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We analyse stability aspects of linear multistage stochastic programs with
polyhedral risk measures in the objective. In particular, we consider sensitivity of
the optimal value with respect to perturbations of the underlying stochastic input
process. An existing stability result for multistage stochastic programs with
expectation objective is carried forward to the case of polyhedral risk-averse
objectives. Beside Lr-distances these results also involve filtration distances of the
perturbations of the stochastic process. We discuss additional requirements for
the polyhedral risk measures such that the problem dependent filtration distances
can be bounded by problem independent ones. Stability and such bounds are the
basis for scenario tree approximation techniques used in practical problem
solving.

Keywords: multistage stochastic programming; optimization; quantitative stabi-
lity; filtration distance; polyhedral risk measures; multiperiod risk functionals

AMS Subject Classifications: 90C15; 90C31; 91B30

1. Introduction

Multistage stochastic programs model the situation of a decision maker faced with a finite
number of timesteps t¼ 1, . . . ,T. At each step he/she observes some random outcomes �t
and has to make an (optimal) decision xt based on the exact knowledge of the past
(�1, . . . , �t and x1, . . . , xt�1) and on statistical information about the future (�tþ1, . . . , �T);
cf., e.g. [22]. The random outcomes may affect both, the objective as well as the constraints
for the decisions. The presence of statistical information is expressed by assuming
�¼ (�1, . . . , �T) to be a (multivariate) stochastic process on some fixed probability space
(�,F ,P). Note that it is assumed that the stochastic process is a pure input parameter and,
hence, does not depend on the decisions.

In the following, it is supposed that �t2Lr(�,F ,P;Rd) for t¼ 1, . . . ,T with some
numbers r2 [1,1] and d2N. We set �t :¼ (�1, . . . , �t) and we introduce the �-fields
F t :¼ �(�

t) for t¼ 1, . . . ,T. We assume without loss of generality that �1 is deterministic
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and that �(�)¼F . Thus, we have the following filtration: F 1¼ {;,�}�F 2� � � � �FT¼F .
We will consider linear multistage stochastic programs of the form

min E

XT
t¼1

hbtð�tÞ, xti

" # xt 2 Lr0 ð�,F t,P; R
mt Þ ðt ¼ 1, . . . ,TÞ,

xt 2 Xt a.s. ðt ¼ 1, . . . ,TÞ,

Xt�1
�¼0

At,�ð�tÞxt�� ¼ htð�tÞ a.s. ðt ¼ 2, . . . ,TÞ

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð1Þ

with some numbers mt, nt2N and r0 2 [1,1], polyhedral sets Xt � R
mt , matrices

At,� 2 R
nt�mt�� , and vectors ht 2 R

nt and bt 2 R
mt . We assume that At,�, ht, and bt

depend affinely linearly on �t (t¼ 1, . . . ,T). The matrices At,0 are called the recourse
matrices (t¼ 2, . . . ,T). For �4 0 the matrices At,� are called technology matrices.
The random vectors xt contain the decision variables for time t¼ 1, . . . ,T. They have to
be F t-measurable, respectively (non-anticipativity). The vectors bt can be interpreted as
cost factors. Note that optimality of the stochastic costs hbt(�t),xti is determined in terms
of expectation.

For various reasons, it is of interest to analyse stability properties of stochastic
programs with respect to perturbations of the underlying stochastic input process
�¼ (�1, . . . , �T). In particular, quantitative stability results have a significant impact on
methods for approximating � suitably by finite scenario trees. For the special case T¼ 2,
a lot is known for different types of stochastic programs; see [17,21] for a broad
exposition and [10] for applications to scenario approximation. This case is much easier to
handle since the information structure is fix: F 1¼ {;,�}, F 2¼F . For T4 2, the situation
is much more challenging; only few approaches can be found in literature. In [11]
a stability result for the optimal values of (1) was stated introducing a so-called filtration
distance. Scenario tree approximation methods based on this stability result have been
presented in [9].

In many applications it is of interest to consider risk functionals alternatively to the
expectation functional E in the objective of (1). Typically, risk measures are inherently
non-linear. Since the existing stability results rest to some extent on the linearity of the
objective, it seems very difficult to carry them forward to problems with objectives
incorporating arbitrary risk measures. However, in [3] the class of polyhedral risk
measures was introduced containing ordinary risk measures such as CVaR/AVaR as well
as multiperiod risk measures. Polyhedral risk measures are defined as optimal values
of certain stochastic programs. As it will be demonstrated in Section 2, these risk
measures, though non-linear, behave particularly suitable in the objective of (1).
In Section 3, we will prove stability theorems similar to those from [11], which apply to
the situation obtained by incorporating a polyhedral risk measure into the objective of
(1). These stability results consist of local Lipschitz type estimates involving Lr(�, F ,
P;Rs) norm distances (where s¼Td) as well as filtration distances. These filtration
distances depend on the solution behaviour of the particular problems. In [9], it has
already been discussed how such objects can be estimated by problem independent
metrics in the context of scenario tree approximation. However, these estimates are valid
only if the sets of "-optimal solutions (level-sets) are uniformly bounded. Hence,
in Section 4, conditions for this level-boundedness will be analysed. It will be seen that
none of the risk measures from [3] causes problems with respect to these conditions.

296 A. Eichhorn and W. Römisch
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Hence, we conclude in Section 5 that polyhedral risk measures are a meaningful tool

for risk aversion in multistage stochastic programming.

2. Polyhedral risk measures

Let Z denote some space of random variables on the measurable space (�,F )

(e.g. Z¼Lp(�,F ,P) with p� 1 or even p¼ 0) or random processes (e.g. Z ¼

�J
j¼1Lpð�,F tj ,PÞ with timesteps 1� t15 t25 � � �5 tJ�T). In the following, risk

functionals � (risk measures) will be understood as (extended) real-valued mappings on

Z, i.e. � : Z ! �R, z � �(z). Typically, risk functionals are essentially non-linear.

The number �(z) is intended to represent the chance of ending up with undesired

realizations z(!) of z or to represent the degree of uncertainty (spread) associated with z.

In any case, if there is a choice among different z2Z, one is interested to find a z such that

the value �(z) is rather low, i.e. one may want to minimize �(z) over a subset of Z.
Consider the one-period case, i.e. Z¼Lp(�,F ,P). We will assume in the following that

for z2Z higher outcomes z(!) are preferred to lower ones, e.g. z ¼ �
PT

t¼1hbtð�tÞ, xti.
Classical functionals in this context are, e.g. the variance [12] (p� 2 required) or the

Value-at-Risk at level �2 (0, 1) [6, Chapter 4.4] given by VaR�ðzÞ ¼ � �q�ðzÞ with
�q�ðzÞ ¼ inffa 2 R : Pðz � aÞ > �g denoting the upper alpha quantile. Note that both of

these functionals are known to have certain drawbacks in particular when being used for

optimization. Other well known risk functionals are semideviations [16], expected utility,

shortfall risk [6, Chapter 4.6], etc. It may also be desirable to minimize a mixture

� � �(z)� (1� �) �E[z] of a risk measure and the expectation with some number � 2 [0, 1]
(mean-risk models, cf. [12,16,24]). Important work on axiomatic characterisations of risk

measures has been reported in [1] and [6, Chapter 4], but also [16] contains considerations

in that direction.
For the case that discrete time random processes z ¼ ðzt1 , . . . , ztJ Þ are to be evaluated,

multiperiod risk measures have to be used [2,7,13–15,18]; see also [23, Sections 11–13]. In

this case, axiomatic characterisation turned out to be more controversial and fewer

instances are suggested in literature, too. If a multiperiod risk measure shall be minimized

within a multistage stochastic programming framework such as (1), the risk measure does

not necessarily need to take all timesteps t¼ 1, . . ., T into account but may be restricted to

a subset t1, . . . , tJ of timesteps. Hence, for the multiperiod case we will consider

Z ¼ �J
j¼1Lpð�,F tj ,PÞ:

For the purpose of being minimized in a (multistage) stochastic program, polyhedral

risk measures have been introduced in [3] and applied to electricity models in [4,5]. Risk

measures from this class are defined as optimal values of certain simple-structured

stochastic minimization problems. Consider the multiperiod case with some (fixed)

timesteps 1¼ t05 t15 � � �5tJ¼T and Z ¼ �J
j¼1Lpð�,F tj ,PÞ. Then a functional � is called

a (multiperiod) polyhedral risk measure if it has the following form:

�ðzÞ ¼ inf E

XJ
j¼0

hcj, yji

" # yj 2 Lpð�,F tj ,P; R
kjÞ ðj ¼ 0, . . . , JÞ,

yj 2 Yj a.s. ðj ¼ 0, . . . , JÞ,

Xj
�¼0

hwj,� , yj��i ¼ ztj a.s. ðj ¼ 1, . . . , JÞ

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð2Þ

Optimization 297
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with some numbers kj2N and vectors cj 2 R
kj (j¼ 0, . . . , J), wj,� 2 R

kj�� , (j¼ 1, . . . , J,
�¼ 0, . . . , j), a polyhedral set Y0 � R

k0 , and polyhedral cones Yj � R
kj (j¼ 1, . . . , J).

