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CONVERGENCE OF APPROXIMATE SOLUTIONS
OF NONLINEAR RANDOM OPERATOR EQUATIONS
WITH NON-UNIQUE SOLUTIONS

Heinz W. Engl
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Johannes-Kepler-Universitdt
A-4040 Linz

Austria

and

Werner Rémisch ¥

Sektion Mathematik
Humboldt-Universitédt
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ABSTRACT

Let T(w,x) = y(w) be a nonlinear random operator equation with not
necessarily unique solution. For this and similar equations, we
prove results about convergence of solutions of suitable approxi-
mate problems Tn (w,x) = Y, (w) to solutions of the original

equations. We do this for rather general notions of convergence
for random variables. Concepts like consistency, stability, and
compactness in sets of measurable functions are Iintroduced and
used. For all assumptions that are needed in the general theory,
sufficient conditions are given with respect to convergence in
probability and almost-sure convergence.

As a specific method for constructing approximate equations we
discuss "discretization schemes", where the underlying probability
space is discretized.

Some results might be of interest also in different contexts;
these include criteria for almost-sure convergence of measurable
multifunctions and results about compactness with respect to
convergence in probability and almost-sure convergence.

This paper was written while this author was visiting the
Johannes-Kepler-Universitdt Linz.
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1.) INTRODUCTION AND PRELIMINARIES

In this paper we want to give a general theory for convergence of
solutions of approximations to random operator eguations to
solutions of the original equation, which is not assumed to be
unigquely solvable. For this general theory, we do not fix the
notion of convergence we use. Later we illustrate our abstract
results for convergence in probability, almost-sure and almost
uniform convergence.

This introductory section contains basic material concerning random
operator eguations, measurable multifunctions, and the abstract
notion of convergence we use.

We now fix the terminology and notation for this paper.

Throughout the paper, let (Q,A,P) be a complete probability space
and X,Y be Polish spaces; the metrics in X and Y will, though
different, both be denoted by d. By P(X) we denote the set of all
non-empty subsets of X, by 2X the set of all non-empty closed
subsets of X. As usual, B(X) denotes the Borel-o-algebra on X,
i.e., the o-algebra generated by the open sets; the product of the
a-algebras A and B(X), i.e., the c-algebra generated by

{AxB/a ¢ A, B ¢ B(Xx)} will be denoted by AxB(X).

A "(closed-valued) multifunction from §! into X" is a function

from @ into P(X) (2X, respectively); the "graph" of a multifunction
Cis Gr C: = {(w,x)/w € Q, x € C(w)}. A multifunction C is said to
be "weakly measurable' iff for all open B < X,

{we Q/C(w) n B2 @} ¢ A; we call C "measurable' iff Gr C <Ax B(x).
This latter property is usually referred to as "Gr-measurable’.

A survey about properties of measurable multifunctions is given in

[32]3, where the following simple facts can be found:

Proposition !.1.: Let C be a multifunction from O into X.

a) If C is measurable, then C is weakly measurable. If C is closed-

valued, the converse holds.

b) C is weakly measurable if and only if for all x € X, the real-
valued function w + d(x,C(w)): = inf {d(x,z)/z ¢ C(w)} is

measurable, where d denotes the metric on X.
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As usual, we say that a property depending on w € Q holdsg "almost
surely (a.s.)" if there is a set N ¢ A with P(N) = O such that the
property holds for all w € Q@ \ N. For a multifunction C from §
into X, we will denote the set of all random variables which are

a.s. selectors of C by S(C), i.e.
(1.1) S(C): = {x: 9 » X/x measurable, x(w) € C(w) a.s.}.

For the case that C(w) = X for all w € Q, S(C) equals the set of

all X-valued random variables, so that the notation
(1.2) S(x): = {x: Q > X/x measurable}

1s consistent. Results that state when S(C) # ¢ are called "measur-
able selection theorems"; see [32] and [18] for a variety of such
theorems. Note that in our definition of S(C), the "exceptional sets'
where x(w) ¢ C(w) need not hold may be different for each x ¢ S(C).
Since (because of the completeness of (Q,A,P)) we can redefine a
measurable function on () arbitrarily on a set of measure O without
destroying measurability, for each x ¢ S(C) there exists a measur-
able x: O + X such that X(w) € C(w) for all w ¢ Q. Thus, the
exceptional sets where elements of S(C) need not be selectors, which
give us more flexibility later, do not cause problems.

Measurable multifunctions will serve as domains for the operators
that appear in our random equations, which we will call 'random

operators on stochastic domains”:

Definition 1.2: Let C be a multifunction from § into X.

