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POLYHEDRAL RISK MEASURES IN STOCHASTIC
PROGRAMMING∗

ANDREAS EICHHORN† AND WERNER RÖMISCH†

Abstract. We consider stochastic programs with risk measures in the objective and study
stability properties as well as decomposition structures. Thereby we place emphasis on dynamic
models, i.e., multistage stochastic programs with multiperiod risk measures. In this context, we
define the class of polyhedral risk measures such that stochastic programs with risk measures taken
from this class have favorable properties. Polyhedral risk measures are defined as optimal values of
certain linear stochastic programs where the arguments of the risk measure appear on the right-hand
side of the dynamic constraints. Dual representations for polyhedral risk measures are derived and
used to deduce criteria for convexity and coherence. As examples of polyhedral risk measures we
propose multiperiod extensions of the Conditional-Value-at-Risk.
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1. Introduction. Stochastic programs are essentially known to minimize, max-
imize, or bound expected values. From a theoretical point of view they easily offer
the possibility to minimize or bound risk functionals since they rest upon stochastic
models. This idea goes back to [14]. However, in practice it may happen that in-
corporating risk measures in stochastic programs makes them much harder to solve,
especially if integer decisions are included. In addition, other favorable properties
like stability with respect to approximations or duality results may get lost. In this
paper considerations are made about the question as to how risk measures should be
designed so that stochastic programs incorporating them show similar properties as
stochastic programs based on expected values only. As a result, the class of polyhedral
risk measures is introduced.

Of course, when analyzing risk measures with respect to their practicability for
stochastic programs, one has to determine first of all what is understood by the expres-
sion risk measure and what properties are required from the viewpoint of economic
considerations. Here, a (one-period) risk measure ρ will be understood as a functional
from some set of real random variables to the real numbers. Random variables will be
denoted by the letter z, they will represent uncertain (usually monetary) values for
which larger outcomes are preferred to lower ones. The value ρ(z) gives information
about the riskiness of z, i.e., a high value ρ(z) indicates a high danger of reaching low
values.

Risk measures are broadly discussed in financial mathematics. For one-period
risk measures, i.e., for risk measures that depend on one random variable only, there
is a relatively high degree of agreement among the community about the desirable
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properties. Possibly the most important work in this context is the axiomatic char-
acterization of coherent risk measures [1], where the risk ρ(z) is understood as the
minimal amount of additional (risk-free) capital that is required to make the posi-
tion z acceptable. Several generalizations of this paper followed, e.g., [6, 13, 10, 28];
see also Chapter 4 in the monograph [11]. Further desirable properties, namely,
the consistency of risk measures with stochastic dominance rules, were suggested in
[15, 17, 18, 19]. In addition, there are papers dealing with specific risk measures, e.g.,
[27, 20, 38]; see also the volumes [7, 41]. Recently, a theory for convex optimization
of convex risk measures has been developed in [35].

Currently, generalizations of one-period risk measures to different dynamic set-
tings are discussed in the literature. Such generalizations become necessary when
information is revealed gradually with the passing of time and a sequence of random
variables z1, . . . , zT is to be assessed with respect to its riskiness. In the literature, the
settings as well as the postulated properties for risk functionals differ more than in
the one-period case. Generally speaking, there are two classes of settings depending
on whether liquidity risk over a time period is considered or intermediate monitoring
by supervisors is to be anticipated. In the latter case an entire risk measure process
ρ1, . . . , ρT is defined; see [25, 42] and also [3, 2]. The more important case from the
viewpoint of optimization is the case where one has one real number ρ(z1, . . . , zT )
that represents the risk of the entire process (multiperiod risk). Such concepts are
presented in [22, 36, 21] and again in [3, 2]. As in the one-period case, the number
ρ(z1, . . . , zT ) can be understood as minimal capital requirement for the overall time
period so that the strategy corresponding to z1, . . . , zT is acceptable.

In the present paper, we consider (mixed-integer) multistage stochastic programs
of the form

min

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈bt(ξt), xt〉
] ∣∣∣∣∣∣∣

xt is Ft-measurable,∑t−1
τ=0 At,τ (ξt)xt−τ = ht(ξt) a.s.,

xt ∈ Xt a.s. (t = 1, . . . , T )

⎫⎪⎬
⎪⎭(1.1)

as starting point, where (ξt)
T
t=1 is a stochastic process and Ft = σ(ξ1, . . . , ξt), the

sets Xt are closed and have polyhedral convex hulls, bt(·) are cost coefficients, ht(·)
are right-hand sides, and At,τ (·), τ = 0, . . . , t − 1, are matrices having appropriate
dimensions and possibly depending on ξt for t = 1, . . . , T .

Much is known for expectation-based stochastic programs, e.g., on optimality and
duality, decomposition methods, and statistical approximations and stability (cf. [34]).
Most of these results are essentially based on the fact that E is a linear operator. As
will be seen below in section 2, risk measures are usually by no means linear. Hence,
if we change from expectation to a risk measure in (1.1), many known results will
no longer be valid. Nevertheless, there are results about incorporating certain risk
functionals into (stochastic) optimization problems, e.g., [38, 35, 37]. In particular,
the Conditional-Value-at-Risk turns out to behave very opportunely in stochastic pro-
grams because it allows a reformulation of the risk aversive problem as an expectation-
based problem with additional variables (cf. [27, 20, 40]).

However, from an economic point of view not every risk measure is suitable for
any application. In particular, for multistage stochastic programs it may become
necessary to incorporate multiperiod risk measures, i.e., to minimize ρ(z1, . . . , zT )
with zt = −

∑t
τ=1〈bτ (ξτ ), xτ 〉 denoting the intermediate values. Hence, it would

be convenient to have an entire class of risk measures at hand such that every risk
measure from this class behaves opportunely in stochastic programs.



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING 71

Such a class will be introduced in section 2 for the one-period case, namely the
class of polyhedral risk measures. Conditions implying that polyhedral risk measures
are coherent and consistent with second order stochastic dominance are provided. In
section 3 this class will be extended to the multiperiod case. Briefly, polyhedral risk
measures are defined as optimal values of certain simple linear stochastic programs.
In section 4 it will be shown that, indeed, several properties of expectation-based
stochastic programs remain valid for stochastic programs with polyhedral risk mea-
sures as objectives. This is due to the fact that a problem of the form (1.1) with
E replaced by a polyhedral risk measure ρ can easily be transformed into a stochastic
program with additional variables and an objective consisting of the expectation of
a linear function. In particular, we present stability results for two-stage stochastic
programs with polyhedral risk measures and show that dual decomposition structures
are maintained.

2. Polyhedral risk measures. We consider a probability space (Ω,F ,P) and
the linear space of real random variables Lp(Ω,F ,P) with some p ∈ [1,∞]. According
to [10, 11] a functional ρ : Lp(Ω,F ,P) → R̄ is called a risk measure if it satisfies the
following two conditions for all z, z̃ ∈ Lp(Ω,F ,P):

(i) If z ≤ z̃ a.s., then ρ(z) ≥ ρ(z̃) (monotonicity).
(ii) For each r ∈ R we have ρ(z + r) = ρ(z) − r (translation invariance).

A risk measure ρ is called convex if it satisfies the condition

ρ(μz + (1 − μ)z̃) ≤ μρ(z) + (1 − μ)ρ(z̃)

for all z, z̃ ∈ Lp(Ω,F ,P) and μ ∈ [0, 1]. A convex risk measure is called coherent if
it is positively homogeneous, i.e., ρ(μz) = μρ(z) for all μ ≥ 0 and z ∈ Lp(Ω,F ,P).
There is a number of representation theorems for convex and especially for coherent
risk measures in the literature emerging from convex duality. Next, we cite one of
these representations adapted to our needs. Therefore, we set

D := {f ∈ L1(Ω,F ,P) : f ≥ 0 a.s., E [f ] = 1},

the set of all density functions for (Ω,F ,P).
Theorem 2.1. Let ρ : Lp(Ω,F ,P) → R̄ with p ∈ [1,∞]. Assume that ρ is

lower semicontinuous. Then ρ is a coherent risk measure if and only if the following
condition holds:

∃Pρ ⊆ D convex : ρ(z) = sup
f∈Pρ

E [−zf ] ∀ z ∈ Lp(Ω,F ,P).

Proof. “⇒” is stated in [35, Corollary 1] and “⇐” is easily seen by checking the
four properties of the definition above; see also [11, 6, 28].

Now we are ready to define the class of polyhedral risk measures.
Definition 2.2. A risk measure ρ on Lp(Ω,F ,P) with some p ∈ [1,∞] will be

called polyhedral if there exist k1, k2 ∈ N, c1, w1 ∈ Rk1 , c2, w2 ∈ Rk2 , a nonempty
polyhedral set Y1 ⊆ Rk1 , and a polyhedral cone Y2 ⊆ Rk2 such that

ρ(z) = inf

⎧⎪⎨
⎪⎩〈c1, y1〉 + E [〈c2, y2〉]

∣∣∣∣∣∣∣
y1 ∈ Y1,

y2 ∈ Lp(Ω,F ,P), y2 ∈ Y2 a.s.,

〈w1, y1〉 + 〈w2, y2〉 = z a.s.

⎫⎪⎬
⎪⎭(2.1)

for every z ∈ Lp(Ω,F ,P). Here, E denotes the expectation on (Ω,F ,P) and 〈·, ·〉 a
scalar product on Rk1 or Rk2 .
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Hence, expressed in the language of stochastic programming, a polyhedral risk
measure is given as the optimal value of a certain two-stage stochastic program with
random right-hand side. We use the term polyhedral because, for #Ω < ∞, the space
Lp(Ω,F ,P) can be identified with R#Ω and in this case a risk measure defined by
(2.1) is indeed a polyhedral function on R#Ω.

Remark 2.3. Of course, the negative expectation is a polyhedral risk measure.
Moreover, a convex combination of (negative) expectation and a polyhedral risk mea-
sure is again a polyhedral risk measure: Let μ ∈ [0, 1] and ρ be a polyhedral risk
measure with dimensions kt, vectors ct and wt (t = 1, 2), and polyhedral set/cone
Y1 / Y2. Then the risk measure ρ̂ := μρ−(1−μ)E is polyhedral with the same dimen-
sions kt and the same sets Yt and vectors ŵ1 := w1, ŵ2 := w2, ĉ1 := μc1 − (1− μ)w1,
and ĉ2 := μc2 − (1 − μ)w2. Thus, so-called mean-risk models, where expectation and
risk are optimized simultaneously, do not need to be considered separately.

Next, we derive dual representations for (2.1). To this end, we do not need to
assume that ρ is a risk measure in the sense of [10, 11], i.e., that it is monotone and
translation invariant. We conclude in our first result that ρ is a convex functional.
To state this result, we use the notation1

Dρ,t := {u ∈ R : ct + uwt ∈ −Y ∗
t } (t = 1, 2)

for the so-called dual feasible sets.
Theorem 2.4. Let ρ be a functional of the form (2.1) on Lp(Ω,F ,P) with some

p ∈ [1,∞). Assume
(i) complete recourse: 〈w2, Y2〉 = R,
(ii) dual feasibility: Dρ,1 ∩Dρ,2 �= ∅.

Then ρ is finite, convex, and continuous. Further, the representation

ρ(z) = inf
y1∈Y1

{
〈c1, y1〉 + E

[
max
�=1,2

u� (〈w1, y1〉 − z)

]}
(2.2)

holds with two real numbers u1 and u2 that are the endpoints of Dρ,2 which is a compact
interval in R. Furthermore, with 1

p + 1
p′ = 1, ρ admits the dual representation

ρ(z) = sup

{
−E [λz] + inf

y1∈Y1

〈c1 + E [λ]w1, y1〉
∣∣∣∣∣ λ ∈ Lp′(Ω,F ,P),

c2 + λw2 ∈ −Y ∗
2 a.s.