Typically, when using this type of functional in the objective of a multistage stochastic
program (cf. (1)), one has ztj ¼ �

Ptj
t¼1hbtð�tÞ, xti for z ¼ ðzt1 , . . . , ztJ Þ 2 Z. Note that the

case of minimizing a combination like � � �ðzt1 , . . . , ztJÞ � ð1� �Þ � E½zT� is fully included in
this framework, since such a mixture can be expressed by modifying the vectors cj in (2)
suitably [3, Remark 2.3]. For Z¼Lp(�,F ,P), i.e. for the one-period case, the definition is
accordingly (J¼ 1 and t1¼T).

One reason why polyhedral risk measures are particularly suitable for being minimized
is as follows. For a stochastic program of the form (1) with a polyhedral risk measure in
the objective

min �ðzt1 , . . . , ztJ Þ

xt 2 Lr0 ð�,F t,P; R
mt Þ, xt 2 Xt a.s. ðt ¼ 1, . . . ,TÞ,

Xt�1
�¼0

At,�ð�tÞxt�� ¼ htð�tÞ a.s. ðt ¼ 2, . . . ,TÞ

zt ¼ ztð�
t, xtÞ :¼ �

Xt
�¼1

hb�ð��Þ, x�i ðt ¼ 1, . . . ,TÞ

��������������

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3Þ

there is an obvious equivalence to

min E

XJ
j¼0

hcj, yji

" #
xt 2 Lr0 ð�,F t,P; R

mt Þ, xt 2 Xt a.s. ðt ¼ 1, . . . ,TÞ,

yj 2 Lpð�,F tj ,P; R
kjÞ, yj 2 Yj a.s. ðj ¼ 0, . . . , JÞ,

Xt�1
�¼0

At,�ð�tÞxt�� ¼ htð�tÞ a.s. ðt ¼ 2, . . . ,TÞ,

Xj
�¼0

hwj,� , yj��i þ
Xtj
�¼1

hb�ð��Þ, x�i ¼ 0 a.s. ðj ¼ 1, . . . , JÞ

������������������

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4Þ

by inserting the definition (2). The equivalence is basically in terms of optimal values
rather than in terms of solution sets [3, Proposition 4.1]. The resulting problem (4)
is almost of the form (1) (but the matrices At,� then depend on �t rather than �t only).
This equivalence is, e.g. useful for algorithmic approaches (see, e.g. [8]).

Example 2.1 For Z¼Lp(�,F ,P), i.e. for the one-period case, the Conditional
or Average Value-at-Risk at level �2 (0, 1) (CVaR� or AVaR�, cf. [19, 24] and [6,
Chapter 4.4]) is given by

AVaR�ðzÞ :¼
1

�

Z �

0

VaR ��ðzÞd �� ¼ inf
y02R

y0 þ
1

�
E y0 þ zð Þ

�
½ �

� �
ð5Þ

where the second representation on the right is due to [19]. By introducing variables for
positive and negative parts of y0þ z, respectively, AVaR� can be rewritten in the form (2)
with J¼ 1, k0¼ 1, k1¼ 2, c0¼ 1, c1 ¼ 0, 1=�ð Þ, w1,0¼ (1,�1), w1,1¼�1, Y0¼R, and
Y1 ¼ R

2
þ. Hence, AVaR� is a polyhedral risk measure. Moreover, AVaR� is known to be

a convex measure of risk in the sense of [6], a coherent risk measure in the sense of [1],
and it is consistent with 2nd order stochastic dominance [16].

298 A. Eichhorn and W. Römisch
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Example 2.2 Consider the expected regret or expected loss defined by

EL�ðzÞ ¼ E z� �ð Þ
�

½ �

with some fixed target �2R. This functional, too, can be written in the form (2) with J¼ 1,

k0¼ 1, k1¼ 2, c0¼ 0, c1¼ (0, 1), w1,0¼ (1, �1), w1,1¼ 1, Y0¼ {�}, and Y1¼Rþ�Rþ.

Example 2.3 For the multiperiod case J4 1, not many instances of risk measures are

known. In [3], four different multiperiod polyhedral risk measures, i.e. four possible

choices for Yj, cj, and wj,�, have been suggested, cf. Table 1. These instances �1, �2, �3, and
�4 of (2) can be understood as multiperiod extensions of the Average Value-at-Risk. As a

start, �1 is just an average of AVaRs applied to different time stages, whereas �2 is deduced
herefrom by interchanging minimization and summation:

�1ðzÞ ¼
1

J

XJ
j¼1

inf
yj2R

yj þ
1

�j
E ztj þ yj
� ��� �� �

�2ðzÞ ¼ inf
y02R

y0 þ
1

J

XJ
j¼1

1

�j
E ztj þ y0
� ��� �( )

The instances �3 and �4 are such that the information structure of the value process z

has a definite impact. In particular, �4 can be understood as the multiperiod extension

of AVaR according to [18]. In [3] it is shown that each of these four risk measures

is multiperiod coherent in the sense of [2].

Example 2.4 The multiperiod risk measure suggested in [13–15], is based on the concept

of the value of perfect information (cf., e.g. [22, Chapter 1.2.5]). The risk measure R is

defined as a difference of two functionals assessing the utility of a financial income stream

z ¼ ðzt1 , . . . , ztJ Þ with one functional being derived from the other one by relaxing the

information constraints, i.e. by assuming that the actual values of all future incomes are

perfectly known from the beginning (clairvoyance). Hence, the difference R(z) is supposed

to measure the financial value of being clairvoyant. The utility functional (including the

information constraints) is denoted by �5. It is defined1 as the optimal value of the

following multistage model

�5ðzÞ ¼ inf

�s0y0,1 þ E

XJ�1
j¼1

�sjyj,1 þ qjyj,3
� �

� dyJ,2 þ qJyJ,3

" #
:

yj 2 Lpð�,F tj ,P; R
3
Þ ðj ¼ 0, . . . , JÞ, y0,2 ¼ y0,3 ¼ yJ,1 ¼ 0,

yj,2 � 0 a.s., yj,3 � 0 a.s. ðj ¼ 1, . . . , JÞ,

yj,2 � yj,3 ¼ yj�1,2 þ ztj � yj�1,1 a.s. ðj ¼ 1, . . . , JÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð6Þ

with given constants qj (shortfall cost factors), sj (surplus utility factors), and d (discount

factor). For economic and mathematical consistency, these constants have to satisfy the

relations d5 sJ�15 � � �5 s15 s0 and sj�15 qj for j¼ 1, . . . , J. The functional (6) is of the

form (2) with kj¼ 3 (j� 0), Y0¼R� {0}� {0}, Yj¼R�Rþ�Rþ (1� j5 J), YJ¼ {0}�

Rþ�Rþ, w1,1¼ (1, 0, 0), wj,0¼ (0, 1,�1) (j� 1), wj,1¼ (1,�1, 0) (j4 1), further wj,�¼ 0

for �4 1, c0¼ (�s0, 0, 0), cj¼ (�sj, 0, qj) (1� j5 J), and cJ¼ (0,�d, qJ). Hence, it is a

Optimization 299
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polyhedral risk measure. It is a coherent risk measure in the sense of [2] if s1¼ 1 (cf. [3]).

Being clairvoyant with respect to the income process z can be expressed by replacing

yj 2 Lpð�,F tj ,P; R
3
Þ in (6) by yj2Lp(�,F ,P;R3). This relaxation simplifies the utility

functional drastically (cf. [14, 15]), such that the overall risk measure, i.e. the difference

between �5 and its clairvoyance modification, is given by

Rðzt1 , . . . , ztJ Þ ¼ �5ðzt1 , . . . , ztJÞ þ
XJ
j¼1

sj�1E½ztj �:

Observe that R is always non-negative. Note that it is intended to apply this functional to

income processes z ¼ ðzt1 , . . . , ztJÞ rather than to (accumulated) value processes. Hence, in

problem (3), one has to replace

ztj ¼ �
Xtj
t¼1

hbtð�tÞ, xti by ztj ¼ �
Xtj

t¼tj�1þ1

hbtð�tÞ, xti:

Remark 1 In [3], dual representations for (2) have been derived. For these results it is

required that the following conditions for Yj, cj, and wj,� hold:

. complete recourse: hwj,0, Yji ¼R (j¼ 1, . . . , J),

. dual feasibility:
TJ

j¼0D�, j 6¼ ; with D�,j:¼fu2R
J:cjþ

PJ
�¼maxf1,jgu�w�,��j2�Y

�
j g

By using the latter notation, the dual representation of (2) reads

�ðzÞ ¼ sup inf
y02Y0

c0 þ
XJ
�¼1

E½	��w�,�, y0

* +
� E

XJ
j¼1

	jztj

" # 	 2 �J
j¼1Lp0 ð�,F tj ,PÞ,

E½	jF tj � 2 D�, j a.s.