T: Gr € - Y will be called "random operator with stochastic
domain C" if C is weakly measurable and for all open D g Y and all
X ¢ X,
{we O/x ¢ Clw), T(w,x) ¢ D} ¢ A,
T: Gr C » Y will be called "AxB(X)-measurable’ if for all B ¢ B(Y)

T—J(B): = {(w,x) ¢ Gr C/T(w,x) e B} ¢ AxB(X).

’

Note that if T: Gr C ~ Y is AxB(x)-measurable then the multi-
function C is measurable and T is a random operator with stochastic
domain C in the sense of Definition 1.2. The two concepts defined

in Definition 1.2 are equivalent if C is separable (see [8] for
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this concept, which we do not need here) and T is continuous (see
below). These statements can be found e.g. in [25].

The following observation, that will frequently be needed below,

is obvious: If T: Gr C > Y is AxB (x)-measurable, then the mapping
w =+ T(w,x(w)) is measurable for all measurable x: § ~ X with

x(w) ¢ C(w) for all y ¢ Q.

An operator T: Gr C » Y will be called "linear, continuous, differ-
entiable, ..." if for all w e 9, T(w,.) : C(w) » Y has the corres-

ponding property.

A "random operator eguation" iIs an eguation of the form
(1.3) Tlw,x) = ylw),

where T: Gr C -~ Y is a random operator with stochastic domain C

and y ¢ S(Y). In (2.14), a formally (but not conceptually) more
general equation will also be called "random operator equation";

the terms "wide-sense solution" and "random solution" to be defined
now will also be used there.

Any function x: Q - X such that x(y) € C(w) a.s. and T(w,x(w))=y(w)
a.s. is called a "wide-sense solution" of (1.3); a "random solution"
is a wide-sense solution which is an element of S(C). The two ex-
ceptional sets appearing in this definition can be combined, so that
a measurable function x: Q - X is a random solution of (1.3) iff
there exists a set N ¢ A with P(N) = O such that for all w ¢ Q\W,
x{w) ¢ C(w) and T(w,x(w)) = y(w). We emphasize this, since through-

out the paper we want to be careful in treating exceptional sets.

In recent years, a number of authors have obtained sufficient con-
ditions for the existence of random solutions of random operator
equations. E.g., see [21], [22], [10], [11] and the references
quoted there.

As mentioned above, we will study the gquestion of convergence of
random solutions of random equations approximating (1.3) to a
random solution of (1.3). We want to keep our results as general
as possible in order to include different modes of convergence.

For this reason, we formulate those concepts and results where
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this is possible not for special types of convergence, but for a
general "convergence'" fulfilling various axioms, which are chosen
in such a way that they are fulfilled for the special modes of
convergence we have in mind. As a guideline for the concept of
convergence we use we take the fundamental paper [3o0].

However, the concepts of that paper have to be adapted to our
situation, where we have to deal with random variables. As we will
see below, the conditions of [30] are not fulfilled for the im-~

portant concept of almost-sure convergence of random variables.

Let S(X)'w denote the set of all seguences in S(X) and oy be a
multifunction from a subset D(pX) of S(X)JV to S(X). The following

properties that 0, may or may not have will be of interest:

If (xn) = (x,X,%X,...) With x ¢ S(X) is a constant
(1.4)

sequence, then (xn) € D(px) and X € px((xn)).

If (x) ¢ D(ox) and x € pX((Xn)) and

g
(x ) € Dloy) and x € py ((x, ).

(1.5) { (x_ ) is a subsequence of (xn), then
|
L Tk k

’
Let K,M be disjoint infinite subsets of IN with
KuMs=1x, (x), c k€ Dlpy), (xm)m emE Dlp ).

(1.6) < x € S(X) be such that x € pX((xk)} n px((xm)); for all
ne W, let

x ifneK
~ “n
*nt T x ifneM
n
\Then (xn) € D(pX) and x € pX((in)).
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4
For any sequence (xn) € S(X)Jv and x ¢ S(X) we have:

(Xn) € D(ox) and x ¢ px((xn)) 1ff each subseguence
(1.7) % (x_ } of (x_) has a subsequence (x_ ) such that
n n n
k k,
i
(x, )} eD(p,) and x ¢ px(xnk J.

k ,
i 1

(

For every sequence (xn) € D(px), X ¢ pX((xn)) and

X € S(X) we have: X ¢ o ((x_)) if and only if x = X a.s.;
(1.8) xn
furthermore, if (}n) € S(X)]f is such that for all ne¢ W,

kxn = X, a.s., then (xn) € D(px) and x € px((xn)).