}
.(2.3)

In particular, if Y1 is a cone, then ρ is positively homogeneous and (2.3) becomes

ρ(z) = sup

{
−E [λz]

∣∣∣∣∣ λ ∈ Lp′(Ω,F ,P),

c1 + E [λ]w1 ∈ −Y ∗
1 , c2 + λw2 ∈ −Y ∗

2 a.s.

}
.(2.4)

Proof. Finiteness, convexity, continuity, and the representations (2.3) and (2.4)
will be proved in a more general framework in section 3, Theorem 3.9. Representation
(2.2) follows from LP duality applied to the second stage program. (Note that due to
[29, Theorem 14.60] the minimization for the second stage can be carried out pointwise
on Ω.) Namely, it holds for each y1 ∈ Y1 and each z ∈ R that

min {〈c2, y2〉 : y2 ∈ Y2, 〈w1, y1〉 + 〈w2, y2〉 = z}
= max {u (〈w1, y1〉 − z) : c2 + uw2 ∈ −Y ∗

2 } .

1Thereby Y ∗
t denotes the polar cone of Yt. For a nonempty set Y the polar cone Y ∗ is defined

by Y ∗ = {y∗ : 〈y, y∗〉 ≤ 0 ∀ y ∈ Y }.
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Due to complete recourse and dual feasibility the feasible sets of both problems are
nonempty and the joint optimal value is finite for each y1 ∈ Y1 and each z ∈ R. Since
the expression 〈w1, y1〉− z can reach any real number and the feasible set of the right
problem Dρ,2 does not depend on y1 and z, it is clear that the latter is bounded, i.e.,
it is a compact interval in R. Of course, the maximum is attained for u being an
endpoint of Dρ,2.

If a functional ρ on Lp(Ω,F ,P) is defined by formula (2.1), the question arises for
which choice of ct, wt, and Yt (t = 1, 2) this functional is a (convex) risk measure in
the sense of [10, 11]. Formula (2.4) provides a sufficient criterion for a functional of
the form (2.1) to be a coherent risk measure in case Y1 is a cone.

Corollary 2.5. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with
Y1 being a polyhedral cone and 1 ≤ p < ∞. Let the conditions of Theorem 2.4 be
satisfied (complete recourse, dual feasibility) and assume that

Λρ :=

{
λ ∈ Lp′(Ω,F ,P)

∣∣∣∣∣ c1 + E [λ]w1 ∈ −Y ∗
1 ,

c2 + λw2 ∈ −Y ∗
2 a.s.

}
⊆ D.(2.5)

Then ρ is a coherent risk measure.
Proof. The proof follows immediately from Theorems 2.1 and 2.4 with Pρ := Λρ

since, of course, continuity implies lower semicontinuity.
The following result provides a sufficient criterion for a functional of the form

(2.1) to be a convex risk measure in case Y1 is not a cone.
Proposition 2.6. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with

p ∈ [1,∞). Assume that complete recourse and dual feasibility hold and that Dρ,2 ⊆
R+ and let c1, w1, and Y1 be of the form c1 = (ĉ1, 1), w1 = (ŵ1,−1), and Y1 = Ŷ1×R,
where ŵ1, ĉ1 ∈ Rk1−1, and Ŷ1 ⊆ Rk1−1. Then ρ is a (polyhedral) convex risk measure.

Proof. Finiteness and convexity of ρ follow from Theorem 2.4. The monotonicity
property (i) follows from the representation (2.2) and the fact that u1 and u2 are
nonnegative. Indeed, let z, z̃ ∈ Lp(Ω,F ,P) be such that z ≤ z̃ a.s.; then we have
E[max�=1,2 u�(〈w1, y1〉 − z)] ≥ E[max�=1,2 u�(〈w1, y1〉 − z̃)] for every y1 ∈ Y1. The
translation invariance condition (ii) follows by setting y1 = (ŷ1, ȳ1), ỹ1 := ȳ1 + r ∈ R

as a consequence of the identity

ρ(z + r)

= inf
{
〈ĉ1, ŷ1〉 + ȳ1 + E [max�=1,2 u� (〈ŵ1, ŷ1〉 − ȳ1 − (z + r))] : ŷ1 ∈ Ŷ1, ȳ1 ∈ R

}
= inf

{
〈ĉ1, ŷ1〉 + ỹ1 + E [max�=1,2 u� (〈ŵ1, ŷ1〉 − ỹ1 − z)] : ŷ1 ∈ Ŷ1, ỹ1 ∈ R

}
− r

= ρ(z) − r

for each r ∈ R and z ∈ Lp(Ω,F ,P).
The assumptions of Proposition 2.6 guarantee even a stronger type of monotonic-

ity than imposed earlier for risk measures. Such stronger monotonicity properties are
based on so-called integral stochastic orders or stochastic dominance rules (see [15]
for a recent survey). For real random variables z and z̃ in L1(Ω,F ,P), stochastic
dominance rules are defined by classes F of measurable real-valued functions on R.
A stochastic dominance rule is defined by

z �F z̃ if E[f(z)] ≤ E[f(z̃)]

for each f ∈ F such that the expectations exist. Important special cases are the
class of Fnd of nondecreasing functions and the class Fndc of nondecreasing concave
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functions. In these cases the rules are also called first order stochastic dominance and
second order stochastic dominance and denoted by �FSD and �SSD, respectively.
Clearly, z �FSD z̃ implies z �SSD z̃. The relation z �FSD z̃ is equivalent to P(z ≤
t) ≥ P(z̃ ≤ t) for each t ∈ R. Furthermore, z �SSD z̃ is equivalent to the condition
E[min{z, t}] ≤ E[min{z̃, t}] for each t ∈ R (cf. [15, section 8]). Other equivalent
characterizations of z �SSD z̃ are

∫ η

−∞ P(z ≤ t)dt ≥
∫ η

−∞ P(z̃ ≤ t)dt for each t ∈ R

(cf. [17, 18]) and
∫ p

0
qα(z)dα ≤

∫ p

0
qα(z̃)dα for each p ∈ (0, 1] (cf. [19]) with qα(z) =

inf{r ∈ R : P(z ≤ r) ≥ α} denoting the (lower) α-quantile of the random variable z.
In [19, 17, 18] the consistency of risk measures ρ with certain stochastic dominance

rules �F is studied. In particular, it is said that ρ is consistent with second order
stochastic dominance if z �SSD z̃ implies ρ(z) ≥ ρ(z̃).

Proposition 2.7. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with
p ∈ [1,∞). Assume that complete recourse and dual feasibility hold and that Dρ,2 ⊆
R+. Then ρ is consistent with second order stochastic dominance.

Proof. Due to Theorem 2.4 the representation (2.2) holds with u1, u2 ∈ R+.
Define for y1 ∈ Y1 the real-valued function gy1 given by

gy1
(t) := 〈c1, y1〉 + max

�=1,2
u� (〈w1, y1〉 − t)

for t ∈ R. Note that gy1
is convex and, because of u1, u2 ≥ 0, nonincreasing.

Let z �SSD z̃. Then E[−gy1(z)] ≤ E[−gy1(z̃)] for all y1 ∈ Y1 and, thus, ρ(z) =
infy1∈Y1

E[gy1
(z)] ≥ infy1∈Y1

E[gy1
(z̃)] = ρ(z̃).

Remark 2.8. For a risk measure ρ on Lp(Ω,F ,P) the acceptance set Aρ is defined
by Aρ = {z ∈ Lp(Ω,F ,P) : ρ(z) ≤ 0} [3, 11]; let the conditions of Theorem 2.4 be
satisfied. Then, since ρ is a convex functional, Aρ is a convex set. If, in addition,
Y1 is a cone, then Aρ is a convex cone. Regarding (2.5) it is obvious that

Aρ = {z ∈ Lp(Ω,F ,P) | ∀λ ∈ Λρ : E [λz] ≥ 0} = −Λ∗
ρ

in this case. Of course, if Ω = {ω1, . . . , ωS}, then Λρ is a polyhedron in RS , thus
Aρ = −Λ∗

ρ is a polyhedral cone.
For stability analysis of stochastic programs (cf. section 4.1), it is important to

know whether first stage solution sets are bounded or not. For a polyhedral risk
measure ρ satisfying complete recourse and dual feasibility, the first stage solution set
S(ρ(z)) ⊆ Y1 can be written according to the dual representation (2.2) as

S(ρ(z)) := {y1 ∈ Y1 : 〈c1, y1〉 + E [max�=1,2 u� (〈w1, y1〉 − z)] = ρ(z)}.(2.6)

The following proposition provides a sufficient criterion for the boundedness of S(ρ(z))
for a large class of polyhedral risk measures.

Proposition 2.9. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with
p ∈ [1,∞). Let the conditions of Theorem 2.4 be satisfied (complete recourse, dual
feasibility) and assume that S(ρ(0)) is a nonempty, bounded subset in Rk1 . Then
S(ρ(z)) is nonempty, convex, and compact for any z ∈ Lp(Ω,F ,P).

Proof. Clearly, Theorem 2.4 implies convexity and closedness of S(ρ(z)). It
remains to be seen whether S(ρ(z)) is nonempty and bounded. The polyhedral set Y1

can be represented in the form Y1 = P1 +C1, where P1 is a bounded polyhedron and
C1 a polyhedral cone (e.g., [29, Corollary 3.53]). Let 0 �= d1 ∈ C1 (hence, μd1 ∈ C1

for any μ ≥ 0) and gd1(0) = 〈c1, d1〉 + max�=1,2 u�〈w1, d1〉. Next we show gd1(0) > 0.
Suppose gd1(0) < 0 and let p1 ∈ P1, μ > 0. Then p1 + μd1 ∈ Y1 and we obtain



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING 75

ρ(0) ≤ gp1
(0) + μgd1

(0). This contradicts to the finiteness of ρ since μ > 0 may be
chosen arbitrarily large. If gd1(0) = 0, the set S(ρ(0)) would contain the unbounded
subset {ȳ1 + μd1 : μ ≥ 0} for some ȳ1 ∈ S(ρ(0)). Now, let z ∈ Lp(Ω,F ,P) and let
(y1,n) be a sequence with y1,n = p1,n + d1,n ∈ Y1, p1,n ∈ P1, d1,n ∈ C1, and

〈c1, y1,n〉 + E [max�=1,2 u� (〈w1, y1,n〉 − z)] → ρ(z).

Since P1 is bounded, we may assume without loss of generality that (p1,n) is convergent
to some p̄1 ∈ P1. Suppose that (y1,n) is unbounded. Then we may assume without

loss of generality that ‖d1,n‖ → ∞ and
d1,n

‖d1,n‖ → d̄1 ∈ C1. It follows that

ρ(z) = lim
n→∞

(
〈c1, y1,n〉 + E [max�=1,2 u� (〈w1, y1,n〉 − z)]

)
= lim

n→∞
‖d1,n‖αn

with αn := 〈c1, y1,n

‖d1,n‖ 〉+E[max�=1,2 u�(〈w1,
y1,n

‖d1,n‖ 〉−
z

‖d1,n‖ )]. Obviously, it holds that

αn → gd̄1
(0) > 0, hence ρ(z) = limn→∞ ‖y1,n‖αn = ∞. This is a contradiction. It

follows that each minimizing sequence (y1,n) in Y1 is always bounded. This implies
both existence of a solution and boundedness of the solution set S(ρ(z)).