ðj ¼ 1, . . . , JÞ

���������

9>>>=
>>>;

8>>><
>>>:

ð7Þ

with p0 2 [1,1] such that 1=pþ 1=p0 ¼ 1, or

�ðzÞ ¼ sup �E

XJ
j¼1

	jztj

" #
	 2 �J

j¼1Lp0 ð�,F tj ,PÞ,

E½	jF tj � 2 D�, j a.s. ðj ¼ 0, . . . , JÞ

�����
( )

ð8Þ

for the case that Y0 is a cone. Moreover, it has been shown in [3] that, if complete

recourse and dual feasibility hold, the polyhedral risk measure � is finite, continuous,

and convex on Z. Furthermore, a criterion for (multiperiod) coherence (cf. [1,2]) based on

the dual representation (8) has been stated.

3. Stability of multistage stochastic programs

Consider a multistage stochastic program of the form (3) with a polyhedral risk measure �
of the form (2) in the objective. We will study the stability behaviour of its optimal value

with respect to perturbations of the stochastic input process �¼ (�1, . . . , �T). One possible

approach for this analysis would be to analyse the equivalent problem (4) which is similar

to problem (1). However, it has turned out to be more fruitful to pursue another approach,

namely to analyse sensitivity of � and then to use these results to analyse problem (3)

directly.
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For the sensitivity analysis of � resp. (2) with regard to perturbations of � in (3),

observe that � does not only depend on z ¼ ðzt1 , . . . , ztJ Þ but also depends on � via the

�-fields F t¼ �(�
t). Moreover, perturbations of � in (3) may cause variations of x and,

hence, variations of z in (2) since z¼ z(�, x) in (3). Therefore, we will use notations like

�(z, �) instead of just �(z) in the sequel. Furthermore, we introduce the notation

Z� :¼ ðz, �Þ : � 2 Lrð�,F ,P; R
s
Þ, z 2 �J

j¼1Lpð�, �ð�tj Þ,PÞ
n o

for pairs of processes such that z is adapted to �. For (z, �)2Z� we set

Y�ðz, �Þ :¼ y 2 �J
j¼0Lpð�, �ð�tj Þ,P; R

kjÞ

yj 2 Yj a.s. ðj ¼ 0, . . . , JÞ,

Xj
�¼0

hwj,�, yj��i ¼ ztj a.s.

ðj ¼ 1, . . . , JÞ

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð9Þ

for the feasible set of (2). Accordingly, for y¼ (y0, y1, . . . , yJ), we set

F�ðyÞ :¼ E

XJ
j¼0

hcj, yji

" #
ð10Þ

for the objective. With these notations formula (2) can be written in the following short

form: �(z, �)¼ inf{F�(y) : y2Y�(z, �)}. For a given level "� 0 the sets

l�, "ðz, �Þ :¼ y 2 Y�ðz, �Þ : F�ðyÞ � �ðz, �Þ þ "
� 


ð11Þ

are called the level-sets. For "4 0 these level-sets are non-empty. For "¼ 0,

l�,0(z, �)¼:S�(z, �) is called the solution set.

PROPOSITION 3.1 Consider a multiperiod polyhedral risk measure � of the form (2) on Z�

satisfying complete recourse and dual feasibility. Then there exists a constant K�4 0

such that

j�ðz, �Þ � �ð ~z, ~�Þj � K�



kz� ~zkp þDf,�

�
ðz, �Þ, ð ~z, ~�Þ

��
ð12Þ

for ðz, �Þ, ð ~z, ~�Þ 2 Z�. Here, Df,� denotes the filtration distance for � given by

Df,�ððz, �Þ, ð ~z, ~�ÞÞ :¼ sup
">0

Df,�, "ððz, �Þ, ð ~z, ~�ÞÞ

Df,�, "ððz, �Þ, ð ~z, ~�ÞÞ :¼ inf
XJ�1
j¼1

max �yj � E �yjj�ð ~�
tjÞ

h i��� ���
p
, ~yj � E ~yjj�ð�

tj Þ
� ��� ��

p

� �
�y 2 l�, "ðz, �Þ,

~y 2 l�, "ð ~z, ~�Þ

�����
( )

:

Proof Let "4 0, ðz, �Þ, ð ~z, ~�Þ 2 Z�, and �y ¼ ð �y0, �y1, . . . , �yJÞ 2 l�, "ðz, �Þ. In the following,

an element ~y ¼ ð ~y0, ~y1, . . . , ~yJÞ 2 Y�ð ~z, ~�Þ is recursively constructed such that the distance

between ~y and E½ �yjj�ð ~�
tjÞ� is small in some sense. To this end, consider the set-valued

mappings (multifunctions)

Mj : R�!�!R
kj

u�MjðuÞ :¼ fyj 2 Yj : hwj,0, yji ¼ ug

302 A. Eichhorn and W. Römisch
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for j¼ 1, . . . , J. Note that each Mj has polyhedral graph and, hence, is Lipschitz
continuous with respect to the Hausdorff distance [20, Example 9.35] with some
modulus lj. Thus,

infy2MjðuÞ jŷ� yj � ljjû� uj ð13Þ

for all (non-random) û, u 2 R and ŷ 2MjðûÞ. Here, j�j, denotes the Euclidian norm in R
kj .

Now, the random element ~y is constructed as follows: for j¼ 0, we set ~y0 :¼ �y0. For j4 0,
consider the random elements

�ujð:Þ :¼ ztj ð:Þ �
Xj
�¼1

hwj,�, �yj��ð:Þi ~ujð:Þ :¼ ~ztjð:Þ �
Xj
�¼1

hwj,� , ~yj��ð:Þi

as well as the following set-valued mappings:

M1
j : ��!�!R

kj M2
j : ��!�!R

kj

!�Mjð ~ujð!ÞÞ !� arg min
y2M1

j
ð!Þ
jE½ �yjj�ð ~�

tj Þ�ð!Þ � yj

Obviously, M1
j ð!Þ is closed, convex, and, due to the complete recourse assumption,

non-empty for every !2�. M2
j ð!Þ is non-empty for !2� because the distance

function jE½ �yjj�ð ~�
tj Þ�ð!Þ � :j is coercive. Further, since ~uj is measurable with respect to

�ð ~�tjÞ,M1
j and M2

j are measurable with respect to �ð ~�tjÞ; cf., e.g. [20, Theorem 14.36]
and [20, Theorem 14.37]. The latter theorem also guarantees the existence of a
�ð ~�tjÞ-measurable function ~yj with ~yjð!Þ 2M2

j ð!Þ for !2�. Now, using (13) with
ŷ ¼ E½ �yjj�ð ~�

tjÞ�ð!Þ, û ¼ E½ �ujj�ð ~�
tj Þ�ð!Þ, u ¼ ~ujð!Þ, and y ¼ ~yjð!Þ (note that ~yj was chosen

as a pointwise minimizer) yields the estimate��E� �yjj�
�

~�tj
��
� ~yj

�� � lj
��E� �ujj�

�
~�tj
��
� ~uj

��
¼ lj E ztj �

Xj
�¼1

hwj,�, �yj��ij�ð ~�
tjÞ

" #
� ~ztj þ

Xj
�¼1

hwj,� , ~yj��i

�����
�����

� lj E ztj � ~ztj j�
~�tj


 �h i��� ���þXj
�¼1

jwj,�j E �yj��j� ~�tj

 �h i

� ~yj��

��� ���
 !