Definition 1.3: A multifunction Py from D(px) c S(X)Jv to S(X)

will be called a "convergence (on S(X))" if it has the properties
(1.4), (1.5), (1.6}, and (1.8). A sequence in D(pX) will be called
"px-convergent", any element of pX((Xn)) will be called a "px-limit"
of (xn).

Of course the symbolism used so far is Inconvenient, so that we
write

”n -— P g "
(1.9) X = py 1im X, for x ¢ px((xn)),

neN

keeping in mind that the equality sign is (1.9) is only a useful
symbol and does not suggest unigueness of the pX-limit. with this
notation, the properties (1.4) - (1.8) can be thought of in the

following form:

(1.4") If (xn) = (x,%x,.-.), then Py ~ lim X, = X.
neXN
If o, - 1lim x_ = x and (x_ )} is a subsequence of
n n
(1.57) nelN k
(x_), then p, ~ lim x = x.
n X keI nk
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With K,M as in (1.6), let x = p_ - lim x and
X k
kekK
(1.6') X = pX - 1lim ;m' with (;n) defined as in (1.6),
meM
x=p, = lim ; .
X nelN n
X =0y - lim X if and only if every subsequence
nemw
(1.7") (x_ ) of (x_) has a subsequence (x ) such that
n n n
k k.
1
x=p, -~ 1lim x .
\ X ieWN nk.
1
If x = o, = lim x_, then ¥ = p_ - lim x. Iff
neN nelN

(1.8") X = X a.s.; furthermore, if (;n) is such that for all

ne N, x =x_a.s., then x =p_ - lim x_.
n n
nem

We note that (1.4), (1.5), and (1.7) are analogous to the con=-
ditions (LO), (L1), and (L2), respectively, used by Stummel in [30]
to describe the concept of discrete convergence; our condition
(1.6) is weaker than (1.7) and is chosen instead of (1.6) so as
not to exclude almost-sure convergence (see below). Finally, (1.8)
is a natural condition if one has modes of convergence for random
variables in mind; however, (1.8) rules out convergence in distri-

bution (see section 5).

Example 1.4: Let (x_) < S(X)T, x ¢ S(X). We recall the defi-

nitions of the basic modes of convergence. Let d be the metric

on X. (xn) converges to x

a) "almost surely" ("a.s.- lim X, = x") Iff there is an N ¢ A
nelN

with P(N)=0 such that for all w ¢ S\IN, lim d(xn(w), x{w)) = O.
110
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b) "almost uniformly" ("a.u. - lim x,_ = x") iff for every ¢ > O
nedN

there exists a_ e A such that P(Q\Ae) < ¢ and

1im d(xn(.), x(.)) = O uniformly on A .
N €

¢) "in probability" ("P - lim x_ = x") iff for every ¢ > O we have
neN
lim P({w e Q/d(x (w), x(w)) 2 €}) = O.
n->x

If X is a subset of a separable Banach space, we can define for

p =1 ”(xn) converges in p-th mean to x" ("IF - lim x = x")
nelv.

lim S lx, (w) - xw)|® d pw) = o.

n>w

Note that by Egoroff's Theorem (see [33] for a proof for random
variables with values in Polish spaces) almost uniform and almost

sure convergence are equivalent. If x = a.s. - lim xn, then
nelN

x =P - 1lim x_ ([33]); conversely, if x = P -~ lim x_, then
nelN nelN

there is a subsequence (xn ) of (xn) with x= a.s.-1im X, ([77).
k kel 'k

We even have x = P ~ lim x if and only if every subsequence
nem
(x_ ) of (x_) has a subsequence (x ) such that x = a.s.-1im x
n n n , n
k ki ielN ki

(e.g. [2], applied to the real-valued function d(x(.), Xn(')))'

This result shows that almost-sure convergence does not have the
property (1.7), since otherwise convergence in probability would
imply almost-sure convergence, which is well-known not to be true.
For this reason, we replaced (1.7) by the weaker condition (1.6)
in Definition !.3. It follows from well-known properties of the
modes of convergence considered here (see [33], [6]) that almost-
sure convergence, almost uniform convergence, convergence in pro-

bability, and convergence in p-th mean fulfill the requirements
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of Definition 1.3 and can therefore be taken as examples in those
of our results which will involve a convergence as in Definition
1.3. Convergence in probability and in p-th mean also have the

property (1.7).