Example 2.10. We consider the Conditional- or Average-Value-at-Risk at level
α ∈ (0, 1) (CV aRα or AV aRα) defined by

CV aRα(z) := 1
α

∫ α

0

V aRγ(z)dγ = inf
r∈R

{
r + 1

αE

[
(r + z)

−
]}

,(2.7)

where V aRγ(z) := inf{r ∈ R : P(z+r < 0) ≤ γ} = −q̄γ(z) is the Value-at-Risk at level
γ ∈ (0, 1) (see [11, section 4.4] and [27]) and a− = max{0,−a} denotes the negative
part of a real number a. The number q̄γ(z) is also called the upper γ-quantile of z.
Introducing variables for positive and negative parts of the infimum representation in
(2.7), respectively, leads to

CV aRα(z) = inf

⎧⎪⎨
⎪⎩y1 + 1

αE

[
y
(2)
2

] ∣∣∣∣∣∣∣
y1 ∈ R, y2 ∈ L1(Ω,F ,P),

y2 ∈ R+ × R+ a.s.,

y
(1)
2 − y

(2)
2 = z + y1 a.s.

⎫⎪⎬
⎪⎭ .(2.8)

Thus, CV aRα is of the form (2.1) by setting k1 = 1, k2 = 2, w1 = −1, c1 = 1,
c2 = (0, 1

α ), w2 = (1,−1), Y1 = R, and Y2 = R2
+, and, hence, is a polyhedral risk

measure. Moreover, 〈w2, Y2〉 = R, Dρ,1 = Dρ,1 ∩Dρ,2 = {1}, and Dρ,2 = [0, 1
α ] ⊆ R+,

thus the dual representation (2.4) holds and CV aRα is consistent with second order
stochastic dominance. The representation (2.2) holds with u1 = 0 and u2 = 1

α . The
condition c2 + λw2 ∈ −Y ∗

2 in the dual representation (2.4) is equivalent to λ ∈ [0, 1
α ].

Hence, (2.4) becomes

CV aRα(z) = sup
{
−E [λz] : λ ∈ Lp′(Ω,F ,P), λ ∈

[
0, 1

α

]
a.s., E [λ] = 1

}
(2.9)

for each z ∈ Lp(Ω,F ,P), 1 ≤ p < ∞. Corollary 2.5 applies thus, CV aR is a coherent
risk measure, too. Similar results have already been shown in [28, 19]. Furthermore,
it is shown in [27] that the set {r ∈ R : CV aRα(z) = r + 1

αE[(r + z)−]} of first stage
solutions is just the interval [−q̄α(z),−qα(z)], i.e., the set of all negative α-quantiles
of z. Indeed, Proposition 2.9 is inspired by the latter result.

Example 2.11. Consider the expected regret or expected loss defined by

EL(z) = E

[
(z − γ)

−
]
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with some fixed target γ ∈ R. This functional, too, can be written in the form
(2.1) with k1 = 1, k2 = 2, w1 = 1, c1 = 0, c2 = (0, 1), w2 = (1,−1), Y1 = {γ},
Y2 = R+ × R+. Note that, actually, Y1 is not a cone here. Further, 〈w2, Y2〉 = R,
Dρ,1 ∩Dρ,2 �= ∅, and Dρ,2 = [0, 1] ⊆ R+, thus the dual representations (2.2) and (2.3)
hold and ρ is consistent with second order stochastic dominance. However, ρ is not
translation invariant, i.e., not a risk measure in the sense of [10, 11]. Nevertheless, it
is used as a risk measure in some applications.

Example 2.12. The utilization of deviation and semideviation measures in stochas-
tic optimization goes back to [14] and is further discussed, e.g., in [17, 18, 19, 28]. For
k ≥ 1 deviation and semideviation are defined by

Dk(z) :=
(
E

[
|z − E[z]|k

])1/k

SDk(z) :=

(
E

[(
(z − E[z])

−
)k
])1/k

,

respectively. They are closely related to coherent risk measures (cf. [28]), −E+β ·Dk

and −E+β·SDk with β ≥ 0 are translation invariant in the sense of [10, 11] and, hence,
candidates for coherent risk measure. However, they are not within the framework
of polyhedral risk measures, even SD1 = 1

2D1 cannot be written in the form (2.1).
But, if we change from expectation E[z] to the median q 1

2
(z), then we obtain the

median-deviation which is a special case of the so-called dispersion measures at level
α ∈ (0, 1) given by

dα(z) := E
[
α(z − qα)+ + (1 − α)(z − qα)−

]
d 1

2
(z) = 1

2E

[∣∣∣z − q 1
2
(z)

∣∣∣]
(cf. [19, 40]). These functionals are polyhedral with k1 = 1, k2 = 2, c1 = 0, c2 =
(α, 1−α), w1 = 1, w2 = (1,−1), Y1 = R, and Y1 = R+×R+. Again, ρ := −E+β ·dα is
a candidate for a coherent risk measure. According to Remark 2.3 also ρ is polyhedral
with c1 = −1, c2 = (αβ−1, (1−α)β+1), and wt and Yt as above. Hence, Dρ,1 = {1},
Dρ,2 = [1−αβ, 1+(1−α)β], and Λρ = {λ : E[λ] = 1, λ ∈ [1−αβ, 1+(1−α)β] a.s.}, i.e.,
ρ is coherent and second order stochastic dominance consistent if β ≤ 1

α (see also [19]).
However, the latter representation reveals that ρ = −(1 − αβ)E + αβ · CV aRα, i.e.,
quantile dispersion and Conditional-Value-at-Risk is basically the same thing.

3. Multiperiod risk. When random variables z1, . . . , zT with zt ∈ Lp(Ω,Ft,P),
p ≥ 1, are considered and the available information is revealed with the passing of
time, it may become necessary to use multiperiod risk measures (see [3, 2, 22, 25,
42, 36]). We assume that a filtration of σ-fields Ft, t = 1, . . . , T , is given, i.e.,
Ft ⊆ Ft+1 ⊆ F , and that F1 = {∅,Ω}, i.e., that z1 is always deterministic. We will
now generalize the concepts of the previous section to this multiperiod framework.

Remark 3.1. When dealing with multiperiod risk measures one has to determine
whether the random variables represent (potentially financial) incomes or payments
as, e.g., in [22, 36, 42], or if they have to be understood in a cumulative sense, i.e.,
as a wealth or value process as in [3, 2]. Of course, the one can easily be transformed
into the other: If Zt is an income, then one can consider accumulation zt = Z1 + · · ·+
Zt, and if zt is an accumulated value, then the income is given by Zt = zt − zt−1.
Throughout this paper we consider z = (z1, . . . , zT ) to be a value process.

We give the definition of coherence in the multiperiod case as introduced2 in [3, 2].

2In [3, 2] the definition is slightly different since another framework was considered: The first
time stage (i.e., the deterministic stage) was denoted by index 0. Here, the formulation is adapted
to our framework with index 1 for the deterministic time stage (i.e., F1 = {∅,Ω}).
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Definition 3.2. A functional ρ on ×T
t=1 Lp(Ω,Ft,P) is called a multiperiod

coherent risk measure if the following:
(i) if zt ≤ z̃t a.s., t = 1, . . . , T , then ρ(z1, . . . , zT ) ≥ ρ(z̃1, . . . , z̃T ) (monotonic-

ity);
(ii) for each r ∈ R we have ρ(z1+r, . . . , zT +r) = ρ(z)−r (translation invariance);
(iii) ρ(μz1 +(1−μ)z̃1, . . . , μzT +(1−μ)z̃T ) ≤ μρ(z1, . . . , zT )+(1−μ)ρ(z̃1, . . . , z̃1)

for μ ∈ [0, 1] (convexity);
(iv) for μ ≥ 0 we have ρ(μz1, . . . , μzT ) = μρ(z1, . . . , zT ) (positive homogeneity).
Remark 3.3. How translation invariance is to be defined in the multiperiod

case is still subject to discussion in the ongoing research in financial mathematics.
Different suggestions were made, e.g., in [36, 25, 42] such that nonrandom amounts
can be shifted in time by means of credits. However, from the viewpoint of capital
requirement and optimization it appears reasonable to keep with [3, 2].

Example 3.4. In [3, Example 3] it was shown that ρ(z) := −E[min{z1, . . . , zT }]
with z = (z1, . . . , zT ) is a multiperiod coherent risk measure on ×T

t=1 L∞(Ω,Ft,P).
Remark 3.5. Let ρt be (one-period) coherent risk measures on Lp(Ω,Ft,P),

t = 1, . . . , T . Let further ∅ �= S ⊆ {1, . . . , T}. Then ρ(z) := maxt∈S ρt(zt) is

multiperiod coherent. Let μt ∈ R+, t = 1, . . . , T , with
∑T

t=1 μt = 1. Then also

ρ(z) :=
∑T

t=1 μtρt(zt) is a multiperiod coherent risk measure. This can easily be
verified by checking the four properties of Definition 3.2.

As shown in [3, 2], the representation result for (one-period) risk measures (Theo-
rem 2.1) can be carried over to the multiperiod case. Therefore, the set of densities D
is extended such that the integrals of the time steps sum up to one,

DT :=
{
f ∈ ×T

t=1 L1(Ω,Ft,P) : ft ≥ 0 a.s. (t = 1, . . . , T ),
∑T

t=1 E [ft] = 1
}
.

Theorem 3.6. Let ρ : ×T
t=1 Lp(Ω,Ft,P) → R̄ and assume that ρ is lower semi-

continuous. Then ρ is a multiperiod coherent risk measure if and only if the following
condition holds:

∃Pρ ⊆ DT convex : ρ(z) = sup
{∑T

t=1 E [−ztft] : f ∈ Pρ

}
.(3.1)

Proof. We follow the ideas of [3, 2], but in reverse order. Obviously, ρ is coherent if
and only if the corresponding one-period risk measure ρ′ on Lp(Ω

′,F ′,P′) is coherent
in the usual sense, where (Ω′,F ′,P′) and ρ′ are defined as follows:

Ω′ := Ω × {1, . . . , T}

F ′ :=
{⋃T

t=1 (At × {t}) : At ∈ Ft

}
P′
(⋃T

t=1 (At × {t})
)

:= 1
T

∑T
t=1 P(At)

ρ′(z′) := ρ (z(z′))

and z(z′) is defined by z(z′)(ω) := (z′(ω, 1), z′(ω, 2), . . . , z′(ω, T )). Theorem 2.1
says that there exists a convex set of density functions P ′

ρ ⊆ D such that, for

z ∈ ×T
t=1 Lp(Ω,Ft,P),

ρ(z) = ρ′(z′(z)) = sup
{
E′ [−z′f ′] : f ′ ∈ P ′

ρ

}
with z′(z)(ω, t) := zt(ω). Note that also the conditions from Definition 3.2 are equiv-
alent to those from Theorem 2.1 for (Ω′,F ′,P′) and that lower semicontinuity of ρ is
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equivalent to lower semicontinuity of ρ′. By setting

Pρ :=
{
f =

(
1
T f

′(., 1), 1
T f

′(., 2), . . . , 1
T f

′(., T )
)

: f ′ ∈ P ′
ρ

}
,

the assertion follows.
Now we are ready to extend Definition 2.2 to the multiperiod case.
Definition 3.7. A multiperiod risk measure ρ on ×T

t=1 Lp(Ω,Ft,P) with p ∈
[1,∞] is called multiperiod polyhedral if there are kt ∈ N, ct ∈ Rkt , t = 1, . . . , T ,
wtτ ∈ Rkt−τ , t = 1, . . . , T , τ = 0, . . . , t− 1, a polyhedral set Y1 ⊆ Rk1 , and polyhedral
cones Yt ⊆ Rkt , t = 2, . . . , T , such that

ρ(z) = inf

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈ct, yt〉
] ∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; Rkt),

yt ∈ Yt a.s.,∑t−1
τ=0〈wt,τ , yt−τ 〉 = zt a.s.

(t = 1, . . . , T )

⎫⎪⎬
⎪⎭ .(3.2)

Remark 3.8. The reader might wonder why, for T = 2, this definition does not
precisely coincide with the Definition 2.2 for the one-period case. This is due to
the fact that, in the literature, the risk of a process z1, . . . , zT is allowed to depend
also on z1 although this value is constant, i.e., deterministic (see [3, 2, 25]), whereas
one-period risk depends on one scalar random variable only. Nevertheless, the one-
period case can be regarded as a special case of Definition 3.7 because for T = 2 the
parameters Y1, c1, and w1,0 can easily be chosen such that z1 does not contribute to
the optimal value of (3.2).

