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Polyhedral risk measures in electricity portfolio optimization

Andreas Eichhorn* 1, Werner Romischt, andlsabel Wegnet
! Humboldt-University Berlin, Department of Mathematics, 10099 Berlierr@any

We compare different multiperiod risk measures taken from the clapslgfiedral risk measures with respect to the effect
they show when used in the objective of a stochastic program. For tiissrirsimulation results of a stochastic programming
model for optimizing the electricity portfolio of a German municipal power utititg presented and analyzed. This model
aims to minimize risk and expected overall cost simultaneously.
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1 Introduction

The risk of high losses of uncertain outcomes is quantifigtt wo-called risk measures, i.e., mappings from some sgface o
random variables (or processes) to the real line that hataicgroperties (cf. [1, 5, 7]). In particular, in case thekrof a
value process over a finite number of time periods has to beidered, multiperiod risk measures are needed (cf. [2, 6]).

Risk measures and stochastic programs fit together in aahatary: they both rest on stochastic models and it is an
expedient goal to minimize risk (cf. [7, 8]). To be more peecithe aim is to find a reasonable tradeoff between low rigk an
low expected cost (since minimal risk does not come for fr@éle choice of the risk measure is a crucial factor, because i
determines in which way extreme events are avoided. Theeudfagrisk measure that is not appropriate for a certaintigiua
is likely to lead to higher expected cost, i.e., to a non+optisolution.

However, stochastic programs incorporating risk measaresisually harder to solve. An unfavorable choice of the ris
measure may easily result in a problem that is no longer btehia practice, especially if integer variables are incogbed.
Therefore, one has to restrict the choice of the risk measuhmse with favorable properties for the structure of #spective
stochastic program. To this end, the class of polyhedr&l measures was introduced in [3] for which theses favorable
properties are guaranteed. Instances of this class wegestagl for the multiperiod case.

In this paper, such risk measures and their effect in stdichaograms will be compared in a simulative study of a real
world application model. We use the electricity portfoligtionization model presented in [4] which is a multistagechtistic
programming model set up for a municipal power utility toiopze power production and electricity trading under uteiety
over a period of one year. The objective is to minimize theeexgd overall cost and a multiperiod risk measure simuttasig.

2 Optimization model

The model used for the analysis is set up for a power utilityhwimited power production capacities. It is based on hourl
discretization, i.e. time is considered in terms of timepste= 1, ...,7 whereT = 365 - 24. The objective is to satisfy an
uncertain time-dependent electricity demand in an optmsainer by utilizing available power production faciliteswell as
several types of contracts with larger power companiestrédéy spot market at the European Energy Exchange (E&XJ,
certain energy derivative products from EEX that can be tiséedge risk (so-callefilitures). On a high level of abstraction
the model reads

min {’yp(ztl,..., zt,) + (L =y)E[—27] : 2z = Zj—zlbf(f‘r) "Xy, TE X(f)} )

with1 < t; < ... <t = T. The objective is a weighted sum ofigperiod polyhedral risk measupeand the expectation
of the final value with some fixed weighting parametee [0, 1]. Thereby, the uncertainty is represented by a multivariate
data process = (&4, ..., &) containing electricity demand, spot and future prices. \iéetorsz = (x4, ..., z7) denote the
decisions of the model at each time step that have to sa@sfgral restrictions symbolized by the s&{¢) consisting of
polyhedral, integrality, and non-anticipativity congtits. The book values at each time step, i.e., the accunautateenues,
are represented by the variablgs..., zr. The vector$, are cost coefficients depending on the random data. Fomsptkie
model, the data procegss approximated by a finite scenario tree.

