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Polyhedral risk measures in electricity portfolio optimization
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We compare different multiperiod risk measures taken from the class ofpolyhedral risk measures with respect to the effect
they show when used in the objective of a stochastic program. For this purpose, simulation results of a stochastic programming
model for optimizing the electricity portfolio of a German municipal power utilityare presented and analyzed. This model
aims to minimize risk and expected overall cost simultaneously.
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1 Introduction

The risk of high losses of uncertain outcomes is quantified with so-called risk measures, i.e., mappings from some space of
random variables (or processes) to the real line that have certain properties (cf. [1, 5, 7]). In particular, in case the risk of a
value process over a finite number of time periods has to be considered, multiperiod risk measures are needed (cf. [2, 6]).

Risk measures and stochastic programs fit together in a natural way: they both rest on stochastic models and it is an
expedient goal to minimize risk (cf. [7, 8]). To be more precise: the aim is to find a reasonable tradeoff between low risk and
low expected cost (since minimal risk does not come for free). The choice of the risk measure is a crucial factor, because it
determines in which way extreme events are avoided. The usage of a risk measure that is not appropriate for a certain situation
is likely to lead to higher expected cost, i.e., to a non-optimal solution.

However, stochastic programs incorporating risk measuresare usually harder to solve. An unfavorable choice of the risk
measure may easily result in a problem that is no longer solvable in practice, especially if integer variables are incorporated.
Therefore, one has to restrict the choice of the risk measureto those with favorable properties for the structure of the respective
stochastic program. To this end, the class of polyhedral risk measures was introduced in [3] for which theses favorable
properties are guaranteed. Instances of this class were suggested for the multiperiod case.

In this paper, such risk measures and their effect in stochastic programs will be compared in a simulative study of a real
world application model. We use the electricity portfolio optimization model presented in [4] which is a multistage stochastic
programming model set up for a municipal power utility to optimize power production and electricity trading under uncertainty
over a period of one year. The objective is to minimize the expected overall cost and a multiperiod risk measure simultaneously.

2 Optimization model

The model used for the analysis is set up for a power utility with limited power production capacities. It is based on hourly
discretization, i.e. time is considered in terms of time steps t = 1, ..., T whereT = 365 · 24. The objective is to satisfy an
uncertain time-dependent electricity demand in an optimalmanner by utilizing available power production facilitiesas well as
several types of contracts with larger power companies, electricity spot market at the European Energy Exchange (EEX),and
certain energy derivative products from EEX that can be usedto hedge risk (so-calledfutures). On a high level of abstraction
the model reads

min
{

γρ(zt1 , ..., ztk
) + (1 − γ)E [−zT ] : zt =

∑t

τ=1bτ (ξτ ) · xτ , x ∈ X (ξ)
}

(1)

with 1 ≤ t1 ≤ ... ≤ tk = T . The objective is a weighted sum of ak-period polyhedral risk measureρ and the expectation
of the final value with some fixed weighting parameterγ ∈ [0, 1]. Thereby, the uncertainty is represented by a multivariate
data processξ = (ξ1, ..., ξT ) containing electricity demand, spot and future prices. Thevectorsx = (x1, ..., xT ) denote the
decisions of the model at each time step that have to satisfy several restrictions symbolized by the setX (ξ) consisting of
polyhedral, integrality, and non-anticipativity constraints. The book values at each time step, i.e., the accumulated revenues,
are represented by the variablesz1, ..., zT . The vectorsbτ are cost coefficients depending on the random data. For solving the
model, the data processξ is approximated by a finite scenario tree.

It is assumed that, within certain bounds, any amounts of electricity can be traded or produced, hence, these decisions can
be modelled with continuous variables. The only integer variables in the model are the decisions whether a certain contract is
to make or not. See [4] for further details.
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3 Quantifying risk of value processes