Theorem 3.9. Let ρ be a functional of the form (3.2) on ×T
t=1 Lp(Ω,Ft,P) with

p ∈ [1,∞). Assume
(i) complete recourse: 〈wt,0, Yt〉 = R (t = 1, . . . , T ),

(ii) dual feasibility: {u ∈ RT : ct +
∑T

ν=t uνwν,ν−t ∈ −Y ∗
t (t = 1, . . . , T )} �= ∅.

Then ρ is finite, convex, and continuous on ×T
t=1 Lp(Ω,Ft,P) and with 1

p + 1
p′ = 1

the following dual representation holds:

ρ(z)

=sup

⎧⎪⎨
⎪⎩

inf
y1∈Y1

〈
c1 +

∑T
ν=1 E [λν ]wν,ν−1, y1

〉
− E

[∑T
t=1 λtzt

]
∣∣∣∣∣∣∣
λt ∈ Lp′(Ω,Ft,P) (t = 1, . . . , T ),

ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t

a.s. (t = 2, . . . , T )

⎫⎪⎬
⎪⎭ .

(3.3)

If, in addition, Y1 is a polyhedral cone, then ρ is positively homogeneous and (3.3)
simplifies to

ρ(z) = sup

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−E

[
T∑

t=1

λtzt

] ∣∣∣∣∣∣∣∣∣

λt ∈ Lp′(Ω,Ft,P),

ct +
T∑

ν=t
E [λν |Ft]wν,ν−t ∈ −Y ∗

t a.s.

(t = 1, . . . , T )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.(3.4)

Proof. We use results on conjugate duality (see [26] and [5, section 2.5.1]). Con-
sider the Banach spaces and their duals

E := ×T
t=1 Lp(Ω,Ft,P; Rkt) E∗ = ×T

t=1 Lp′(Ω,Ft,P; Rkt)

Z := ×T
t=1 Lp(Ω,Ft,P) Z∗ = ×T

t=1 Lp′(Ω,Ft,P)
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with bilinear forms 〈e, e∗〉E/E∗ =
∑T

t=1 E[〈et, e∗t 〉Rkt ] and 〈z, z∗〉Z/Z∗ =
∑T

t=1 E[ztz
∗
t ],

respectively. Due to the complete recourse assumption it holds that ρ(z) < ∞ for all
z = (z1, . . . , zT ) ∈ E. Define Y := {y ∈ E : yt(ω) ∈ Yt (t = 1, . . . , T ) for a.e. ω ∈ Ω},
K =

∑T
t=1 kt and

ϕ : E × Z → R̄

(y, z) �→ ϕ(y, z) := 〈y, c〉E/E∗ + δY (y) + δ{0}(Wy − z)

with δ denoting the indicator function (taking values 0 and +∞ only) and with

c =

⎛
⎜⎜⎜⎝

c1
c2
...
cT

⎞
⎟⎟⎟⎠ ∈ RK W =

⎛
⎜⎜⎜⎜⎜⎜⎝

w′
1,0 0 0 · · · 0

w′
2,1 w′

2,0 0 · · · 0

w′
3,2 w′

3,1 w′
3,0

. . .
...

...
...

...
. . . 0

w′
T,T−1 w′

T,T−2 w′
T,T−3 · · · w′

T,0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RT×K .

Note that ϕ is proper, lower semicontinuous, and convex since Y is convex. With
these notations Definition 3.7 reads ρ(z) = infy∈E ϕ(y, z) and due to [5, Proposition
2.143] ρ is convex. The (conjugate) dual problem according to [5] is given by

ρ∗(z) = sup
{
〈z, z∗〉Z/Z∗ − ϕ∗(0, z∗) : z∗ ∈ Z∗

}
(3.5)

in which the conjugate ϕ∗ is given by

ϕ∗(y∗, z∗) = sup
{
〈y, y∗〉E/E∗ + 〈z, z∗〉Z/Z∗ − ϕ(y, z) : y ∈ E, z ∈ Z

}
= sup

{
〈y, y∗ − c〉E/E∗ + 〈z, z∗〉Z/Z∗ : y ∈ Y , z = Wy a.s.

}
= sup

{
〈y, y∗ − c〉E/E∗ + 〈Wy, z∗〉Z/Z∗ : y ∈ Y

}
= sup

{
〈y, y∗ − c + W ∗z∗〉E/E∗ : y ∈ Y

}
with W ∗ : Z∗ → E∗ denoting the adjoint operator implicitly defined by the relation
〈Wy, z∗〉Z/Z∗ = 〈y,W ∗z∗〉E/E∗ for y ∈ E, z∗ ∈ Z∗. Thereby, the matrix W is
understood as mapping from E to Z. For the adjoint operator W ∗ it holds that

〈y,W ∗z∗〉E/E∗ = 〈Wy, z∗〉Z/Z∗ =
∑T

t=1 E

[
z∗t
∑t−1

τ=0 〈wt,τ , yt−τ 〉R
kt−τ

]
= E

[∑T
t=1

∑t−1
τ=0 〈z∗twt,τ , yt−τ 〉R

kt−τ

]
= E

[∑T
s=1

∑T
ν=s 〈z∗νwν,ν−s, ys〉Rks

]
=
∑T

s=1 E

[〈∑T
ν=s z

∗
νwν,ν−s, ys

〉
Rks

]
=
∑T

s=1 E

[〈∑T
ν=s E [z∗ν |Fs]wν,ν−s, ys

〉
Rks

]
,

hence W ∗z∗ = (
∑T

ν=1 E[z∗ν ]wν,ν−1,
∑T

ν=2 E[z∗ν |F2]wν,ν−2, . . . , z
∗
TwT,0) ∈ E∗. Utilizing

the fact that Yt are cones for t = 2, . . . , T results in
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ρ∗(z) = sup
{
〈z, z∗〉Z/Z∗ − sup

{
〈y,W ∗z∗ − c〉E/E∗ : y ∈ Y

}
: z∗ ∈ Z∗

}
= sup

{
〈z, z∗〉Z/Z∗ + inf

{
〈y, c−W ∗z∗〉E/E∗ : y ∈ Y

}
: z∗ ∈ Z∗

}

= sup

⎧⎪⎨
⎪⎩

〈z, z∗〉Z/Z∗ +

inf
y1∈Y1

〈
y1, c1 −

∑T
t=1 E [z∗t ]wt,t−1

〉
∣∣∣∣∣∣∣
z∗ ∈ Z∗,

ct −
∑T

ν=t E [z∗ν |Ft]wν,ν−t ∈ −Y ∗
t

a.s. (t = 2, . . . , T )

⎫⎪⎬
⎪⎭

and this is exactly (3.3) with λ = −z∗. Weak duality holds (cf. [5, section 2.5.1]), i.e.,
ρ∗(z) ≤ ρ(z), and dual feasibility ensures ρ∗(z) > −∞, hence

−∞ < ρ∗(z) ≤ ρ(z) < +∞ ∀ z ∈ Z.

Now, [5, Proposition 2.152] provides that ρ(z) is continuous. In turn, for this case [5,
Theorem 2.151] guarantees strong duality, i.e., ρ∗(z) = ρ(z).

As for the one-period case, we define the set of dual multipliers by

Λρ :=

{
λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣ ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t a.s.

(t = 1, . . . , T )

}
.(3.6)

Again, comparing the dual representations (3.1) and (3.4) provides a criterion for a
polyhedral functional to be a multiperiod coherent risk measure.

Corollary 3.10. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (3.2)

with Y1 being a polyhedral cone. Let the conditions of Theorem 3.9 be satisfied (com-
plete recourse, dual feasibility) and assume Λρ ⊆ DT . Then ρ is a multiperiod coherent
risk measure.

Proof. Analogously to Corollary 2.5, the assertion here is an immediate conse-
quence of Theorems 3.6 and 3.9 since Pρ := Λρ does the job.

Example 3.11. A straightforward approach to incorporate risk in terms of the
Conditional-Value-at-Risk at all time stages consists in considering a weighted sum

ρ1(z) :=

T∑
t=2

γtCV aRαt(zt)

with some weights γt ≥ 0 (e.g., γt = 1
T−1 ) and some confidence levels α2, α3, . . . , αT ∈

(0, 1). Note that

ρ1(z) =
∑T

t=2 γt infrt∈R

{
rt + 1

αt
E

[
(zt + rt)

−
]}

= inf(r2,...,rT )∈RT−1

{∑T
t=2 γt

(
rt + 1

αt
E

[
(zt + rt)

−
])}

= inf

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∑T

t=2 γt

(
y
(t)
1 + 1

αt
E

[
y
(2)
t

])
∣∣∣∣∣∣∣∣∣∣

y1 ∈ RT , y
(1)
1 = z1,

yt ∈ L1(Ω,Ft,P; R2),

y
(1)
t − y

(2)
t = zt + rt a.s.,

yt ∈ R+ × R+ a.s. (t = 2, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(set y
(t)
1 = rt), i.e., ρ1 is of the form (3.2) with k1 = T , kt = 2 (t = 2, . . . , T ), c1 =

(0, γ2, . . . , γT ), ct = (0, γt

αt
) (t = 2, . . . , T ), w1,0 = e1, wt,0 = (1,−1) (t = 2, . . . , T ),

wt,t−1 = −et (t = 2, . . . , T ), wt,τ = 0 (τ = 1, . . . , t − 2, t = 3, . . . , T ), Y1 = RT ,
Yt = R+ × R+ (t = 2, . . . , T ) (with et denoting the tth standard basis vector in RT ).
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Thus, the risk measure ρ1 is multiperiod polyhedral. Due to Remark 3.5 it is multi-
period coherent, too, if

∑T
t=2 γt = 1. This can also be seen by means of Corollary 3.10.

The set of feasible multipliers is given here by

Λρ1
=

⎧⎪⎨
⎪⎩λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣
λ1 = 0,

0 ≤ λt ≤ γt

αt
a.s. (t = 2, . . . , T ),

E [λt] = γt

⎫⎪⎬
⎪⎭(3.7)

and, of course, Λρ1
⊆ DT . Moreover, the conditions of Theorem 3.9 are satisfied, i.e.,

complete recourse and dual feasibility hold (take u = (0, γ2, . . . , γT )).
Next we present more involved examples, which extend the Conditional-Value-

at-Risk to the multiperiod situation. The characteristic thing about CV aR is that,
in the dual representation, the density functions, i.e., the Lagrangian multipliers are
bounded pointwise from above (cf. Example 2.10). This idea will be found somehow
in all of the following examples.

Example 3.12. In this example, we define a multiperiod coherent risk measure
where not every time step contributes with a fixed weight. When looking at the dual
representation (3.3) and at Corollary 3.10, it becomes obvious that each of the dual

constraints ct +
∑T

ν=t E[λν |Ft]wν,ν−t ∈ −Y ∗
t has to imply λt ≥ 0 for t = 1, . . . , T .

A natural candidate for implying
∑T

ν=1 E[λν ] = 1 is the corresponding constraint for

t = 1, which reads c1 +
∑T

ν=1 E[λν ]wν,ν−1 ∈ −Y ∗
1 .