It is assumed that, within certain bounds, any amounts atrdéy can be traded or produced, hence, these decisems c
be modelled with continuous variables. The only integeialdes in the model are the decisions whether a certainacris
to make or not. See [4] for further details.
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3 Quantifying risk of value processes

We consider a finite numbéft of time periods, a probability spa¢g, 7, P), and a filtration; C F; C ... C Fr of o-fields,
e.g..F: = o(&, ..., &) with some random procegs Suppose the (uncertain) value process is representeddgmavariables
21,22, ...,z With z, € L,(2, F;,P) (p > 1) for which large outcomes are preferred to lower ones. Irit[B] claimed that
from an economic point of view multiperiod risk measuresshould at least satisfy the following conditions:
MOIf z <z as. t=1,..,T,thenp(z,...,z2r) > p(Z1, ..., Zr) (inverse monotonicity)
(ii) for eachr € R we havep(z; + 7, ..., 27 + 1) = p(z) — r (trandation equivariance)
(i) p(pzr + (1= )21, e pzr + (1 — w)zr) < pp(z1, ...y 2r) + (1 — p)p(z1, ..., 21) for p € [0, 1] (convexity)
(iv) for . > 0 we havep(uzy, ..., pzr) = pp(z1, ..., 2r) (positive homogeneity).
If so, the functionap is called amultiperiod coherent risk measure. If a functionalp is continuous from below, then it is a
multiperiod coherent risk measure iff there exists a come®, C Dy := {f € x_ L1 (Q, F,P): f >0, S E[f:] =1}
such thap(z1, ..., 27) = sup{—ZleE [feze] - f € Py} (cf. [2,5, 3)).

Multiperiod polyhedral risk measures were defined in [3] as optimal values of certain simple migtie stochastic pro-
grams:

. € L,(Q,F, P R*), g (w) € Vs,
p(Zl, ...,ZT) = Hlf {E [Z?:1<Ctayt>} Y t—1 p( ¢ ) yt( ) ¢

7=0 <wt-,'rv Yi—r(W)) = ze(w)

(tzl,...,T)} @)

with somek; € N, ¢; € RF, ¢t = 1,..., T, w;, € RFe-7,t =1,...,T, 7 = 0,....,t — 1, and polyhedral coneg, C R*:,
t=1,...,T. Itis shown in [3] that risk measures of this form have favbegoroperties for stochastic programs with respect
to stability and algorithmic structures. If complete rexsmiand dual feasibility is imposed (standard assumptiosihastic
programming guaranteeing finiteness), it is shown that thisriLipschitz continuous and allows the dual representation

p(z1, ..., z7) = sup {—E {Zthl )\tzt} A€ Ap} -
Api={Ae xTLLy(QFLP) o+ DL EF w0 € =Y} with L4k =1

Hence, in this casgis a multiperiod coherent risk measure\if C Dr. All these assumptions are satisfied for the examples
suggested in [3]. For our analysis, we selected the follgvristances that are, hence, multiperiod coherent risk uness

| No. | primal representation (2) | dual multipliers according to (3) |
€ R” constant 4\ = 2
. L i (i@ o n _y1 ! 0< M < gy
pr | inf ¢ > w5 (' + 2E |y, yt € Ry x Ry Fi-measurable 1
t=2 * (1) (2) (t) E [)‘2} =..=E [)‘T] = T_1
Yt = — Y :Zt+y1( )(t:2,7T)
2
T y1 € R x R constant y,” = 21 0< )\ < 1 t—=2 .. T
pz | inf {ygl) +2 srpE [?/,52)] y¢ € Ry x Ry Fi-measurable ST tEf)\Ti_f) (=21,
= -y =aty) (t=2,..,7) e
y1 € R x R constant y{? = 2 At + EXe1 ) < gy
T — —
. (1) 1 (2) yr € Ry x Ry }"t-meas.(t—Q,...,T) 0< A, (t—2,...,T71),
inf + E [ }
ps DV e CO IO RO B © 0 <X < o7y
1 2 1 2 T
yt( ) _yg : :Zt+y£ )+y§—)1 (t:37“'7T) Et:lE[)‘t] =1
y1 € R x R constant yf) =z 0< M <Be(t=2,..T),
T —
. 1 (1) 1 (2) Yt cR x R+ ]-'t-meas. (t = 2, 771 - 1) At =FE [)\t+1|]:t}
pa | inf ¢ == <y1 th;QO‘E [yt ]) yr € Ry x Ry t=2,...,T-1)
yt(1> — y,EQ) =2zt + yt(ljl (t=2,..T) Efx] = ... =E[M] = ﬁ

All these examples can be considered as multiperiod extesisif the one-period Conditional-Value-at-RiSK a R, (z) =
inf,cp {r + LE[(z + r)~]} with a € (0,1) small, e.g.« = 0.05 (cf. [7]). The primal representation (2) is suitable forrixpi
incorporated in the objective (1) since the two nested miation problems can be reduced to one. However, to unaetsta
how a respective risk measure works, it is more suggestivegard the dual representation according to (3). Note tieat t
maximization there aims to choosebig wherez is small in compliance with the respective restrictionsnétgp(z) can be
understood as a kind of (negative) worst case weighted et of 2.