� lj

 
E ztj � ~ztj
�� ����� ~�tj


 �h i
þ
Xj
�¼1

jwj,�j E �yj��j� ~�tj��

 �h i

� ~yj��

��� ���
þ
Xj
�¼1

jwj,�j

����E �yj��j� ~�tj��

 �h i

� E �yj��j� ~�tj

 �h i����

!

pointwise on � for j¼ 1, . . . , J. Note that Jensen’s inequality has been used for the first
term of the final estimate. Putting these estimates together recursively (recall that �y0 ¼ ~y0)
yields

E �yjj� ~�tj

 �h i

� ~yj

��� ��� �Xj
i¼1

Kj,iE jzti � ~zti

������� ~�ti

 �h i

þ
Xj
i¼1

Xi
�¼1

Cj,i,� E �yi��j� ~�ti��

 �h i

� E �yi��j� ~�ti

 �h i��� ���
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with some positive constants Kj,i and Cj,i,�. Hence, since �y 2 l�, "ðz, �Þ and ~y 2 Y�ð ~z, ~�Þ,
we have

�ð ~z, ~�Þ � �ðz, �Þ � E

XJ
j¼0

cj, ~yj
� �" #

� E

XJ
j¼0

cj, �yj
� �" #

þ "

¼
XJ
j¼1

E cj, ~yj � E �yjj� ~�tj

 �h iD Eh i

þ "

�
XJ
j¼1

jcjjE ~yj � E �yjj� ~�tj

 �h i��� ���h i

þ "

�
XJ
j¼1

KjE

h
jztj � ~ztj j

i
þ
Xj
�¼1

Cj,�E E �yj��j� ~�tj��

 �h i

� �yj��

��� ���h i !
þ "

¼
XJ
j¼1

KjE

h
jztj � ~ztj j

i
þ
XJ�1
j¼1

CjE

h
E �yjj� ~�tj


 �h i
� �yj

��� ���iþ "

� C kz� ~zkp þ
XJ�1
j¼1

E �yjj� ~�tj

 �h i

� �yj

��� ���
p

 !
þ "

with some other positive constants Kj, Cj,�, Cj, and C. Observe that the terms in the final

line of the previous display do not depend on ~y which has been constructed dependent on

an arbitrary �y 2 l�, "ðz, �Þ. Thus, the roles of (z, �) and ð ~z, ~�Þ can be changed, i.e. for

arbitrary ~y 2 l�, "ð ~z, ~�Þ it holds that

�ðz, �Þ � �ð ~z, ~�Þ � Ĉ kz� ~zkp þ
XJ�1
j¼1

kE½ ~yjj�ð�
tjÞ� � ~yjkp

 !
þ "

with some positive constant Ĉ. With K� :¼max {C, Ĉg it follows that

j�ðz, �Þ � �ð ~z, ~�Þj � K� kz� ~zkp þ
XJ�1
j¼1

max �yj � E �yjj� ~�tj

 �h i��� ���

p
, ~yj � E ~yjj� �

tj
� �� ��� ��

p

� � !
þ "

for arbitrary �y 2 l�, "ðz, �Þ and ~y 2 l�, "ð ~z, ~�Þ. Hence, we can pass to the infimum arriving at

j�ðz, �Þ � �ð ~z, ~�Þj � K� kz� ~zkp þDf,�, "ððz, �Þ, ð ~z, ~�ÞÞ

 �

þ "

� K� kz� ~zkp þDf,�ððz, �Þ, ð ~z, ~�ÞÞ

 �

þ "

and because " was chosen arbitrarily the assertion follows. g

Next, we will make use of the latter result for the analysis of the risk-averse

stochastic program (3). To this end, we introduce similar notations as for � that stress the

dependence on �:

Fð�, xÞ :¼ �ðzð�, xÞÞ

304 A. Eichhorn and W. Römisch
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for the objective with

zð�, xÞ :¼ ðzt1ð�, xÞ, . . . , ztJð�,xÞÞ ztð�, xÞ ¼ ztð�
t, xtÞ :¼ �

Xt
�¼1

hb�ð��Þ,x�i

and

Xð�Þ :¼ x 2 �T
t¼1Lr0 ð�, �ð�tÞ,P; R

mt Þ
x1 2 X1,

xt 2 X tðx
t�1, �tÞ a.s. ðt ¼ 2, . . . ,TÞ

�����
( )

for the constraint set with

X tðx
t�1, �tÞ :¼ xt 2 Xt :

Xt�1
�¼0

At,�ð�tÞxt�� ¼ htð�tÞ

( )
� R

mt

for t¼ 2, . . . ,T. Then the model (3) can be written in the following short form:

minfFð�, xÞ : x 2 Xð�Þg ð14Þ

and with v(�) :¼ inf{F(�, x):x2X (�)} we denote its optimal value. For any "� 0 let

l"ðFð�, �ÞÞ :¼ fx 2 Xð�Þ : Fð�, xÞ � vð�Þ þ "g

denote its "-level-set. For the integrability numbers r, r0, p� 1, we will set r and r0 in

dependence of the class of problem (3) by the assignment

r :¼

2 ½p,1Þ arbitrarily, if only costs or right-hand sides are random

2p, if only costs and right-hand sides are random

pT, if all technology matrices are random

8>>><
>>>:

r0 :¼

pr

r� p
, if only costs are random

r, if right-hand sides are random but technology matrices aren’t

1, if all technology matrices are random

8>>>><
>>>>:

ð15Þ

which implies r� p and r0 � p. We will consider the following conditions for the

optimization model (3):

(A1) �2Lr (�,F ,P;Rs)
(A2) There exists a 
14 0 such that for any ~� 2 Lrð�,F ,P; R

s
Þ with k ~� � �kr � 
1, any

t¼ 2, . . . ,T and any x12X1, x� 2 Lr0 ð�, �ð ~��Þ,P; R
m� Þ with x� 2 X �ðx

��1, ~��Þ,
�¼ 2, . . . , t� 1, the t-th feasibility set X tðx

t�1, ~�tÞ is non-empty (relatively complete

recourse locally around �).
(A3) The optimal values vð ~�Þ of (14) with input ~� are finite for all ~� in a neighbourhood of �

and the objective function F is level-bounded locally uniformly at �: for some "04 0

there exists a 
24 0 and a bounded set B � Lr0 ð�,F ,P; R
m
Þ such that vð ~�Þ 2 R and

l"0ðFð
~�, �ÞÞ � B for all ~� 2 Lrð�,F ,P; R

s
Þ with k ~� � �kr � 
2.

(A4) The recourse matrices At,0 (�t) are fixed, i.e. they do not depend on �t (t¼ 1, . . . ,T).
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THEOREM 3.2 For the multistage stochastic program (3) respectively (14), let p2 [1,1) and

r and r0 be defined by (15) and assume that the multiperiod polyhedral risk measure � on Z�

of the form (2) satisfies complete recourse and dual feasibility. Furthermore, let (A1)–(A4) be

satisfied and X1 be bounded. Then there exist positive constants K, "0 and 
 such that the

estimate

jvð�Þ � vð ~�Þj � K


k� � ~�kr þD�,X

f ð�,
~�Þ
�

ð16Þ

holds for all random elements ~� 2 Lrð�,F ,P; R
s
Þ with k ~� � �kr � 
. Here, the filtration

distance D�,X
f ð�,

~�Þ is given by

D�,X
f ð�,

~�Þ :¼ sup
"2ð0, "0�

D�,X
f," ð�,

~�Þ

D�,X
f," ð�,

~�Þ :¼ inf

XT�1
t¼2

max E xtj� ~�t

 �h i

� xt

��� ���
r0
, E ~xtj� �

t
� �� �
� ~xt

�� ��
r0

n o

þ
XJ�1
j¼1

max E yjj� ~�tj

 �h i

� yj

��� ���
p
, E ~yjj� �

tj
� �� �

� ~yj
�� ��

p

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

where the infimum is taken with respect to all x2 l"(F(�, �)), ~x 2 l"ðFð ~�, �ÞÞ, y2 l�,"(z(�, x), �),
and ~y 2 l�, "ðzð ~�, ~xÞ, ~�Þ.

Proof For the sake of clarity and without loss of generality we restrict the following

presentation to the case that At,�¼ 0 for �� 2. Since [11, Theorem 2.1] deals with the

same problem but with expectation objective, we will use here some formulas from the

proof of [11, Theorem 2.1] whose derivation does not depend on the objective.
Let "0, 
1, and 
2 be selected as in (A2) and (A3) and set 
 :¼min{
1, 
2}4 0.