Now, setting kt = 2 (t = 1, . . . , T ), c1 = (1, 0), ct = (0, βt) with some βt > 0

(t = 2, . . . , T ) such that
∑T

t=2 βt ≥ 1, w1,0 = (0, 1), wt,0 = (1,−1) (t = 1, . . . , T ),
wt,t−1 = (−1, 0) (t = 2, . . . , T ), and wt,τ = 0 (τ = 1, . . . , t − 2, t = 3, . . . , T ),
Y1 = R × R, Yt = R+ × R+ (t = 2, . . . , T ) leads to

c1 +
∑T

ν=1 E [λν ]wν,ν−1 ∈ −Y ∗
1 ⇐⇒ λ1 = 0 and

∑T
ν=1 E [λν ] = 1,

ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t ⇐⇒ 0 ≤ λt and λt ≤ βt (t = 2, . . . , T )

since Y ∗
1 = {0} × {0} and Y ∗

t = R− × R− (t = 2, . . . , T ). Hence, the dual set Λρ2 is
of the form

Λρ2 =

⎧⎪⎨
⎪⎩λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣
λ1 = 0,

0 ≤ λt ≤ βt a.s. (t = 2, . . . , T ),∑T
t=1 E[λt] = 1

⎫⎪⎬
⎪⎭.(3.8)

Note that complete recourse and dual feasibility hold. Thus, Corollary 3.10 implies
that the functional

ρ2(z) := inf

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
y
(1)
1 +

T∑
t=2

βtE

[
y
(2)
t

]
∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; R2) (t = 1, . . . , T ),

y1 ∈ R × R, yt ∈ R+ × R+ a.s. (t = 2, . . . , T ),

y
(2)
1 = z1,

y
(1)
t − y

(2)
t = zt + y

(1)
1 a.s. (t = 2, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

or simply ρ2(z) = infr∈R{r +
∑T

t=2 βtE[(zt + r)−]} is a multiperiod polyhedral and
coherent risk measure.

The remaining examples present multiperiod polyhedral coherent risk measures
that depend on the filtration {Ft}Tt=1, i.e., on the information flow over time.
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Example 3.13. To incorporate the information structure we adapt the previous
example in such a manner that successive time steps are associated. We choose
everything as before, only the assignment wt,τ = 0 (τ = 1, . . . , t − 2, t = 3, . . . , T ) is
replaced by wt,1 = (0,−1) (t = 3, . . . , T ) and wt,τ = 0 (τ = 2, . . . , t− 2, t = 4, . . . , T ).
In addition, we set ct = (0, δt) with δt > 0 for t = 2, . . . , T . Hence, the dual set Λρ3

is of the form

Λρ3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣∣∣

λ1 = 0,
∑T

t=1 E[λt] = 1,

0 ≤ λt, λt + E[λt+1|Ft] ≤ δt a.s.

(t = 2, . . . , T − 1),

0 ≤ λT ≤ δT a.s.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.(3.9)

Again, the complete recourse condition is satisfied and dual feasibility holds if the
parameters δt are chosen sufficiently large. Altogether, Corollary 3.10 implies that
the functional

ρ3(z) := inf

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
y
(1)
1 +

T∑
t=2

δtE
[
y
(2)
t

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; R2) (t = 1, . . . , T ),

y1 ∈ R × R, yt ∈ R+ × R+ a.s. (t = 2, . . . , T ),

y
(2)
1 = z1,

y
(1)
2 − y

(2)
2 = z2 + y

(1)
1 a.s.,

y
(1)
t − y

(2)
t = zt + y

(1)
1 + y

(2)
t−1 a.s. (t = 3, . . . , T )

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is a polyhedral multiperiod coherent risk measure.
Example 3.14. In this approach, the concatenation of the time steps is even

stronger than in the previous example. We set kt = 2 (t = 1, . . . , T ), c1 = ( 1
T−1 , 0),

ct = (0, μt) (t = 2, . . . , T ) with some numbers 1
T−1 < μ2 ≤ μ3 ≤ · · · ≤ μT , w1,0 =

(0, 1), wt,0 = (1,−1) (t = 2, . . . , T ), wt,1 = (−1, 0) (t = 2, . . . , T ), wt,τ = 0 for τ > 1,
Y1 = R × R, Yt = R × R+ (t = 2, . . . , T − 1), YT = R+ × R+.

The dual constraints ct +
∑T

ν=t E[λν |Ft]wν,ν−t ∈ −Y ∗
t imply that λ has to be a

martingale with respect to the filtration (Ft)
T
t=1. This implies E[λ2] = · · · = E[λT ]

and λt ≥ 0 since λT ≥ 0. Together with (3.6) we obtain

Λρ4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣∣∣

λ1 = 0,

0 ≤ λt ≤ μt a.s. (t = 2, . . . , T ),

λt = E [λt+1|Ft] (t = 2, . . . , T − 1),

E [λ2] = · · · = E [λT ] = 1
T−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.(3.10)

Complete recourse is satisfied and dual feasibility holds since the vector u ∈ RT with
u1 = 0 and ut = 1

T−1 for t = 2, . . . , T defines a (constant) element of Λρ4 . Hence,
Corollary 3.10 applies and the resulting functional

ρ4(z) := inf

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
T−1y

(1)
1 +

T∑
t=2

μtE

[
y
(2)
t

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; R2) (t = 1, . . . , T ),

y1 ∈ R × R, yT ∈ R+ × R+ a.s.,

yt ∈ R × R+ a.s. (t = 2, . . . , T − 1),

y
(2)
1 = z1,

y
(1)
t − y

(2)
t = zt + y

(1)
t−1 a.s. (t = 2, . . . , T )

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is a polyhedral multiperiod coherent risk measure.
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Comparing (3.10) for μt = 1
(T−1)α with the dual representation of the Conditional-

Value-at-Risk (2.9) it turns out that the multiperiod risk measure ρ4 defined in this
way is a kind of canonical extension of the Conditional-Value-at-Risk in terms of [3,
sections 4 and 5] and of [25].3

The next example is motivated from the viewpoint of the value of information
(cf. [21, 22]).

Example 3.15. In [22], the following multiperiod risk measure was suggested.
Given some constants bT = 0 ≤ d ≤ bT−1 ≤ · · · ≤ b2 ≤ b1 and bt−1 ≤ qt for
t = 2, . . . , T , this risk measure is defined4 on ×T

t=1 Lp(Ω,Ft,P) by

ρ5(Z) = − sup

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E

[
b1A1 +

∑T−1
t=2 (btAt − qtMt) + dKT − qTMT

]
:

At ∈ Lp(Ω,Ft,P) (t = 1, . . . , T ),

Kt = [Kt−1 + Zt −At−1]
+

(t = 2, . . . , T ),

Mt = [Kt−1 + Zt −At−1]
−

(t = 2, . . . , T )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

with K1 := 0. However, in [22] Z = (Z1, . . . , ZT ) is understood as income process
with Z1 = 0, thus this definition does not fit in our framework.

Therefore, we rewrite this definition taking the value processes z = (z1, . . . , zT )

with z1 = Z1 = 0, zt =
∑T

τ=1 Zτ , i.e., Zt = zt − zt−1 for t > 2. This reformulation
leads to the representation (3.2) with kt = 3 (t = 1, . . . , T ), Y1 = R × R × {0},
Yt = R × R+ × R+ (t = 2, . . . , T ), yt = (At,Mt,Kt), wt,0 = (0,−1, 1) (t = 1, . . . , T ),
wt,τ = (1,−1, 0) (τ = 1, . . . , t − 2, t = 3, . . . , T ), wt,t−1 = (1, 0, 0) (t = 2, . . . , T ),
c1 = (−b1, 0, 0), ct = (−bt, qt, 0) (t = 2, . . . , T − 1), cT = (0, qT ,−d).

To understand this reformulation note that w1,0 = (0,−1, 1) implies M1 = −z1 =
0 and that for t = 2, . . . , T the recursion Kt −Mt = Kt−1 + Zt − At−1 with Kt ≥ 0
and Mt ≥ 0 must hold. This recursion can be transformed into a recursion of the
type of definition of multiperiod polyhedrality

zt = Kt +
∑t−1

τ=1 Aτ −
∑t

τ=2 Mτ (t = 2, . . . , T )

with K1 = 0. Thus, this risk measure fits into the framework of multiperiod polyhedral
risk measures.

Furthermore, it is multiperiod coherent if b1 = 1. This can be shown by means of
Corollary 3.10. Note that

c1 +
∑T

ν=1 E [λν ]wν,ν−1 ∈ −Y ∗
1 ⇐⇒

∑T
ν=2 E [λν ] = b1 and λ1 = 0

and

ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t (t = 2, . . . , T ) ⇐⇒

d ≤ λT ≤ qT , 0 ≤ λt ≤ qt − bt,
∑T

ν=t+1 E [λν |Ft] = bt (t = 2, . . . , T − 1),

3The framework in these papers assumes that the multiperiod risk measure is determined only by
a set of (scalar) density functions Pρ ⊆ L1(Ω,F ,P) rather than Pρ ⊆ ×T

t=1 L1(Ω,Ft,P). Then, the

risk ρ(z) is given by expressions like sup{− 1
T

∑T
t=1 E[fzt] : f ∈ Pρ} [25] or sup{−E [fzτ ] : f ∈ Pρ,

τ stopping time} [3]. Indeed, Λρ4 is nothing else but the set of densities for the Conditional-Value-
at-Risk (2.9) in terms of [25], i.e., all density functions bounded by 1

α
.

4In [22], ρ5 is called a (negative) utility measure rather than a risk measure. Moreover, the first
time stage (i.e., the deterministic stage) is denoted by index 0 there. Here, the formulation is adapted
to our framework with index 1 for the deterministic time stage (i.e., F1 = {∅,Ω}). In addition, the
notations ct and at were replaced by the definitions bt := ct+1 and At := at+1.
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thus

Λρ5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ ∈ ×T

t=1 Lp′(Ω,Ft, P )

∣∣∣∣∣∣∣∣∣

λ1 = 0,

0 ≤ λt ≤ qt − bt a.s. (t = 2, . . . , T − 1),

d ≤ λT ≤ qT a.s.,

E [λt|Ft−1] = bt−1 − bt (t = 2, . . . , T )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Further, complete recourse is obviously satisfied and dual feasibility holds since the
vector u ∈ RT with u1 = 0, uT = bT−1, and ut = bt−1 − bt for t = 2, . . . , T − 1 defines

a (constant) element of Λρ5
. Furthermore,

∑T
t=1 E[λt] = b1 for λ ∈ Λρ5 , thus the

inclusion Λρ5
⊆ DT holds indeed if b1 = 1.

An interesting specific case appears for d = 0, bt = T−t
T−1 , and qt = bt + 1

(T−1)αt

(t = 1, . . . , T ) with αt ∈ (0, 1). Then we obtain

Λρ5 =

{
λ ∈ ×T

t=1 Lp′(Ω,Ft, P )

∣∣∣∣∣
λ1 = 0, 0 ≤ λt ≤ 1

(T−1)αt
a.s.,

E [λt|Ft−1] = 1
T−1

(t = 2, . . . , T )

}

and the risk measure ρ5 on ×T
t=1 Lp(Ω,Ft, P ) takes the form

ρ5(z) = 1
T−1

∑T
t=2 inf

{
E

[
ut−1 + 1

αt
(zt + ut−1)

−
] ∣∣∣ ut ∈ Lp(Ω,Ft,P)

}
.(3.11)

The tth summand can be interpreted as the expectation of the Conditional-Value-at-
Risk of zt conditioned with respect to the σ-field Ft−1. Clearly, (3.11) boils down to
the one-period CV aR (2.8) for T = 2.

Remark 3.16. Of course, it is interesting to compare these examples. To this
end, it is useful to consider the dual representations, i.e., the Lagrange multiplier sets
Λρj (j = 1, . . . , 5). Hence, regarding formulas (3.8), (3.9), and (3.10), it is obvious
that for βt = δt = μt it holds that Λρ4

⊆ Λρ2
⊇ Λρ3

, thus, since

ρj(z) = sup
{
−
∑T

t=1 E [λtzt] : λ ∈ Λρj

}
,(3.12)

the relation ρ4 ≤ ρ2 ≥ ρ3 is valid. On the other hand, comparing ρ3 and ρ4 for the
case δt = 2μt leads to Λρ4

⊆ Λρ3
, thus ρ4 ≤ ρ3. Hence, ρ3 is more cautious than ρ4

in this case. Moreover, if we set γt = 1
T−1 and βt = μt = 1

(T−1)αt
, formula (3.7)

shows Λρ4 ⊆ Λρ1 ⊆ Λρ2 , hence ρ4 ≤ ρ1 ≤ ρ2. Thus, ρ2 is the most cautious or most
pessimistic of these risk measures.