4 Simulation Results

Now we are ready to present simulation results of the modeérdby, the data processs approximated by a scenario tree
with 8760 timesteps and 21 scenarios (cf. [4]).

Most important for the power utility is, of course, the boadue at each time step, especially if one focuses on liguidit
Figure 1, 2 and 3 show plots of these value processes frotmapiortfolios according to (1) for each risk measure, respe
tively (v = 0.25, = 0.05). The treelike curve structure in each figure corresponidsprse, to the input scenario tree.
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Optimizing without risk or withC'V a R applied to the value at the last time step only, leads to higeagling and to very
low intermediate values for a considerably high number ehacios. The usage of a multiperiod risk measure that téies t
intermediate time steps into account corrects both, sprgaahd negativity of values. The way this is achieved, harev
differs among the risk measures. Obviously, they can ba&éiinto two groupsy» andps, on the one hand, ang andpy,
on the other hand.

The effect ofp; andp, is that, roughly speaking, the values of the scenarios rosecltogether. A difference is that for
(sum of one-period’V a Rs) the runs are pushed closer together at the beginningdqurtbe of a higher spread at the end,
i.e., at the time when the portfolio value tends to be low. ¢¢erthe effect of pushing the value runs together turns obéto
more uniform wherp, is used. This is, of course, advantageous since it is thagd@idow levels that should be avoided.

This spread at the end is even smallepdfor p3 are used. In this case one can make out a level that is attémpte
to be underrun whereas upward deviation is not avoided.pkothis level corresponds to the numbein a reformulation

of po which readspz (21, ..., 1) = inf,cr {r +30, ﬁE[(zt + r)_]} (cf. [3]). Thereby, another sort of uniformity
is achieved which seems to be very desirable from the pointes# of liquidity. However, this uniformity is achieved by a
higher amount of future trading (see below).

For other values ofy and a the results are qualitatively the same and quantitativehjlar in the majority of cases.
Significant differences can be observed in the casecdtlimenlarged fop, or ps: Figure 4 demonstrates that largecauses
that the level described above is higher for the price ofapend decrease at the end. Although the latter is unaveidaiie

expected cost cannot be lower than in the purely expecthtisad model, the behavior far= 0.2 seems to be less desirable.
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Fig.4 0.75-E[—z7] + 0.25 - pa(2ty, ..., 27), o = 0.05 0.75 - E[—zr] + 0.25 - p2(2ty, ..., 27), a =0.2

Enlargingy slightly does not change the results significantly, butfag 0.5 (depending on the risk measure) there occurs
a switch to the effect that the contract described in Se@imclosed (cf. [4]).

Future trading activity differs among the risk measuresnant and in time. It is relatively low fop, whereas fop; it
is high at the end of the time horizon and ferandps it is very high in the midway (cf. Figure 5).
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Fig. 5 Future trading fop, Future trading fop,

As mentioned above in the introduction, lower risk does mwohe for free, i.e., incorporating risk measures in (1) leads
higher expected overall cost. In the figure below the riskigaland the values of the expected revenues are shown for each
risk measure. Thereby, indéx..., 4 denotes values of the optimal portfolios far,...,04, respectively, and indexaddresses
theCVaR applied to the last time. The horizontal line shows the makiexpected revenue without consideration of risk.
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Hence,p, andps produce fewer extra cost comparedgtoand p, but, of course, more thafi'VaR applied to the final
value only. The relatively small differences of the optimapected revenues are due to the fact that the model cossaier
prices for the futures, and no transaction cost are takeraictount.
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