Let "2 (0, "0]. First, recall from the proof of Proposition 3.1 that there exists a positive

constant K� such that

�ð ~z, ~�Þ � �ðz, �Þ � K� kz� ~zkp þ
XJ�1
j¼1

E �yjj� ~�tj

 �h i

� �yj

��� ���
p

 !
þ "

�ðz, �Þ � �ð ~z, ~�Þ � K� kz� ~zkp þ
XJ�1
j¼1

E ~yjj� �
tj

� �� �
� ~yj

�� ��
p

 !
þ "

ð17Þ

holds for all �y 2 l�, "ðz, �Þ and ~y 2 l�, "ð ~z, ~�Þ and all pairs (z, �) and ð ~z, ~�Þ in Z�. Now,

let �x 2 l"ðFð�, �ÞÞ and ~� 2 Lrð�,F ,P; R
s
Þ be such that k ~� � �kr < 
. In the following,

we construct ~x 2 Xð ~�Þ in the same manner as in the proof of [11, Theorem 2.1] (similarly to
~y in the proof of Proposition 3.1) such that �x1 ¼ ~x1 and the estimate2

jE½ �xtj�ð ~�
tÞ� � ~xtj � lt

Xt
�¼2

max 1, ~�t
��� ���t��n o

E �� � ~��

��� ��� j� ~��

 �h i 

þ
Xt�1
�¼2

max 1, ~�t
��� ���t��n o

E

��� �x� � E �x�j� ~��

 �h ih ��� j� ~��þ1


 �i!
ð18Þ
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holds with some positive constants lt for t¼ 2, . . . ,T. Note that the first sum on the
right-hand side disappears if only costs are random and that both max-terms vanish if the
technology matrices are not random.

Now, because �x 2 l"ðFð�, :ÞÞ and ~x 2 Xð ~�Þ, the optimal values fulfil for any �y 2
l�, "ðzð�, �xÞ, �Þ

vð ~�Þ � vð�Þ � �ðzð ~�, ~xÞ, ~�Þ � �ðzð�, �xÞ, �Þ þ "

� K� zð�, �xÞ � zð ~�, ~xÞ
��� ���

p
þ
XJ�1
j¼1

E �yjj� ~�tj

 �h i

� �yj

��� ���
p

 !
þ 2" ð19Þ

where (17) is used for the second estimate.
Next, we derive an estimate for kzð�, �xÞ � zð ~�, ~xÞkp by making use of (18). With

x̂t :¼ E½ �xtj�ð ~�
tÞ� and x̂ ¼ ðx̂1, . . . , x̂TÞ we have

kzð�, �xÞ � zð ~�, ~xÞkp � kzð�, �xÞ � zð ~�, �xÞkp þ kzð ~�, �xÞ � zð ~�, x̂Þkp þ kzð ~�, x̂Þ � zð ~�, ~xÞkp ð20Þ

and for the first summand we obtain

zð�, �xÞ � zð ~�, �xÞ
��� ���

p
¼ E

XJ
j¼1

jztjð�, �xÞ � ztjð
~�, �xÞjp

" # !1=p

¼
XJ
j¼1

E

Xtj
t¼1

btð�tÞ � bt ~�t


 �
, �xt

D E�����
�����
p" # !1=p

�
XJ
j¼1

E

Xtj
t¼1

btð�tÞ � btð ~�tÞ, �xt

D E�����
�����
p" # !1=p

�
XJ
j¼1

Xtj
t¼1

E btð�tÞ � btð ~�tÞ, �xt

D E��� ���ph i
 �1=p

� J
XT
t¼1

E btð�tÞ � btð ~�tÞ, �xt

D E��� ���ph i
 �1=p

� J
XT
t¼1

E btð�tÞ � btð ~�tÞ
��� ���pj �xtjph i
 �1=p

� J
XT
t¼1

btð�tÞ � btð ~�tÞ
��� ���

r
k �xtkr0

where Minkowski’s inequality in Lp(�,F ,P) as well as the Cauchy–Schwarz inequality
in R

mt have been used. For the final estimate, a generalised version of Hölder’s inequality
has been used which is valid for 1=rþ 1=r0 ¼ 1=p (the case of stochastic cost and
deterministic technology matrices) as well as for p� r5 r0 ¼1 (the case of stochastic
technology matrices). For the case that only right-hand sides are random, this estimate is
also valid, because then the deterministic3 cost factors bt can be moved outside the
expectation and Lyapunov’s inequality yields the same result. Now, since �x 2 B, B is Lr0-
bounded and bt(�) is affine linear, it holds that that

kzð�, �xÞ � zð ~�, �xÞkp � C1k� � ~�kr
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with some positive constant C1 depending on B and bt (t¼ 1, . . . ,T). For the second and

the third summand in (20) we conclude analogously:

zð ~�, �xÞ � zð ~�, x̂Þ
��� ���

p
� J

XT
t¼1

E jbtð ~�tÞj
p �xt � E �xtj� ~�t


 �h i��� ���ph i
 �1=p

� J
XT
t¼1

bt ~�t


 ���� ���
r

�xt � E �xtj� ~�t

 �h i��� ���

r0

kzð ~�, x̂Þ � zð ~�, ~xÞkp � J
XT
t¼1

E btð ~�tÞ
��� ���p E �xtj� ~�t


 �h i
� ~xt

��� ���ph i
 �1=p

� J
XT
t¼1

btð ~�tÞ
��� ���

r
E �xtj� ~�t


 �h i
� ~xt

��� ���
r0

where we have re-substituted x̂t ¼ E½ �xtj�ð ~�
tÞ�. Since �2Lr(�,F ,P;Rs) and k� � ~�kr � 
,

it holds that

zð ~�, �xÞ � zð ~�, x̂Þ
��� ���

p
� C2

XT
t¼1

�xt � E �xtj� ~�t

 �h i��� ���

r0

zð ~�, x̂Þ � zð ~�, ~xÞ
��� ���

p
� C2

XT
t¼1

E �xtj� ~�t

 �h i

� ~xt

��� ���
r0

with some positive constant C2 depending on �, 
, and bt (t¼ 1, . . . ,T). Now, the latter

estimate will be continued by inserting (18).
First, we consider the situation that only cost are random and r051. We use

Minkowski’s and Jensen’s inequalities and arrive at

zð ~�, x̂Þ � zð ~�, ~xÞ
��� ���

p
� C2

XT
t¼1

E E �xtj� ~�t

 �h i

� ~xt

��� ���r0� �� 	1=r0

� C2

XT
t¼1

lt E

���Xt�1
�¼2

E �x� � E �x�j� ~��

 �h i��� ��� j� ~��þ1


 �ih ���r0
#" !1

r0

� C3

XT
t¼1

E �xt � E �xtj� ~�t

 �h i��� ���r0� �� 	1=r0

with some positive constant C3.
Next, we consider the situation that right-hand sides are random but technology

matrices are non-random. Then we have r¼ r051 and analogously we obtain

z ~�, x̂

 �

� z ~�, ~x

 ���� ���

p
� C2

XT
t¼1

E E �xtj� ~�t

 �h i

� ~xt

��� ���r0� �� 	1=r0

� C2

XT
t¼1

lt E

Xt
�¼2

E �� � ~��

��� ���h ���� ~��

 ������

i" 
þ
Xt�1
�¼2

E �x� � E �x� j� ~��

 �h i��� ��� �ð ~��þ1Þ��� ih �����

r0
3
5
1
A

1=r0

� C4 � � ~�
��� ���

r
þ
XT
t¼1

E �xt � E �xtj�ð ~�
tÞ

h i��� ���r0� �� 	1=r0
 !

with some constant C4.
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Finally, we consider the case that the technology matrices are random and r¼Tp5
r0 ¼1. Then, however, we need to start at the point before Hölder’s inequality was applied

and obtain

z ~�, x̂

 �

� z ~�, ~x

 ���� ���

p
� J

XT
t¼1

E bt ~�t


 ���� ���p E �xtj� ~�t

 �h i

� ~xt

��� ���ph i
 �1=p

� J
XT
t¼1

lt E bt ~�t


 ���� ���p Xt
�¼2

max 1, ~�t
��� ���t��n o

E �� � ~��

��� ���h
j� ~��

 ������

i" 

þ
Xt�1
�¼2

max 1, ~�t
��� ���t��n o

E �x� � E �x�j� ~��

 �h i��� ��� j�ð ~��þ1Þih �����

p#!1=p

� C5 � � ~�
��� ���

r
þ
XT
t¼1

�xt � E �xtj�ð ~�
tÞ

h i��� ���
1

 !

with a constant C5 depending on bt(�), k�kr, and 

r.