Definition 1.5: Let fx and SX be convergences on S(X). % will be

called "stronger'" than SX ("EX < pX”) i1f for all sequences

(Xn) € D(pX) and all x ¢ pX((xn)) we have (Xn) € D(EX) and

x e o,((x)).

In other words, EX <0y if x = p, - lim X implies x =5X-lim X
nelN N>

E.g., almost-sure convergence is stronger than convergence in
probability.

We refer to section 5 for a brief discussion of a mode of conver-
gence that has not been considered in Example 1.4, namely conver-

gence in distribution.

2.) THE GENERAL CONCEPT FOR THE APPROXIMATION OF SOLUTIONS

OF RANDOM OPERATOR EQUATIONS

The aim of this section is to develop a general concept for the
approximation of solutions of random operator equations with not
necessarily almost-surely unique solutions. For deterministic
equations, such concepts have been developed by Anselone and
Ansorge [1], Stummel [30] and Vainikko [31]. we will use Stummel's
approach. Since we want to approximate random solutions of random
equations with respect to different modes of convergence, we will
formulate our definitions and results in spaces of measurable
functions equipped with convergences in the sense of Definition
1.3, where we will fregquently use the more suggestive notation of

(1.9).
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We emphasize that by working a priori in spaces of random
variables, all solutions of random equations involved will auto-
matically be random solutions. This seems to be more natural than
to use deterministic results for each w ¢ Q and to try to prove
the measurability of the resulting approximate soclutions, which
may or may not work; especially, this will generally not work if
we have to pick subsequences (as it will frequently be necessary
below): If we do that by some deterministic compactness argument
for each w ¢ , there will be no way that we can pick the same
subsequence for all w ¢ Q. Thus, if we use compactness arguments,
we have to use them directly in spaces of measurable functions.
This 1s a major reason for our working in spaces of random
variables with a convergence.

A recent survey about the approximate solution of random integral
equations can be found in the paper [5], which contains most of
the references mentioned in this paragraph. Random variants of
iterative methods for fixed point problems involving operators
that fulfill contraction conditions were given first in [3],[17],
[81. In [5] and [23] results of this type are used for approxi-
mating solutions of other random equations. Approximation methods
for obtaining (least-sgquares) solutions for linear operator
equations in Hilbert space were discussed in [19] and [12], where
the latter paper specializes in projection methods. The paper
[25] contains a general concept based on Stummel's approach for
the approximate solution of random eguations, but covers only the
case of almost~-surely uniquely solvable equations and of a.s.-
convergence. In [26] other modes of convergence are allowed, but
since an "inverse stability" condition is used there, only the
case of (locally) unigquely solvable equations can be treated
(c£f.[30, p. 291]).

The aim of this section is to develop the concepts of [257,[26]
along the lines of [30] in such a way that non-uniquely solvable
equations involving random operators on stochastic domains can

‘be treated. By using a suitable compactness condition for random
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operators we can prove convergence results for solution sets of
random equations. Thus we need a definition for convergence of
sets of random variables (in the sense of Kuratowski).

Throughout this section let Py and Py be convergences (in the

sense of Definition 1.3) on S(X) and S(Y), respectively.

Definition 2.1: Let (Zn) be a segquence of nonempty subsets of S(X).

a) oy - Liminf Zn: = u Dx((Xn))/ where
n€N (xn)é A

n
A: = {(xn) e S(x)° / x €2, for all n ¢ W }.
b) p., - Limsup Z_: = vp ((x,)), where
X n X k
neN (xk)e B
B: ={(xk) € S(X)N / there are n4 < ng < nz < ... such that

€ Z_ for all k € IV }.
Ay

c) (Zn) is called "px—com/ergent to Z € S(X)" iff Oy Limsup Zn=
nelN
= p,, - Liminf Zn = Z. We then write Z = Py ~ Lim Z_.
nelN nev

d) (Zn) is called "pX-compact" 1ff for all (xk)e S(X)N with

X, € Zn for all k ¢ N, where nqy < nz < na < .... are

k k

arbitrary integers, we have Py = Limsup {xk} z P
kel

Remark 2.2: First we try to explain Definition 2.1. An x ¢ S5(X)

is in Py Liminf Z_iff there is a segquence (xn) with
neiN
x=p, - lim x andxnsznforallne.w.
neN

An x € §(X) is in px -~ Limsup Zn iff there is a subsequence
nelN
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(Z ) of (Zn) such that x = DX - 1im xn where Xn € Zn
g ke Pk k k

for all k ¢ IN is suitably chosen. Thus, the inclusion

(2.1) OX - Liminf Zn < p_ - Limsup 2
neIN neN

is obvious.