More precisely, for a fixed random variable z let λj = λj(z) ∈ Λρj be a maximizer
for the dual representations (3.12) of ρj , respectively. Then, roughly speaking, λj is
big where z is small in compliance with the respective restrictions. For j = 1 and
j = 4, the weighting of the time steps is fixed in advance since E[λj

t ] is fixed. For
j = 2 the weighting of the time steps is variable, hence the available probability mass
of λ2 is concentrated at time steps at which z is low. Thus, ρ2 is a kind of worst time
step risk measure. This might be desirable or not, depending on the application.

Comparing ρ1 with ρ4, one sees that in the first case λ1
t is big where zt is small,

independent of the other time steps. In the second case, λ4 is completely determined
by λ4

T since λ4
t = E[λ4

T |Ft] because of the martingale property. This means that
the maximization (3.12) takes all time steps into account simultaneously, i.e., the
maximization occurs along the paths of the treelike information structure given by
the filtration (Ft)

T
t=1. This latter approach seems to be more efficient in case the risk
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of paths is of interest. Then, ρ1 may be more pessimistic than necessary. Furthermore,
it does not incorporate the information structure of the problem. On the other hand,
the martingale property of ρ4 seems very restrictive.

Comparing ρ3 and ρ4 for the case δt = 2μt leads to Λρ4 ⊆ Λρ3 , thus ρ4 ≤ ρ3.
Hence, ρ3 is more cautious than ρ4 in this case. Regarding the dual sets for ρ5, one
obtains Λρ5

⊆ Λρ1
for γt = bt−1 − bt and αt = (bt−1 − bt)/(qt − bt), and Λρ5

⊆ Λρ3

for δt = qt − bt+1. Hence, ρ1 ≥ ρ5 ≤ ρ3, i.e., ρ5 is less cautious for this choice of the
coefficients.

However, cautiousness is not necessarily a desirable property, because in applica-
tions one usually has to pay a price for being cautious. Which risk measure to take
depends highly on the intention of the application. It seems that ρ3 may be a good
compromise, since the information structure is taken into account and there is no
fixed weighting of the time steps. For initial numerical results we refer to [9].

4. Risk measures in stochastic programs. In this section we study the ef-
fect of replacing expectation-based objectives of stochastic programming problems
by polyhedral risk measures. In particular, we are interested in consequences for
structural and stability properties of the resulting models. We assume that ran-
domness occurs as a (possibly multivariate) stochastic data process (ξt)

T
t=1 and set

Ft = σ(ξ1, . . . , ξt), t = 1, . . . , T . We consider multistage stochastic programs of the
form

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E

[
T∑

t=1

〈bt(ξt), xt〉
]
∣∣∣∣∣∣∣∣∣∣

xt ∈ Xt,

Ht(xt) = 0,

Bt(ξt)xt ≤ dt(ξt),∑t−1
τ=0 At,τ (ξt)xt−τ = h(ξt)

(t = 1, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

with closed sets Xt having the property that their convex hull is polyhedral, and
with cost coefficients bt(·), right-hand sides dt(·) and ht(·), and matrices At,τ (·), τ =
0, . . . , t − 1, and Bt(·) all having suitable dimensions and possibly depending affine
linearly on ξt for t = 1, . . . , T . The constraints consist of four groups, where the first
xt ∈ Xt models simple fixed constraints, the second Ht(z) := z − E[z|Ft] = 0 ensures
the nonanticipativity of the decisions xt, and the third and fourth are the coupling
and the dynamic constraints, respectively. By X (ξ) we denote the set of decisions
satisfying all constraints of (4.1).

When replacing the expectation of the stochastic overall costs
∑T

t=1〈bt(ξt), xt〉 by
some polyhedral multiperiod risk measure ρ applied to the random vector

z(x, ξ) :=
(
−〈b1(ξ1), x1〉,−〈b1(ξ1), x1〉 − 〈b2(ξ2), x2〉, . . . ,−

∑T
τ=1〈bτ (ξτ ), xτ 〉

)
of negative intermediate costs, we arrive at the following risk averse alternative to
problem (4.1):

min {ρ (z(x, ξ)) | x ∈ X (ξ)} .(4.2)

The polyhedral risk measure ρ is defined by the minimization problem

ρ(z) = inf

{
E

[∑T
t=1〈ct, yt〉

] ∣∣∣∣∣
Ht(yt) = 0, yt ∈ Yt,∑t−1

τ=0〈wt,τ , yt−τ 〉 = zt
(t = 1, . . . , T )

}
.

This gives rise to the question whether (4.2) is equivalent to the optimization model
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min

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈ct, yt〉
] ∣∣∣∣∣∣∣

x ∈ X (ξ),

Ht(yt) = 0, yt ∈ Yt (t = 1, . . . , T ),∑t−1
τ=0〈wt,τ , yt−τ 〉 +

∑t
τ=1〈bτ (ξτ ), xτ 〉 = 0 (t = 1, . . . , T )

⎫⎪⎬
⎪⎭ ,

(4.3)

where the minimization with respect to the original decision x and the variable y
defining ρ is carried out simultaneously. Of course, the answer is positive.

Proposition 4.1. Minimizing (4.2) with respect to x is equivalent to minimizing
(4.3) with respect to all pairs (x, y) in the following sense: The optimal values of (4.2)
and (4.3) coincide and a pair (x∗, y∗) is a solution of (4.3) if and only if x∗ solves
(4.2) and y∗ is a solution of the minimization problem defining ρ(z(x∗, ξ)).

Proof. The minimization with respect to all feasible pairs (x, y) of (4.3) can be
carried out by minimizing with respect to y and then by minimizing the latter residual
with respect to x ∈ X (ξ). Hence, the optimal values coincide and, if the pair (x∗, y∗)
solves (4.3), its first component x∗ is a solution of (4.2) and y∗ is a solution of the
problem

min

{
E

[∑T
t=1〈ct, yt〉

] ∣∣∣∣∣
Ht(yt) = 0, yt ∈ Yt,∑t−1

τ=0〈wt,τ , yt−τ 〉 +
∑t

τ=1〈bτ (ξτ ), x∗
τ 〉 = 0

}
,(4.4)

whose optimal value is just ρ(z(x∗, ξ)). Conversely, if x∗ is a solution of (4.2) and
y∗ a solution of (4.4), the pair (x∗, y∗) has to be a solution of (4.3).

Thus, minimizing a stochastic program with a polyhedral risk measure in the
objective leads to a “traditional” stochastic program with linear expectation-based
objective and with additional variables y and constraints, respectively. Both the
variables and the constraints are convenient for stochastic programs since the variables
are nicely constrained by polyhedral sets (no integer requirements). Thus, if the
original expectation-based stochastic program (4.1) has convenient properties, there
is good reason to expect that these properties are maintained when using a polyhedral
risk measure for risk aversion.

4.1. Stability of stochastic programs. Stability of solutions and optimal val-
ues of stochastic programs with respect to the perturbation of the underlying prob-
ability measure is an important issue since in applications the true measure P is
usually unknown and has to be approximated by some other measure Q. Such an
approximation may be gained by sampling techniques.

In [30] various stability results involving distances d(P,Q) of probability measures
are developed for different types of (mainly) expectation-based stochastic programs.
It is shown there that certain ideal probability metrics (see [23] for an exposition)
may be associated with classes of stochastic programs. Here, we briefly show that
these stability results remain valid for important classes if the expectation is replaced
by a polyhedral risk measure. We restrict ourselves to the two-stage case here since
stability properties are best understood for such programs. In the context of distances
of probability measures it turns out to be useful to assume that Ω = Ξ ⊆ Rn and
F = B(Ξ).

4.1.1. Linear two-stage programs. In [24, Theorem 3.3] and [30] it is shown
that two-stage stochastic programs with fixed recourse of the form

min

{
〈b, x1〉 + EP [〈p(·), x2(·)〉]

∣∣∣∣∣ Wx2(ξ) = h(ξ) − T (ξ)x1,

x1 ∈ X1, x2(ξ) ∈ X2

}
,(4.5)



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING 87

with X1 and Ξ being polyhedral sets, X2 being a polyhedral cone, and p(·), h(·), T (·)
being affine linear functions (of ξ ∈ Ξ), are stable5 at P with respect to the probability
metric ζ2 given by

ζ2(P,Q) = sup

⎧⎪⎨
⎪⎩|EP [F ] − EQ [F ]|

∣∣∣∣∣∣∣
F : Ξ → R,

|F (ξ) − F (ξ′)| ≤ max{1, ‖ξ‖, ‖ξ′‖} · ‖ξ − ξ′‖
∀ ξ, ξ′ ∈ Ξ

⎫⎪⎬
⎪⎭

if the following four conditions hold:
(A1) ∀ (x1, ξ) ∈ X1 × Ξ ∃x2 ∈ X2 : Wx2 = h(ξ) − T (ξ)x1

(relatively complete recourse).
(A2) ∀ ξ ∈ Ξ ∃ z : W ′z − p(ξ) ∈ X∗

2 (dual feasibility).
(A3) EP‖ξ‖2 < ∞ (finite second moments).
(A4) The first stage solution set SE ⊆ X1 is nonempty and bounded.

The program (4.5) is equivalent to min{EP[z(x1)] : x1 ∈ X1} using the notations
z(x1) := 〈b, x1〉+Φ(p(·), h(·)−T (·)x1) and the second stage value function Φ(u, t) :=
inf{〈u, x2〉 : x2 ∈ X2, Wx2 = t} (cf. [34, 29, 30]). Hence, the first stage solution set
is given by SE := {x1 ∈ X1 : E[z(x1)] = vE} with vE := inf{E[z(x1)] : x1 ∈ X1}
denoting the optimal value.

If we exchange from expectation to a (one-period) polyhedral risk measure ρ = ρP

according to Definition 2.2, we obtain the problem

min

{
ρ [−〈b, x1〉 − 〈p(.), x2(.)〉]

∣∣∣∣∣ Wx2(ξ) = h(ξ) − T (ξ)x1,

x1 ∈ X1, x2(ξ) ∈ X2

}
,(4.6)

which is equivalent to min{ρ[−z(x1)] : x1 ∈ X1} and, too, equivalent to

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈c1, y1〉 +

E [〈c2, y2(.)〉]

∣∣∣∣∣∣∣∣∣

x1 ∈ X1, x2(ξ) ∈ X2,

y1 ∈ Y1, y2(ξ) ∈ Y2,

Wx2(ξ) = h(ξ) − T (ξ)x1,

〈p(ξ), x2(ξ)〉 + 〈w2, y2(ξ)〉 = −〈b, x1〉 − 〈w1, y1〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.(4.7)

The latter program has almost the same structure as (4.5) with

x̂1 =

(
x1

y1

)
, x̂2 =

(
x2

y2

)
, ĥ(ξ) =

(
h(ξ)

0

)
, b̂ =

(
0
c1

)
, p̂ =

(
0
c2

)
,

Ŵ (ξ) =

(
W 0
p(ξ)′ w′

2

)
, T̂ (ξ) =

(
T (ξ) 0
b w′

1

)
, X̂1 = X1 × Y1, X̂2 = X2 × Y2,

but now the recourse matrix Ŵ is random while the cost coefficient p̂ is nonrandom.
Moreover, if we also impose complete recourse and dual feasibility for the polyhe-

dral risk measure ρ in the sense of section 2, i.e., (i) 〈w2, Y2〉 = R and (ii) Dρ,1∩Dρ,2 �=
∅, Dρ,2 ⊆ R+, then we can conclude both relatively complete recourse and dual fea-
sibility for the risk aversive alternative (4.7):

(A1) Relatively complete recourse:
Let (x1, y1, ξ) ∈ X1 × Y1 ×Ξ; then ∃x2 ∈ X2 : Wx2 = h(ξ)− T (ξ)x1 and y2 ∈ Y2 can
be chosen such that 〈w2, y2〉 + 〈p(ξ), x2〉 = −〈b, x1〉 − 〈w1, y1〉 because 〈w2, Y2〉 = R,

thus Ŵ (ξ)x̂2 = ĥ(ξ) − T̂ (ξ)x̂1.