Hence, in all cases we can bound each of the three summands on the right-hand of (20)

suitably, i.e. in each case there is a constant C such that

zð�, �xÞ � zð ~�, ~xÞ
��� ���

p
� C � � ~�

��� ���
r
þ
XT
t¼1

�xt � E �xtj� ~�t

 �h i��� ���

r0

 !

holds for each �x 2 l"ðFð�, :ÞÞ (and ~x constructed appropriately). Hence, we can continue

(19) as follows:

vð ~�Þ � vð�Þ � �K � � ~�
��� ���

r
þ
XT�1
t¼2

�xt � E �xtj� ~�t

 �h i��� ���

r0
þ
XJ�1
j¼1

�yj � E �yjj� ~�tj

 �h i��� ���

p

 !
þ 2" ð21Þ

with some positive constant �K. The estimate is valid for any �x 2 l"ðFð�, :ÞÞ and any �y 2

l�, "ðzð�, �xÞ, �Þ and does no longer depend on ~x. Changing the role of � and ~� yields another
constant ~K such that

vð�Þ � vð ~�Þ � ~K � � ~�
��� ���

r
þ
XT�1
t¼2

E ~xtj� �
t

� �� �
� ~xt

�� ��
r0
þ
XJ�1
j¼1

E ~yjj� �
tj

� �� �
� ~yj

�� ��
p

 !
þ 2" ð22Þ

for any ~x 2 l"ðFð ~�, :ÞÞ and ~y 2 l�, "ðzð ~�, ~xÞ, ~�Þ. We note that the second and third summands

in (21) and (22) are bounded by

XT�1
t¼2

max

�
E �xtj� ~�t


 �h i
� �xt

���
r0
,

��� ���E ~xtj� �
t

� �� �
� ~xt

���
r0

�

XJ�1
j¼1

max E �yjj� ~�tj

 �h i

� �yj

��� ���
p
,
���E ~yjj� �

tj
� �� �

� ~yj

���
p

� �
,

respectively. This leads directly to

jvð�Þ � vð ~�Þj � K


k� � ~�kr þD�,X

f ð�,
~�Þ
�
þ 2"
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with K :¼ maxf �K, ~Kg. Finally, it remains to take the infimum of the right-hand side with

respect to "4 0 and the proof is complete. g

Remark 1 The filtration distance D�,X
f depends on the "-level-sets, i.e. on the solution

behaviour of the problem which is typically unknown in practice. The question arises,

whether D�,X
f can be estimated by objects that are better computable. In particular,

for making use of Theorem 3.2 for scenario tree approximation of �, this question becomes

important. For the scenario tree generation procedure described in [9], such an upper

bound for DE,X
f has been used. Analogously, for the situation here, assume that (A3) is

satisfied and that the set

[
~x2l"ðFð ~�, �ÞÞ, k ~���kr�


l�, " z ~�, ~x

 �

, ~�

 �

ð23Þ

is bounded in Lp(�,F ,P;RJ) for some "4 0. Then, obviously, the following estimate

holds

D�,X
f ð�,

~�Þ � C sup
kxkr0�1

XT�1
t¼2

E xtj� �
t

� �� �
� E xtj� ~�t


 �h i��� ���
r0

 

þ sup
kykp�1

XJ�1
j¼1

E yjj�ð�
tj Þ

� �
� E yjj�ð ~�

tj Þ

h i��� ���
p

!

with some constant C4 0. The right-hand side here represents a distance measure

for the filtrations of � and its perturbation ~� and does not depend on the particular

problem; cf. [9].
The level-sets l"(F(�,�)) and l"ðFð ~�, �ÞÞ are bounded in Lr0(�,F ,P;Rm) due to

condition (A3) (e.g. if the sets Xt are bounded for t¼ 1, . . . ,T). However, the

corresponding level-sets l�,"(z(�, x), �) and l�, "ðzð ~�, ~xÞ, ~�Þ of the polyhedral risk measure

may be unbounded in Lp(�,F ,P;RJ) since the sets Yj � R
kj are assumed to be cones,

i.e. unbounded. Hence, (23) can be unbounded in general. By the definition of the

elements zð ~�, ~xÞ in Lp(�,F ,P;RJ), the pairs ðzð ~�, ~xÞ, ~�Þ in (23) vary in a bounded subset

of Z� if (A3) is satisfied. Hence, it remains to clarify the question, under what conditions

the level-sets of the polyhedral risk measures are uniformly bounded on bounded

subsets of Z�.

4. Level-sets of polyhedral risk measures

As just motivated in the above remark, it is of interest for the stability analysis to know,

whether the sets of "-optimal solutions are uniformely bounded on bounded subsets

Z � Z�. However, the following example shows that, for p4 1, the level-sets, even for

a single element (z, �)2Z�, are typically unbounded.

Example 4.1 Consider the Average Value-at-Risk at level �2 (0, 1) (AVaR�,

cf. Example 2.1) and let z2Lp(�,F ,P) with some p2 [1,1]. Due to the results in [19] it

310 A. Eichhorn and W. Römisch
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is known that the solution set of (2) is given by

SAVaR�
ðzÞ ¼ y0, ðzþ y0Þ

þ, ðzþ y0Þ
�

� �
: y0 2 � �q�ðzÞ, �q�ðzÞ½ �

� 

with �q�ðzÞ ¼ inffa 2 R : Pðz � aÞ > �g and q�(z)¼ inf{a2R :P(z� a)��} denoting the

upper and lower quantile of the distribution of z, respectively. Hence, since the interval

½� �q�ðzÞ, �q�ðzÞ� is always compact, the solution set SAVaR�
ðzÞ is bounded in

Lp(�,F ,P;R3).
However, things are different for the level-sets lAVaR�, "ðzÞ for "4 0. Suppose the

probability space (�,F ,P) is rich enough such that there exist sets Sn2F with PðSnÞ ¼

1=n for n2N. Consider

yðnÞðzÞ :¼


� �q�, ðz� �q�ðzÞÞ

þ
þ "n1Sn

, ðz� �q�ðzÞÞ
�
þ "n1Sn

�
for n2N. Obviously, yðnÞðzÞ 2 YAVaR�

ðzÞ, i.e. y(n)(z) is feasible for each n, and

FAVaR�
ðyðnÞðzÞÞ ¼ �ðzÞ þ ", i.e. yðnÞðzÞ 2 lAVaR�, "ðzÞ. But even if we assume z2L1(�,F ,P)

it holds that kyðnÞðzÞkp 	 n1�ð1=pÞ ! 1 for p2 (1,1], i.e. the level-set lAVaR�, "ðzÞ for a single

random variable z is unbounded in Lp(�,F ,P;R3) for p4 1. Thus, for the boundedness of

the AVaR� level-sets, there is only hope for p¼ 1. It will be seen below that lAVaR�, "ðzÞ

is bounded in L1(�,F ,P;R3) indeed, actually in a uniform manner.

Since the multiperiod polyhedral risk measures (cf. section 2) from [3] boil down to

AVaR for J¼ 1, and, hence, their level-sets are unbounded in Lp if p4 1, we will assume

p¼ 1 from now on (and accordingly p0 ¼1). In the following, a simple criterion will be

derived which guarantees the sort of uniform L1-boundedness of the level-sets l�(z, �) as it
is required in Remark 1 in Section 3. This criterion, though appearing to be very specific,

applies for most of the polyhedral risk measures � introduced so far. Here, the extended

real-valued function ��, called the value function given by

��ðy0, z, �Þ :¼ inf
y1,..., yJ

fF�ðy0, y1, . . . , yJÞ : ðy0, y1, . . . , yJÞ 2 Y�ðz, �Þg

will be used. Observe that �ðz, �Þ ¼ infy02Y0
��ðy0, z, �Þ. The notation �j will denote the

projection to the j-th component of a vector.

PROPOSITION 4.2 Let � be a functional of the form (2) satisfying complete recourse and dual

feasibility and assume

(i) kj¼ 2, hcj,Yji �Rþ for j¼ 1, . . . , J,
(ii) the vectors cj and wj,0 are linearly independent for j¼ 1, . . . , J,
(iii) �jð

TJ
�¼jD�, �Þ is bounded in R for j¼ 1, . . . , J, and

(iv) Y0 is bounded, or alternatively
(v) k0¼ 1, c04 0, and inff

PJ
j¼1 ujwj,j : u 2

TJ
j¼1D�, jg < �c0.

Let Z�Z� such that the projection �1(Z) to the z component is bounded in L1(�,F ,P;RJ).

Then the union over all level-sets
S
ðz, �Þ2Z l�, "ðz, �Þ is bounded in L1ð�,F ,P; R

P
kjÞ for any

"4 0.