We consider a finite numberT of time periods, a probability space(Ω,F , P), and a filtrationF1 ⊆ F2 ⊆ ... ⊆ FT of σ-fields,
e.g.,Ft = σ(ξ1, ..., ξt) with some random processξ. Suppose the (uncertain) value process is represented by random variables
z1, z2, ..., zT with zt ∈ Lp(Ω,Ft, P) (p ≥ 1) for which large outcomes are preferred to lower ones. In [2]it is claimed that
from an economic point of view multiperiod risk measuresρ should at least satisfy the following conditions:
(i) If zt ≤ z̃t a.s.,t = 1, ..., T , thenρ(z1, ..., zT ) ≥ ρ(z̃1, ..., z̃T ) (inverse monotonicity)
(ii) for eachr ∈ R we haveρ(z1 + r, ..., zT + r) = ρ(z) − r (translation equivariance)
(iii) ρ(µz1 + (1 − µ)z̃1, ..., µzT + (1 − µ)z̃T ) ≤ µρ(z1, ..., zT ) + (1 − µ)ρ(z̃1, ..., z̃1) for µ ∈ [0, 1] (convexity)
(iv) for µ ≥ 0 we haveρ(µz1, ..., µzT ) = µρ(z1, ..., zT ) (positive homogeneity).
If so, the functionalρ is called amultiperiod coherent risk measure. If a functionalρ is continuous from below, then it is a
multiperiod coherent risk measure iff there exists a convexsetPρ ⊆ DT := {f ∈ ×T

t=1L1(Ω,Ft, P) : ft ≥ 0,
∑

E [ft] = 1}

such thatρ(z1, ..., zT ) = sup{−
∑T

t=1E [ftzt] : f ∈ Pρ} (cf. [2, 5, 3]).
Multiperiod polyhedral risk measures were defined in [3] as optimal values of certain simple multistage stochastic pro-

grams:

ρ(z1, ..., zT ) = inf

{

E

[

∑T

t=1〈ct, yt〉
]

∣

∣

∣

∣

yt ∈ Lp(Ω,Ft, P; Rkt), yt(ω) ∈ Yt,
∑t−1

τ=0〈wt,τ , yt−τ (ω)〉 = zt(ω)
(t = 1, . . . , T )

}

(2)

with somekt ∈ N, ct ∈ R
kt , t = 1, . . . , T , wtτ ∈ R

kt−τ , t = 1, . . . , T , τ = 0, ..., t − 1, and polyhedral conesYt ⊆ R
kt ,

t = 1, . . . , T . It is shown in [3] that risk measures of this form have favorable properties for stochastic programs with respect
to stability and algorithmic structures. If complete recourse and dual feasibility is imposed (standard assumptions in stochastic
programming guaranteeing finiteness), it is shown that thenρ is Lipschitz continuous and allows the dual representation

ρ(z1, ..., zT ) = sup
{

−E

[

∑T

t=1 λtzt

]

: λ ∈ Λρ

}

Λρ :=
{

λ ∈ ×T
t=1Lp′(Ω,Ft, P) : ct +

∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗

t

}

with 1
p

+ 1
p′

= 1
(3)

Hence, in this caseρ is a multiperiod coherent risk measure ifΛρ ⊆ DT . All these assumptions are satisfied for the examples
suggested in [3]. For our analysis, we selected the following instances that are, hence, multiperiod coherent risk measures:

No. primal representation (2) dual multipliers according to (3)

ρ1 inf






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1
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(
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α
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y
(1)
t

− y
(2)
t

= zt + y
(t)
1 (t = 2, ..., T )


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
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
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E [λ2] = ... = E [λT ] = 1

T−1

All these examples can be considered as multiperiod extensions of the one-period Conditional-Value-at-RiskCV aRα(z) =
infr∈R

{

r + 1
α

E[(z + r)−]
}

with α ∈ (0, 1) small, e.g.α = 0.05 (cf. [7]). The primal representation (2) is suitable for being
incorporated in the objective (1) since the two nested minimization problems can be reduced to one. However, to understand
how a respective risk measure works, it is more suggestive toregard the dual representation according to (3). Note that the
maximization there aims to chooseλ big wherez is small in compliance with the respective restrictions. Hence,ρ(z) can be
understood as a kind of (negative) worst case weighted expectation ofz.

4 Simulation Results

Now we are ready to present simulation results of the model. Thereby, the data processξ is approximated by a scenario tree
with 8760 timesteps and 21 scenarios (cf. [4]).

