.

The ANOVA projection P1f is in C1, but P2f is not differentiable.



QMC quadrature error estimates

If the assumptions of the theorem are satisfied, one may argue∣∣∣ ∫
Rd
f (ξ)ρ(ξ)dξ − n−1

n∑
j=1

f (ξj)
∣∣∣ =

∣∣∣ ∫
[0,1]d

g(x)dx− n−1
n∑
j=1

g(xj)
∣∣∣

≤
∑

0<|u|≤d

∣∣∣ ∫
[0,1]|u|

gu(x
u)dxu − n−1

n∑
j=1

gu(x
j)
∣∣∣

≤
2∑
|u|=1

Discn,u(x
1, . . . , xn)‖gu‖γ +

d∑
|u|=3

∣∣∣ ∫
[0,1]d

gu(x)dx− n−1
n∑
j=1

gu(x
j)
∣∣∣

≤ C(δ)n−1+δ + O(
√
ε)

if effective superposition dimension satisfies dS(ε) ≤ 2 and gu, |u| = 1, 2,

belongs to the tensor product Sobolev space on [0, 1]d with weighted norm ‖ · ‖γ.



The function g is defined by

g(x) =

{
(f ◦ ϕ−1)(x) if x ∈ (0, 1)d,

0 if x ∈ [0, 1]d \ (0, 1)d

where

ϕ := (ϕ1, . . . , ϕd), ϕi(t) :=

∫ t

−∞
ρi(s)ds (i ∈ D).

Since fu, |u| = 1, 2, is first and second order partially differentiable in the sense

of Sobolev under certain assumptions and ϕ−1 can be assumed to be smooth,

gu, |u| = 1, 2, is also first and second order partially differentiable in the sense

of Sobolev.

However, the derivatives of gu are in general not quadratically integrable. Hence,

the Sobolev spaces have to be modified by introducing weight functions.

(Kuo-Sloan-Wasilkowski-Waterhouse 10).



Question: How restrictive is the geometric condition (A4) ?

Partial answer: If P is normal with nonsingular covariance matrix, (A4) is a

generic property. Namely, it holds

Proposition: Let x ∈ X , (A1), (A2) be satisfied and P be a normal distribu-

tion with nonsingular covariance matrix Σ.

Then for almost all covariance matrices Σ the second order ANOVA approxima-

tion f (2) of f belongs to the mixed Sobolev space W (1,...,1)
2,ρ,mix(Rd).

Question: For which two-stage stochastic programs is the effective superposi-

tion dimension dS(ε) of f is less than or equal to 2?

Partial answer: In case of a (log)normal probability distribution P the effective

dimension depends on the mode of decomposition of the covariance matrix in

order to transform the random vector to one with independent components.



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean µ and nonsingular covariance matrix

Σ. Let A be a matrix satisfying Σ = AA>. Then η defined by ξ = Aη + µ is

standard normal.

The (lower triangular) standard Cholesky matrix A = LC performing the facto-

rization Σ = LCL
>
C seems to assign the same importance to every variable and,

hence, is not suitable to reduce the effective dimension.

A universal principle is principal component analysis (PCA). Here, one uses

A = (
√
λ1u1, . . . ,

√
λdud), where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues

of Σ in decreasing order and the corresponding orthonormal eigenvectors ui,

i = 1, . . . , d. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the ef-

fective truncation dimension in financial models if PCA is used. Our numerical

results confirm this observation.

However, there is no consistent dimension reduction effect for any such matrix

A (Papageorgiou 02, Wang-Sloan 11).



Some computational experience

We consider a stochastic production planning problem which consists in minimiz-

ing the expected costs of a company during a certain time horizon. The model

contains stochastic demands ξδ and prices ξc as components of

ξ = (ξδ,1, . . . , ξδ,T , ξc,1, . . . , ξc,T )>.

The company aims to satisfy stochastic demands ξδ,t in a time horizon {1, . . . , T},
but its production capacity based on their own units does eventually not suffice

to cover the demand. The model is of the form

max
{ T∑

t=1

(
c>t xt +

∫
RT
qt(ξ)>ytP (dξ)

)
: Wy + V x = h(ξ), y ≥ 0, x ∈ X

}
We assume that the stochastic demands and prices ξδ,t, ξc,t may be modeled as

a multivariate ARMA(1,1) process, i.e.,(
ξδ,t
ξc,t

)
=

(
ξ̄δ,t
ξ̄c,t

)
+

(
E1,t

E2,t

)
, for t = 1, . . . , T, and(

ξ̄δ,1
ξ̄c,1

)
= B1

(
γ1,1

γ2,1

)
,

(
ξ̄δ,t
ξ̄c,t

)
= A

(
ξ̄δ,t−1

ξ̄c,t−1

)
+ B1

(
γ1,t

γ2,t

)
+ B2

(
γ1,t−1

γ2,t−1

)



for t = 2, . . . , T , where γ1,t, γ2,t ∼ N(0,1) and i.i.d. and T = 100.

We used PCA and CH for decomposing the covariance matrix of ξ. PCA has led

to effective truncation dimension dT (0.01) = 2 while for CH dT (0.01) = 200. As

QMC methods we used a randomly scrambled Sobol sequence (SSobol) and a

randomly shifted lattice rule (Sloan-Kuo-Joe) with weights γj = 1
j3

and for MC the

Mersenne-Twister.

We used n = 128, 256, 512 for the Mersenne Twister and for Sobol’ points. For

randomly shifted lattices we used n = 127, 257, 509. The random shifts were

generated using the Mersenne Twister. We estimated the relative root mean

square errors (RMSE) of the optimal costs by taking 10 runs for each experiment,

and repeat the process 30 times for the box plots in the figures.

The average of the estimated rates of convergence under PCA was approximately

−0.9 for randomly shifted lattice rules, and −1.0 for the randomly scrambled

Sobol’ points. This is clearly superior compared to the MC rate −0.5.

The box-plots show the first quartile as lower bound of the box, the third quartile as upper bound and the
median as line between the bounds, Outliers are marked as plus signs and the rest of the results lie between the
brackets.



log10 of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol’ points)
using PCA



log10 of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol’ points)
using Cholesky



Conclusions

• Our analysis provides a theoretical basis for applying QMC methods accom-

panied by dimension reduction techniques to two-stage stochastic programs.

• The analysis also applies to sparse grid quadrature techniques.

Sparse grids in the unit cube [0, 1]d

• The results seem to be extendable to mixed-integer two-stage models, to

multi-stage situations, and to models with chance and dominance constraints.
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