Proof First of all, consider the numbers MZ :¼ sup{kzk1 : (z, �)2Z}, MD :¼

supfjuj1 : u 2 \Jj¼1D�, jg, and M� :¼ sup{j�(z)j : (z, �)2Z}. Observe that MZ51 accord-

ing to the assumptions about Z and that MD51 due to assumption (iii). First, we show
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that also M�51. To this end, consider the dual representation (7) and note that due to

assumption (iii) the feasible set

��ð�Þ :¼ 	 2 �J
j¼1L1ð�, �ð�tjÞ,PÞ : E½	j�tj � 2 D�, j a.s. ðj ¼ 1, . . . , JÞ

n o
is bounded in L1(�,F ,P;RJ) with a bound M	 not depending on �. Hence, (7) yields the

following estimates:

�ðz, �Þ � sup
	2��ð�Þ

inf
y02Y0

c0 þ
XJ
�¼1

E½	��w�, �, y0

* +
þMZM	

�ðz, �Þ � sup
	2��ð�Þ

inf
y02Y0

c0 þ
XJ
�¼1

E½	��w�, �, y0

* +
�MZM	

and since

sup
	2��ð�Þ

inf
y02Y0

c0 þ
XJ
�¼1

E½	��w�, �, y0

* +
¼ sup

u2
TJ

�¼1
D�, �

inf
y02Y0

c0 þ
XJ
�¼1

u�w�, �, y0

* +

it becomes clear that this number, which does not depend on (z, �), must be finite

(otherwise �(z, �) would be infinite). Hence, M� is finite indeed.
Now, let "4 0. We prove boundedness of the level-sets for each component j¼ 0,

1, . . . , J successively. For j¼ 0, we show that, if Y0 is unbounded, the value function

��(y0, z, �) grows to infinity uniformly on Z as jy0j!1. For y0!þ1 this is obvious

since ��(y0, z, �)� c0y0 due to assumption (i) and c0y0!1 due to assumption (iv0). For

y05 0, we obtain the following estimate by relaxing the non-anticipativity constraints and

making use of [20, Theorem 14.60] and LP duality [20, Example 11.43]:

��ðy0, z, �Þ ¼ c0y0 þ inf E

XJ
j¼1

hcj, yji

" # y 2 �J
j¼1L1ð�, �ð�tjÞ,P; R

kjÞ,

y 2 �J
j¼1Yj a.s.,

Xj�1
�¼0

hwj,� , yj��i ¼ ztj � wj,jy0 a.s.

������������

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� c0y0 þ inf E

XJ
j¼1

hcj, yji

" # y 2 �J
j¼1L1ð�,F ,P; R

kj Þ,

y 2 �J
j¼1Yj a.s.,

Xj�1
�¼0

hwj,�, yj��i ¼ ztj � wj,jy0 a.s.

������������

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ c0y0 þ E inf
XJ
j¼1

hcj, yji

y 2 �J
j¼1Yj,

Xj�1
�¼0

hwj,�, yj��i ¼ ztj � wj,jy0

���������

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775
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¼ c0y0 þ E sup
XJ
j¼1

ujðwj,jy0 � ztj Þ u ¼ ðu1, . . . , uJÞ 2
\J
j¼1

D�, j

�����
( )" #

� c0y0 þ y0 inf
XJ
j¼1

ujwj,j u ¼ ðu1, . . . , uJÞ 2
\J
j¼1

D�, j

�����
( )

�MZMD

Thus, due to assumption (iv0), ��(y0, z, �)!þ1 uniformly on Z as y0!�1. Hence,

there is a real number M0 such that for all (z, �)2Z and for all ŷ ¼ ðŷ0, . . . , ŷJÞ 2 l�, "ðz, �Þ
it holds that jŷ0j �M0. Now, for j¼ 1 it holds due to assumption (i) that

hc1, ŷ1i
�� ��

1
¼ E hc1, ŷ1i½ � �

XJ
j¼1

E½hcj, ŷji� ¼ F�ðŷÞ � hc0, ŷ0i

� �ðzt1 , . . . , ztJÞ þ "þ jc0jM0 � M� þ "þ jc0jM0

khw1, 0, ŷ1ik1 ¼ kzt1 � hw1, 1, ŷ0ik1

� kzt1k1 þ jw1, 1jM0 � MZ þ jw1, 1jM0,

i.e. ðc1,w1, 0Þ
0ŷ1 is bounded in L1(�,F ,P;R2) by a number that does not depend on (z, �).

The 2� 2 matrix (c1, w1,0) is regular due to assumption (ii), hence, ŷ1 is L1-bounded.

By induction we conclude analogously for j4 1. g
This proposition applies directly to the exemplary polyhedral risk measures EL�,

AVaR�, �2, �3, and �4 as far as, say, �j¼ �5 0.5 for j¼ 1, . . . , J; cf. Tables 2 and 3.

Moreover, uniform level-boundedness of risk measure �1 is guaranteed, too, since its

level-sets can be understood as a Cartesian product of level-sets of AVaR�j .

Example 4.3 Of course, since Proposition 4.2 appears rather technical and for all the

examples from Section 2 the level-sets are L1-bounded, the question arises, whether there

exist polyhedral risk measures on L1 satisfying complete recourse and dual feasibility that

have unbounded level-sets. The answer can be given directly: Consider the infimum

representation of the Average Value-at-Risk in Example 2.1, i.e. the right-hand side of (5).

Set �¼ 1 (though, typically, �5 1 is assumed since it is known that AVaR1¼�E).

The resulting minimization problem still satisfies complete recourse and dual feasibility

but neither condition (iv) nor (iv0) of Proposition 4.2 hold. For z
 0, formula (5) reveals

Table 2. Feasible sets of the dual representations (7) for the exemplary polyhedral risk measures.

Riskm. D�,0 D�,j (j¼ 1, . . . , J� 1) D�,J

AVaR� { 1 } 0,
1

�

� �

EL� sign(�)�Rþ [0, 1]

�1
1

J
, . . . ,

1

J

� 	� �
u 2 R

J : 0 � uj, uj �
1

J�j

� �
u 2 R

J : uJ 2 0,
1

J�J

� �� �

�2

n
u2R

J :
X

uj¼ 1
o

u 2 R
J : 0 � uj, uj �

1

J�j

� �
u 2 R

J : uJ 2 0,
1

J�J

� �� �

�3

n
u2R

J :
X

uj¼ 1
n

u 2 R
J : 0 � uj, uj þ ujþ1 �

1

J�j

� �
u 2 R

J : uJ 2 0,
1

J�J

� �� �

�4 u 2 R
J : u1 ¼

1

J

� �
u 2 R

J : uj ¼ ujþ1, uj �
1

J�j

� �
u 2 R

J : uJ 2 0,
1

J�J

� �� �
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that the y0 component of the solution set is given by �0(S�(0, �))¼R�, i.e. it is unbounded

in R. Hence, S�(0, �) and thus l�,"(0, �) are unbounded in L1(�,F ,P;R3). We conclude

that complete recourse and dual feasibility are not sufficient conditions for bounded

level-sets.

Example 4.4 Regrettably, Proposition 4.2 does not apply to the value of perfect

information based risk measure (6) from [14,15] (cf. Example 2.4), because kj 6¼ 2,

i.e. condition (i) is not satisfied. However, it has been observed in [15] that the risk measure

decomposes into functionals for each time period:

�5ðzÞ ¼
XJ
j¼1

E �sjztj þ ðsj�1 � sjÞAVaR�jðztj jF tj�1 Þ
� �

where �j¼ (sj�1� sj)/(qj� sj). This decomposition will simplify the analysis of the level-sets

drastically. In [15] it has been derived via the dual representation (8) of �5, but it can be

deduced directly from (6) by making use of the dynamic constraints ztj ¼ yj,2 � yj,3�

yj�1,2 þ yj�1,1:

�5ðzÞ þ
XJ
j¼1

sjE ztj
� �

¼ inf

�s0y0,1 þ E

XJ
j¼1

ð�sjyj,1 þ qjyj,3Þ � dyj,2

" #

þE

XJ
j¼1

sjðyj,2 � yj,3 � yj�1,2 þ yj�1,1Þ

" #
:

yj 2 Lpð�,F tj ,P; R
3
Þ ðj ¼ 0, . . . , JÞ, y0,2 ¼ y0,3 ¼ yJ,1 ¼ 0,

yj,2 � 0 a.s., yj,3 � 0 a.s., yj,2 � yj,3 ¼ yj�1,2 þ ztj � yj�1,1 a.s.

ðj ¼ 1, . . . , JÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

Table 3. Details to verify condition (iv0) of Proposition 4.2 for some polyhedral risk measures when
�j is set to �5 1 for j¼ 1, . . . , J.