5We do not give a precise definition of stability here; see [30] for this. Briefly, stability means
that optimal values and (first stage) solution sets behave (quantitatively) continuous at the original
measure P with respect to a distance d(P,Q).
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(A2) Dual feasibility:
Let ξ ∈ Ξ. Choose v ∈ Dρ,2 = {u ∈ R : −(c2 + uw2) ∈ Y ∗

2 } ⊆ R+ and z such that
W ′z + p(ξ) ∈ X∗

2 , set ẑ = (vz′,−v)′; then one obtains

Ŵ (ξ)′ẑ − p̂ =

(
v(W ′z − p(ξ))
−vw2 − c2

)
∈ X∗

2 × Y ∗
2 = X̂∗

2 ,

by making use of the fact that X2 is a cone.
Since the randomness enters only the last row of Ŵ (ξ) except for the coefficient

in the main diagonal, the stability results from [32] for the random recourse situation
with only lower diagonal randomness apply. The model (4.7) with nonrandom costs,
however, is again stable with respect to the same metric ζ2 as for (4.5) if the (first
stage) solution set S̄ ⊆ X1 × Y1 of (4.7) is nonempty and bounded.

Proposition 4.2. Let ρ be a polyhedral risk measure on L1(Ω,F ,P) of the
form (2.1). Assume that the conditions (i) 〈w2, Y2〉 = R and (ii) Dρ,1 ∩ Dρ,2 �= ∅,
Dρ,2 ⊆ R+, are satisfied and that the set S(ρ(0)) (see (2.6)) is nonempty and bounded.
Then the set S̄ ⊆ X1×Y1 is nonempty and bounded if the solution set Sρ := {x1 ∈ X1 :
ρ[−z(x1)] = inf x̂1∈X1 ρ[−z(x̂1)]} of (4.6) is nonempty and bounded. Hence, the
stochastic program (4.7) is stable at P with respect to the metric ζ2 if the conditions
(A1)–(A3) are valid and Sρ is nonempty and bounded.

Proof. Proposition 4.1 implies that the set S̄ is nonempty and bounded if Sρ is
nonempty and bounded and the subset

⋃
x1∈Sρ

S(ρ[−z(x1)]) of Y1 is bounded. Here,

S(ρ(z)) is defined by (2.6) and is nonempty and bounded due to Proposition 2.9.
Clearly, nothing has to be shown if Y1 is bounded. Now, let Y1 be unbounded.
Suppose

⋃
x1∈Sρ

S(ρ[−z(x1)]) is unbounded. Then there exist sequences (y1,n) and

(x1,n) such that x1,n ∈ Sρ, y1,n ∈ S(ρ[−z(x1,n)]) and ‖y1,n‖ ≥ n for n ∈ N. Because
Sρ is compact, we may assume without loss of generality that x1,n → x1,0 ∈ Sρ. Since
Φ is Lipschitz in t (cf. [43]) we have z(x1,n) → z(x1,0) in L1(Ξ). Hence, the sequence of
probability distributions of z(x1,n) converges to the distribution of z(x1,0) with respect
to the Fortet–Mourier metric ζ1 (cf. [23, section 5.1]). Now, the set S(ρ[−z(x1,0)])
is nonempty and bounded. Therefore, the stability result [30, Corollary 25] for two-
stage stochastic programs with random right-hand side implies that there must exist
an index n0 ∈ N such that for n ≥ n0 the sets S(ρ[−z(x1,n)]) are contained in a
fixed bounded neighborhood of S(ρ[−z(x1,0)]). This contradicts ‖y1,n‖ ≥ n, thus⋃

x1∈Sρ
S(ρ[−z(x1)]) must be bounded.

4.1.2. Linear mixed-integer two-stage programs. In [30, Theorem 35], it
is shown that programs of the form

min

⎧⎪⎨
⎪⎩EP [〈b, x1〉 + 〈p, x2(.)〉 + 〈p̄, x̄2(.)〉]

∣∣∣∣∣∣∣
x1 ∈ X1,

x2(ξ) ∈ X2 ∩ Zm, x̄2(ξ) ∈ X̄2,

Wx2(ξ) + W̄ x̄2(ξ) = h(ξ) − T (ξ)x1

⎫⎪⎬
⎪⎭

(4.8)

with a closed Euclidean set X1, a polyhedral set Ξ, and polyhedral cones X2 and X̄2

are stable with respect to the probability metric ζ1,phk
with some k ∈ N if the following

conditions are satisfied:
(B1) ∀ (x1, ξ) ∈ X1 × Ξ ∃x2 ∈ X2 ∩ Zm, x̄2 ∈ X̄2 : Wx2 + W̄ x̄2 = h(ξ) − T (ξ)x1

(relatively complete recourse).
(B2) ∃ z ∈ Rr : W ′z + p ∈ X∗

2 and W̄ ′z + p̄ ∈ X̄∗
2 (dual feasibility).
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(B3) EP‖ξ‖ < ∞ (finite first moments).
(B4) W and W̄ have rational coefficients only (rational recourse).
(B5) The first stage solution set SE ⊆ X1 is nonempty and bounded.

The metric ζ1,phk
is given by

ζ1,phk
(P,Q) = sup

⎧⎪⎨
⎪⎩|EP [χB · F ] − EQ [χB · F ]|

∣∣∣∣∣∣∣
B ∈ Bphk

(Ξ), F : Ξ → R

|F (ξ) − F (ξ′)| ≤ ‖ξ − ξ′‖
∀ ξ, ξ′ ∈ Ξ

⎫⎪⎬
⎪⎭ ,

where Bphk
(Ξ) is the set of polyhedra contained in Ξ with at most k faces and χ de-

notes the characteristic function, i.e., χB(ξ) = 1 if ξ ∈ B and = 0 otherwise.
If we exchange in (4.8) from expectation to a polyhedral risk measure ρ we obtain

the problem min{ρ[−z(x1)] : x1 ∈ X1} with z(x1) := 〈b, x1〉 + Φ(h(·) − T (·)x1) and
Φ(t) := inf{〈p, x2〉+ 〈p̄, x̄2〉 : x2 ∈ X2∩Zm, x̄2 ∈ X̄2, Wx2 +W̄ x̄2 = t}. This problem
is equivalent to

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈c1, y1〉 +

E [〈c2, y2(.)〉]

∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ X1, x2(ξ) ∈ X2 ∩ Zm, x̄2(ξ) ∈ X̄2,

y1 ∈ Y1, y2(ξ) ∈ Y2,

Wx2(ξ) + W̄ x̄2(ξ) = h(ξ) − T (ξ)x1,

〈w2, y2(ξ)〉 + 〈p, x2(ξ)〉 + 〈p̄, x̄2(ξ)〉 =

−〈b, x1〉 − 〈w1, y1〉

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.(4.9)

The latter program has the same structure as (4.8) with

x̂1 =

(
x1

y1

)
, x̂2 = x2, ˆ̄x2 =

(
x̄2

y2

)
, X̂1 = X1 × Y1, X̂2 = X2,

ˆ̄X2 = X̄2 × Y2,

Ŵ =

(
W 0
p′ w′

2

)
, ˆ̄W =

(
W̄
p̄′

)
, T̂ (ξ) =

(
T (ξ) 0
b′ w′

1

)
, ĥ(ξ) =

(
h(ξ)

0

)
,

b̂ =

(
0
c1

)
, p̂ =

(
0
c2

)
, ˆ̄p = 0.

As in the previous paragraph, this combined program satisfies relatively complete
recourse and dual feasibility if both (4.8) and ρ do so. To have the condition (B4)
satisfied, one has to impose additionally that also p, p̄, and w2 have only rational
coefficients. Then, however, the same stability (with respect to the metric ζ1,phk

) as for
the original program is guaranteed if the (first stage) solution set S̄ ⊆ X1×Y1 of (4.9)
is nonempty and bounded. Unfortunately, we cannot conclude as in Proposition 4.2
in the mixed-integer case since Φ is no longer continuous. However, a quantitative
stability result is available for the expected loss and the Conditional-Value-at-Risk.

Proposition 4.3. Let ρ denote the expected loss or the Conditional-Value-at-
Risk (see section 2). Then the first stage solution set S̄ ⊆ X1×Y1 of (4.9) is nonempty
and bounded if the set Sρ := {x1 ∈ X1 : ρ[−z(x1)] = inf x̂1∈X1 ρ[−z(x̂1)]} is nonempty
and bounded. Hence, the stochastic program (4.9) is stable at P with respect to ζ1,phk

if the conditions (B1)–(B3), (B4)′ W , W̄ , p, and p̄ have rational coefficients only and
are satisfied and Sρ is nonempty and bounded.

Proof. As in Proposition 4.2, boundedness of S̄ is guaranteed if both the set Sρ of
X1-solutions of (4.9) is nonempty and bounded and the subset

⋃
x1∈Sρ

S(ρ[−z(x1)])
of Y1 is bounded, too. Clearly, the latter set is bounded if Y1 is bounded which is the
case for the expected loss. For the Conditional-Value-at-Risk, we argue as follows.
The set of random variables {z(x1) : x1 ∈ Sρ} is bounded in L1(Ξ) since Sρ is bounded
and the estimate |Φ(t)−Φ(t̃)| ≤ a‖t− t̃‖+b holds for the second stage function Φ with
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some positive coefficients a and b (e.g., [30, Lemma 33]). This implies boundedness
of the set of their probability distributions {D(z(x1)) : x1 ∈ Sρ} with respect to the
Fortet–Mourier metric ζ1. For real random variables z, ẑ and their distributions D(z),
D(ẑ) the metric ζ1 has the explicit representation (cf. [23, section 5.4])

ζ1(D(z), D(ẑ)) =

∫ ∞

−∞
|P(z ≤ t) − P(ẑ ≤ t)|dt.

For the CV aRα we know that for any random variable z the first stage solution set
is given by the interval of negative quantiles S(ρ(z)) = [−q̄α(z),−qα(z)] (cf. Exam-
ple 2.10). Fix x̂1 ∈ Sρ and set ẑ := z(x̂1). Let Ψj : R+ → R+ (j = 1, 2) be defined
by

Ψ1(r) :=
∫ qα(ẑ)

qα(ẑ)−r
(α− P(ẑ ≤ t)) dt Ψ2(r) :=

∫ q̄α(ẑ)+r

q̄α(ẑ)
(P(ẑ ≤ t) − α) dt.

Note that the functions Ψj (j = 1, 2) are strictly increasing. Let z be a random
variable. We show that the distances |qα(ẑ)− qα(z)| and |q̄α(ẑ)− q̄α(z)| are bounded
in terms of ζ1(D(z), D(ẑ)). In case qα(z) < qα(ẑ) it holds that

ζ1(D(z), D(ẑ)) =
∫∞
−∞ |P(z ≤ t) − P(ẑ ≤ t)|dt ≥

∫ qα(ẑ)

qα(z)
|P(z ≤ t) − P(ẑ ≤ t)|dt

=
∫ qα(ẑ)

qα(z)
(P(z ≤ t) − P(ẑ ≤ t)) dt ≥

∫ qα(ẑ)

qα(z)
(α− P(ẑ ≤ t)) dt

= Ψ1(qα(ẑ) − qα(z)),

hence |qα(ẑ) − qα(z)| ≤ Ψ−1
1 (ζ1(D(z), D(ẑ))). In case q̄α(z) > q̄α(ẑ) we get

ζ1(D(z), D(ẑ)) ≥
∫ q̄α(z)

q̄α(ẑ)
|P(z ≤ t) − P(ẑ ≤ t)|dt =

∫ q̄α(z)

q̄α(ẑ)
(P(ẑ ≤ t) − P(z ≤ t)) dt

≥
∫ q̄α(z)

q̄α(ẑ)
(P(ẑ ≤ t) − α) dt = Ψ2(q̄α(z) − q̄α(ẑ)),

hence |q̄α(z) − q̄α(ẑ)| ≤ Ψ−1
2 (ζ1(D(z), D(ẑ))).