Most important for the power utility is, of course, the book value at each time step, especially if one focuses on liquidity.
Figure 1, 2 and 3 show plots of these value processes from optimal portfolios according to (1) for each risk measure, respec-
tively (γ = 0.25, α = 0.05). The treelike curve structure in each figure corresponds, of course, to the input scenario tree.
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Fig. 1 E[−zT ] 0.75 · E[−zT ] + 0.25 · ρ2(zt1
, ..., zT )
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Fig. 2 0.75 · E[−zT ] + 0.25 · CV aR0.05(zT ) 0.75 · E[−zT ] + 0.25 · ρ3(zt1
, ..., zT )
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Fig. 3 0.75 · E[−zT ] + 0.25 · ρ1(zt1
, ..., zT ) 0.75 · E[−zT ] + 0.25 · ρ4(zt1

, ..., zT )

Optimizing without risk or withCV aR applied to the value at the last time step only, leads to high spreading and to very
low intermediate values for a considerably high number of scenarios. The usage of a multiperiod risk measure that takes the
intermediate time steps into account corrects both, spreading and negativity of values. The way this is achieved, however,
differs among the risk measures. Obviously, they can be divided into two groups,ρ2 andρ3, on the one hand, andρ1 andρ4,
on the other hand.

The effect ofρ1 andρ4 is that, roughly speaking, the values of the scenarios run closer together. A difference is that forρ1

(sum of one-periodCV aRs) the runs are pushed closer together at the beginning for the price of a higher spread at the end,
i.e., at the time when the portfolio value tends to be low. Hence, the effect of pushing the value runs together turns out tobe
more uniform whenρ4 is used. This is, of course, advantageous since it is the spread at low levels that should be avoided.

This spread at the end is even smaller ifρ2 or ρ3 are used. In this case one can make out a level that is attempted not
to be underrun whereas upward deviation is not avoided. Forρ2, this level corresponds to the numberr in a reformulation

of ρ2 which readsρ2(z1, ..., zT ) = infr∈R

{

r +
∑T

t=2
1

α(T−1)E[(zt + r)−]
}

(cf. [3]). Thereby, another sort of uniformity

is achieved which seems to be very desirable from the point ofview of liquidity. However, this uniformity is achieved by a
higher amount of future trading (see below).

For other values ofγ and α the results are qualitatively the same and quantitatively similar in the majority of cases.
Significant differences can be observed in the case thatα is enlarged forρ2 or ρ3: Figure 4 demonstrates that largerα causes
that the level described above is higher for the price of spread and decrease at the end. Although the latter is unavoidable since
expected cost cannot be lower than in the purely expectationbased model, the behavior forα = 0.2 seems to be less desirable.

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 4

2 4 6 8 10 12
time

-1

-0.75

-0.5

-0.25

0.25

0.5

Mio �

2 4 6 8 10 12
t

-1

-0.75

-0.5

-0.25

0.25

0.5

Mio �

Fig. 4 0.75 · E[−zT ] + 0.25 · ρ2(zt1
, ..., zT ), α = 0.05 0.75 · E[−zT ] + 0.25 · ρ2(zt1

, ..., zT ), α = 0.2

Enlargingγ slightly does not change the results significantly, but forγ ' 0.5 (depending on the risk measure) there occurs
a switch to the effect that the contract described in Section2 is closed (cf. [4]).

Future trading activity differs among the risk measures in amount and in time. It is relatively low forρ4 whereas forρ1 it
is high at the end of the time horizon and forρ2 andρ3 it is very high in the midway (cf. Figure 5).
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Fig. 5 Future trading forρ1 Future trading forρ2

As mentioned above in the introduction, lower risk does not come for free, i.e., incorporating risk measures in (1) leadsto
higher expected overall cost. In the figure below the risk values and the values of the expected revenues are shown for each
risk measure. Thereby, index1, ..., 4 denotes values of the optimal portfolios forρ1,...,ρ4, respectively, and index0 addresses
theCV aR applied to the last time. The horizontal line shows the maximal expected revenue without consideration of risk.
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Hence,ρ2 andρ3 produce fewer extra cost compared toρ1 andρ4 but, of course, more thanCV aR applied to the final
value only. The relatively small differences of the optimalexpected revenues are due to the fact that the model considers fair
prices for the futures, and no transaction cost are taken into account.
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