Riskm.
TJ

j¼1 D�, j c0 w1,1
wj, j

ðj>1Þ
inf

u2\D�, j

P
ujwj, j

AVaR� 0,
1

�

� �
1 �1 �

1

�

�2 �J
j¼1 0,

1

J�

� �
1 �1 �1 �

1

�

�3 u 2 R
J
þ : uJ �

1

J�
, uj þ ujþ1 �

1

J�

� �
1 �1 �-1 �

1

2�

�4 u 2 R
J
þ : u1 ¼ � � � ¼ uJ �

1

J�

� �
1

J
�1 0 �

1

J�
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¼ inf

�y0,1ðs0 � s1Þ þ E

XJ�1
j¼1

ðsj � sjþ1Þðyj,2 � yj,1Þ þ
XJ
j¼1

ðqj � sjÞyj,3

" #
:

yj 2 Lpð�,F tj ,P; R
3
Þ ðj ¼ 0, . . . , JÞ, y0,2 ¼ y0,3 ¼ yJ,1 ¼ 0,

yj,2 � 0 a.s., yj,3 � 0 a.s., yj,2 � yj,3 ¼ yj�1,2 þ ztj � yj�1,1 a.s.

ðj ¼ 1, . . . , JÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

where it is set sJ :¼ d for convenience. Substituting ~yj,1 :¼ yj,2 � yj,1 yields immediately

�5ðzÞ ¼
XJ
j¼1

ðsj�1 � sjÞ�5,jðztjÞ � sjE½ztj �
� �

respectively

RðzÞ ¼
XJ
j¼1

ðsj�1 � sjÞ �5,jðztjÞ þ E½ztj �
� �

with

�5,jðztjÞ ¼ inf E ~yj�1,1 þ
qj � sj
sj�1 � sj

yj,3

� � ~yj�1,1 2 Lpð�,F tj�1 ,PÞ,

yj,2, yj,3 2 Lpð�,F tj ,PÞ,

yj,2 � 0 a.s., yj,3 � 0 a.s.,

yj,2 � yj,3 ¼ ztj þ ~yj�1,1 a.s.

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð24Þ

for j¼ 1, . . . , J. Interchanging minimization and integration can give the above

interpretation �5,jðztj Þ ¼ E½AVaR�jðztj jF tj�1 Þ� from [15].

PROPOSITION 4.5 Let Z � Z� such that the projection �1(Z) to the z component is

bounded in L1(�,F ,P;RJ). Then, for the risk measure �5 in (6), it holds that the union over

all "-level-sets
S
ðz, �Þ2Z l�5, "ðz, �Þ is bounded in L1(�,F ,P;R3(Jþ1)) for "4 0.

Proof We show that for "4 0 and for each j¼ 1, . . . , J the union
S
ðz, �Þ2Z l�5,j, "ðztj , �Þ of all

"-level-sets of �5,jðztj , �Þ, cf. (24), is bounded in L1(�,F ,P;R3). To this end, we first note

that the number M�5,j :¼ supfj�5,jðz, �Þj : ðz, �Þ 2 Zg is finite. This can easily be seen by

considering the dual of (24) given by

�5,jðz, �Þ ¼ sup �E½	jztj �

	j 2 Lpð�, �ð�tj Þ,PÞ,

0 � 	j �
qj � sj
sj�1 � sj

a.s., E½	jj�
tj�1 � ¼ 1 a.s.

�������
8><
>:

9>=
>;:

Now, let (z(n), �(n))2Z and yðnÞ ¼ ð ~y
ðnÞ
j�1,1, y

ðnÞ
j,2 , y

ðnÞ
j,3 Þ 2 l�5,j, "ðz

ðnÞ
tj , �

ðnÞÞ for n2N. Suppose there

is a subsequence ðyðnkÞÞ such that kð ~y
ðnkÞ
j�1,1Þ

�
k1!1. In this case, the following estimate

for the objective of (24) would hold:

F�5,j ðy
ðnkÞÞ ¼ E ~y

ðnkÞ
j�1,1 þ

1

�j
y
ðnkÞ
j,3

� �
� E 1

f ~y
ðnkÞ

j�1,1
�0g

~y
ðnkÞ
j�1,1 þ

1

�j
y
ðnkÞ
j,3

� 	� �
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¼ E 1
f ~y
ðnkÞ

j�1,1
�0g

~y
ðnkÞ
j�1,1 þ

1

�j
ðy
ðnkÞ
j,2 � ~y

ðnkÞ
j�1,1 � zðnkÞÞ

� 	� �

¼
1

�j
� 1

� 	
ð ~y
ðnkÞ
j�1,1Þ

�
��� ���

1
þ

1

�j
E 1

f ~y
ðnk Þ

j�1,1
�0g

y
ðnkÞ
j,2 � zðnkÞ


 �� �
!1:

The convergence to infinity holds because 1/�j4 1, y
ðnkÞ
j,2 � 0, and because the sequence (z(n))

is L1-bounded. However, F�5,jðy
ðnkÞÞ ! 1 is a contradiction to yðnÞ 2 l�5,j, "ðz

ðnÞ, �ðnÞÞ since the
sequence (�5,j(z

(n), �(n))) is bounded due to M�5,j <1. Hence, the sequence ðð ~y
ðnÞ
j�1,1Þ

�
Þ is L1-

bounded. Suppose there is a subsequence ðyðnkÞÞ such that kð ~y
ðnkÞ
j�1,1Þ

þ
k1!1. Obviously, this

would also imply F�5,j ðy
ðnkÞÞ ! 1 since y

ðnkÞ
j,3 � 0 and thus cause a contradiction. Hence, the

sequence ð ~y
ðnÞ
j�1,1Þ is L1-bounded. Also the existence of subsequences ðyðnkÞÞ such that

ky
ðnkÞ
j,2 k1!1 or ky

ðnkÞ
j,3 k1!1 would cause a contradiction in the same manner. Hence, the

overall sequence (y(n)) is L1-bounded. That is, the union over all level-sets of �5, j is indeed
bounded in L1(�,F ,P;R3). Finally, note that this boundedness for �5, j implies uniform

boundedness of the "-level-sets of (6) for �5, because the substitution (y1, y2) � (y2� y1, y2)

in Example 4.4 is bijective in R�Rþ. g

5. Conclusion for stability and scenario tree approximation

In [3], the class of polyhedral risk measures has been suggested. As discussed in Section 2,

replacing the expectation in (1) by a (multiperiod) polyhedral risk measure yields

problem (3). Problem (4), which is equivalent to (3), has an expectation objective and is of

a similar form (but not the same) as (1) with additional stochastic decision variables yj and

additional constraints. The stability theorem from [11], however, does not hold. Here,

we provided an equivalent stability theorem (Theorem 3.2) for Problem (3). This result is

based on sensitivity analysis for polyhedral risk measures (Proposition 3.1).
Stability according to Theorem 3.2 involves so-called filtration distances which involve

the sets of "-optimal solutions (level-sets) of the underlying problem. In order to make use

of Theorem 3.2 in the context of scenario tree approximation, it turns out to be necessary

to have these level-sets bounded; cf. Remark 1 in Section 3, see also [9]. However,

though in many application the original decision variables xt can be assumed to be

bounded from the outset, the feasible sets of the additional yj variables arising from the

polyhedral risk measures are inherently unbounded. For this reason, criteria for the

boundedness of the yj components of the level-sets are derived in Section 4; in particular,

it has been detected that boundedness is guaranteed for all the instances of the class

of polyhedral risk measures from [3,15], if the integrability number p of the arguments of

the risk measure is set to 1.
As in [11], Theorem 3.2 makes several restrictions for the integrability number r of the

stochastic input process �. At first glance there seem to be more degrees of freedom for r

than in [11] since, theoretically, p may be chosen arbitrarily. But, as mentioned above,

in the context of scenario approximation p¼ 1 is the only choice. Then, however,

the situation is the same as in [11].
To conclude, by means of the present paper the results from [9,11] apply to Problem (3)

where E in (1) is replaced by a polyhedral risk measure from [3]. In particular, the same

scenario approximation techniques can be used as soon as the criteria for the boundedness

of the level-sets for the polyhedral risk measure are satisfied.

316 A. Eichhorn and W. Römisch
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Notes

[1] We adopt the notation of [14,15] to the notation of ployhedral risk measures (2).
To this end, the original identifies t, at, Kt, Mt, Lt and ct form [14,15] have been replaced by j,
yj�1,1, yj,2, yj,3, ztj and st�1, respectively.

[2] In the proof of [11, Theorem 2.1]
the term ð1þ j �x��1jÞ occurs additionally in the first conditional expectation on the right-hand
side of (18) if the technology matrices are not random. However, due to (A3), we have that B is
bounded in L1 in this case. Hence, since �x 2 l"ðFð�, :ÞÞ � B , j �x��1j can be estimated by k �x��1k1
and we assume the latter norm to be integrated in the constant lt.

[3] Of course, if bt are non-random, both sides of the above estimate are zero anyway, but the same
argument will be used again below where this is not the case.
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21st Century, G. Szegö, ed., Wiley, Chichester, UK, 2004, pp. 249–269.
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