After this paper was submitted, the authors attention was called to the recent
paper [39]. It contains a stability result for the Conditional-Value-at-Risk in mixed-
integer two-stage stochastic programs, which is similar to the preceding proposition
but proved without relying on Proposition 4.1.

4.2. Lagrangian relaxation and decomposition. We consider again the mul-
tistage stochastic program (4.1) and its risk averse alternative (4.2), which, according
to Proposition 4.1, is of the form

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E

[
T∑

t=1

〈ct, yt〉
]
∣∣∣∣∣∣∣∣∣∣∣∣

xt ∈ Xt, yt ∈ Yt,

Ht(xt) = 0, Ht(yt) = 0,

Bt(ξt)xt ≤ dt(ξt),∑t−1
τ=0 At,τ (ξt)xt−τ = h(ξt),∑t−1
τ=0(〈wt,τ , yt−τ 〉 + 〈bτ+1(ξτ+1), xτ+1〉) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.(4.10)

Obviously, (4.10) has a similar structure as (4.1) but additionally with T vector val-
ued random variables and T dynamic (equality) constraints. Thus, decomposition
methods that work for (4.1) are likely to work similarly for (4.10), too. We exemplify
this here by two important dual decomposition methods.
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4.2.1. Scenario decomposition. When solving problems like (4.1) or (4.10)
one usually has to approximate P or, equivalently, ξ by a finite number of scenarios
(more precisely: by a finite scenario tree). This can be expressed by ∞ > #Ω =: S
and one can assume without loss of generality Ω = {ξ1, . . . , ξS} and F = ℘(Ω). Then
the problem is no longer infinite-dimensional and can be solved by standard mixed-
integer linear programming techniques, but it is very large scale in most cases. Thus,
specialized decomposition techniques are of great interest (cf. [8, 33, 31, 37, 34]).

Scenario decomposition means Lagrange-dualizing the nonanticipativity con-
straints of (4.10) and solving the dual scenario-wise. Setting mt := dimxt we ob-
tain the dual problem

max
{
D(λ1, λ2) : λ1t ∈ L1(Ω,F ,P; Rmt), λ2t ∈ L1(Ω,F ,P; Rkt)

}
,

where the dual function D(λ1, λ2) is given by

D(λ1, λ2) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
L(λ1, λ2, x, y)

∣∣∣∣∣∣∣∣∣∣

xt ∈ Xt, yt ∈ Yt,

Bt(ξt)xt ≤ dt(ξt),∑t−1
τ=0 At,τ (ξt)xt−τ = h(ξt),∑t−1
τ=0(〈wt,τ , yt−τ 〉 + 〈bτ+1(ξτ+1), xτ+1〉) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

with L(λ1, λ2, x, y) := E[
∑T

t=1(〈ct, yt〉+〈λ1t, Ht(xt)〉+〈λ2t, Ht(yt)〉)] denoting the La-
grangian. Solving this problem is an iterative process: D(λ1, λ2) has to be computed
for a fixed pair (λ1, λ2) and then (λ1, λ2) has to be updated via subgradient-type
methods and so on. If the sets Xt are nonconvex, this procedure only leads to lower
bounds of the optimal value of (4.1) and suitable globalization techniques based on
these lower bounds have to be used in addition.

Because both the restrictions and the Lagrangian are separable with respect to
scenarios for a fixed pair (λ1, λ2), the calculation of the dual function can be car-

ried out scenario-wise, i.e., D(λ1, λ2) =
∑S

s=1 P({ξs})Ds(λ1, λ2). To derive the
separability of the Lagrangian the identities E[〈λ1t, Ht(xt)〉] = E[〈Ht(λ1t), xt〉] and
E[〈λ2t, Ht(yt)〉] = E[〈Ht(λ2t), yt〉] were used.

Hence, instead of one problem with S ·
∑T

t=1(mt + kt) variables one only has to

solve S subproblems each with
∑T

t=1(mt + kt) variables to update the multipliers. In
comparison with the (dualized form of the) purely expectation-based problem (4.1)

one has T additional equality constraints and
∑T

t=1 kt additional variables in each
subproblem. Note that the dimensions kt of yt are typically small compared to the
dimensions mt of xt.

4.2.2. Geographical decomposition. In many practical applications the stochas-
tic program (4.1) shows the following kind of block separability xi = (xi1, . . . , xiT ),
i = 1, . . . , I, of components of x:

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E

[
I∑

i=1

T∑
t=1

〈bit(ξt), xit〉
]
∣∣∣∣∣∣∣∣∣∣

xit ∈ Xit,

Ht(xit) = 0,∑I
i=1 Bit(ξt)xit ≤ dt(ξt),∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.(4.11)

Hence, the I blocks of x are only coupled by the sum in the third constraint in (4.11).
For such programs, Lagrange relaxation of coupling constraints, also known as geo-
graphical or component decomposition, may lead to efficient algorithms for computing
lower bounds (cf. [8, 31]).
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By exchanging from E to a multiperiod polyhedral risk measure this property is
maintained, but an additional block consisting of the yt variables and T additional
(dynamic) coupling constraints appear,

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E

[
T∑

t=1

〈ct, yt〉
]
∣∣∣∣∣∣∣∣∣∣∣∣∣

xit ∈ Xit, yt ∈ Yt,

Ht(xit) = 0, Ht(yt) = 0,∑I
i=1 Bit(ξt)xit ≤ dt(ξt),∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt),∑t−1
τ=0(〈wt,τ , yt−τ 〉 +

∑I
i=1〈bi,τ+1(ξt), xi,τ+1〉) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.(4.12)

Here, Lagrange relaxation of coupling constraints means to assign Ft-measurable La-
grange multipliers λ1t and λ2t to the third and fifth constraint in (4.12), respectively,
and to arrive at the dual problem

max
{
D(λ1, λ2) : λ1t ∈ Lp′(Ω,Ft,P; Rnt

+ ), λ2t ∈ Lp′(Ω,Ft,P)
}
.

The dual function D(λ1, λ2) is given by

D(λ1, λ2) = min

⎧⎪⎨
⎪⎩L(λ1, λ2, x1, . . . , xI , y)

∣∣∣∣∣∣∣
xit ∈ Xit, yt ∈ Yt,

Ht(xit) = 0, Ht(yt) = 0,∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt)

⎫⎪⎬
⎪⎭

and the Lagrangian L(λ1, λ2, x1, . . . , xI , y) is defined by

L(λ1, λ2, x1, . . . , xI , y)

=E

[∑T
t=1

(
〈ct, yt〉 +

〈
λ1t,

∑I
i=1 Bit(ξt)xit − dt(ξt)

〉
+ λ2t

∑t−1
τ=0

(
〈wt,τ , yt−τ 〉 +

∑I
i=1〈bi,τ+1(ξτ+1), xi,τ+1〉

))]
.

By rearranging with respect to blocks in the objective, the dual function D decomposes
into I + 1 minimization subproblems and is then of the form

D(λ1, λ2) =

I∑
i=1

Di(λ1, λ2) + DR(λ2) − E

[
T∑

t=1

〈λ1t, dt(ξt)〉
]
.

The functions Di correspond to I geographical subproblems

Di(λ1, λ2)

=min

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈
Bit(ξt)

′λ1t + bit(ξt)
∑T

τ=t λ2τ , xit

〉] ∣∣∣∣∣∣∣
xit ∈ Xit,

Ht(xit) = 0,∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt)

⎫⎪⎬
⎪⎭

and DR corresponds to the risk subproblem

DR(λ2) = min

{
E

[
T∑

t=1

〈
ct +

∑T
τ=t λ2τwτ,τ−t, yt

〉] ∣∣∣∣∣ yt ∈ Yt,

Ht(yt) = 0

}
.

Compared to the (dualized form of the) purely expectation-based problem (4.11), the
subproblems for the xi-blocks have the same structure, therefore the same solution



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING 93

methods can be applied. The only change consists in the additional factors
∑T

τ=t λ2τ

of bit(ξt) in the objective. If Y1 is a cone, the subproblem for the additional y-block
represents a cone constrained linear stochastic program and can be solved explicitly,
namely, it holds

DR(λ2) =

⎧⎨
⎩ 0 if −

(
ct +

∑T
τ=t E[λ2τ |Ft]wτ,τ−t

)
∈ Y ∗

t (t = 1, . . . , T ),

−∞ otherwise.

Hence, the dual problem reads

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I∑
i=1

Di(λ1, λ2) − E

[
T∑

t=1

〈λ1t, dt(ξt)〉
]
∣∣∣∣∣∣∣∣∣∣

λ1t ∈ Lp′(Ω,Ft,P; Rnt
+ ),

λ2t ∈ Lp′(Ω,Ft,P),

ct +
∑T

τ=t E[λ2τ |Ft]wτ,τ−t ∈ −Y ∗
t

(t = 1, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and the whole Lagrangian decomposition strategy has the same favorable features for
the risk averse model (4.12) as for the expectation-based one (4.11). For example, the
known Lagrangian relaxation based algorithms for electricity portfolio optimization
(e.g., [4, 12, 16]) apply to risk aversive models after some modifications.

5. Conclusions. We have introduced the class of polyhedral risk measures.
Polyhedral risk measures are defined as optimal values of certain linear stochastic
programs with recourse where the arguments appear on the right-hand sides of the
dynamic constraints. By means of convex duality, criteria for coherence and second
order stochastic dominance consistency have been deduced. For the one-period case it
has been shown that well-known risk measures are contained in this class: Conditional-
Value-at-Risk / quantile dispersion, and expected loss. For the multiperiod case, five
polyhedral (coherent) risk measures were suggested.

Stochastic programs with a polyhedral risk measure as objective (or, alternatively,
with an objective consisting of a linear combination of an expectation and a polyhedral
risk measure) can be easily transformed into expectation-based stochastic programs.
This observation has been used to demonstrate that important dual decomposition
techniques known for certain expectation-based stochastic programs can be applied
to stochastic programs with polyhedral risk measures after some modicifactions. The
same is true for stability properties of stochastic programs.

Hence, for large scale problems possibly including integer variables polyhedral
risk measures are a reasonable and flexible means to control risk while keeping the
problems tractable.
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A. Ruszczyński and A. Shapiro, eds., Handbooks Oper. Res. Management Sci. 10, Elsevier,
Amsterdam, 2003, pp. 483–554.

[31] W. Römisch and R. Schultz, Multistage stochastic integer programs: An introduction, in
Online Optimization of Large Scale Systems, M. Grötschel, S. O. Krumke, and J. Rambau,
eds., Springer, Berlin, 2001, pp. 581–622.

[32] W. Römisch and R. J.-B. Wets, Stability of ε-Approximate Solutions to Convex Stochastic



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING 95

Programs, in preparation.
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[41] G. P. Szegö, ed., Statistical and Computational Problems in Risk Management: VaR and
Beyond VaR, special issue of Journal of Banking & Finance, 26 (7) (2002).

[42] S. Weber, Distribution-Invariant Dynamic Risk Measures, Working Paper, Humboldt-
University, Berlin, Germany, 2003.

[43] R. J.-B. Wets, Stochastic programs with fixed recourse: The equivalent deterministic program,
SIAM Rev., 16 (1974), pp. 309–339.