The definition of OX-compactness of (Zn) means the following:

If (Zn ) 1s a subseguence of (Zn) and (xk) € S(X)ﬂv is such
k

that * € Zn for all k ¢ IN, then there is a subsequence

k

(in) of (xk) which is DX-convergent in S(X).

If DX is another convergence on S(X) with EX < OX, then it

follows directly from the Definitions 1.5 and 2.1, that

P - Liminf Z_ ¢ P - Liminf 2 and
X n X n

nelN neN
OX - Limsup Zn = p. - Limsup 2
neN nelN

If moreover every P - convergent sequence contains a subsequence

X

that is DX - convergent to the same (set of) limits, we have

p, - Limsup z = EX - Limsup z . Thus, the following holds in
neIN n nemw
this case:

If (Zn)ls pX—convergent with z::pX - Lim zn’ then (Zn) is also
neN
x* Px 3

Ex—convergent and Z = p_, - Lim 2 . Finally, for such p

X
nev

sequence (Zn) is px-compact if and only if it is Ex—compact. An



Downloaded by [Humboldt-Universit& auml;t zu Berlin Universit&auml;tshibliothek] at 11:50 14 October 2014

NONLINEAR RANDOM OPERATOR EQUATIONS 251

important example where these conditions on pX, EX are fulfilled
are p,: = a.s.-convergence, EX: = convergence in probability (see

Example 1.4). Thus, (Zn) is a.s.-compact iff it is P-compact;

a.s.- Limsup Zn = P- Limsup Zn’ and if (Zn) is a.s.-convergent,
new nely

then it Is P~convergent to the same limit set.

Now, let C, Cn (n € IN) be multifunctions from §2 into X and
T:Gr C > Y, T :Gr C > Y (neNN)be AxB (X)-measurable. By (1.1),

T(w,x(w) need not be defined for all w ¢ Q, if x € S(C). By
T(.,x(.)) we will denote any z € S(Y) such that z = T(.,}(.))a.s.,

where X = x a.s. and x(w) ¢ C(w) for all w ¢ Q; T, (sx (.)) with
X, € S(Cn) is defined analogously. Thus, T(.,x(.)) is a set of

random variables any two of which are almost surely equal. If we

use expressions like "p_, - 1im T (.,xn(.)) = T(.,x(.))" we mean
neN
"o = 1lim Z_ = 2" (see(1.9)), where zn and z represent Tn(.,xn(.}}

nelN
and T(.,x(.)), respectively, in the sense described above.
Because of (1.8), this definition is independent of the special

choices of (Zn) and z .

Definition 2.3:

a)‘(Tn) will be called "(pX,py)-convergent to T" iff for all
(x) ¢ s(x)" with x e S(C ) for all n ¢ N and all x ¢ S(C)

with x = p, - lim x_ we have T(.,x(.)) = p,~1im T _(.,x_(.)).
Y n n
nelN nelN

b) T and (Tn) are called "(px, py)a:onsistent” iff for all xeS(C)
there is a sequence (xn) with X, € S(Cn) for all n ¢ IN such

that x = p_, - lim x and T(.,x(.}) = Py ~ lim Tn("xn('))'
neIlN nelV

c) {Tn) is called ”{pX,pY)-stable" 1ff for all p,-convergent
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sequences (xn), (xn) with xn € S(Cn) and xn € S(Cn) for all

n ¢ N we have: If (Tn(.,xn(.))) is pY-convergent and

QX - 1im xn = oy - lim X, (i.e., px((xn)) = px((xn))), then
neIN nelN

(Tn(.,xn(.))) is py-convergent and py—ilgkfh(.,xn(.)) =
€

=p, = 1im T (.,x_(.)).
Y nelN n n

d) (Tn) is called "(px, py)—inversely stable"” iff for all
sequences (Xn)’ (xn) with X, € S(Cn) and xn < S(Cn) for all
n ¢ IN we have: If (xn) is pX-convergent and Tn(.,xn(.)) and
Tn(.,§n(.)) are py—convergent to the same limit (set), then

(xn) is px-convergent and Py ~ lim X, T 0y " lim X .
neIN neN

The properties defined in Definition 2.3 are straightforward

adaptations of corresponding concepts in [30] to our situation.

Example 2.4: For simplicity, we assume here Cn = C for all n ¢ IV.

a) If 1lim Tn(w,x) = T(w,x) for all x ¢ C(w) holds almost surely,
1>

then T and (Tn) are (pX,a.s.)-consistent for any convergence

py on S(X). To see this, let x € S(C) be arbitrary and let

xX:=x for all n ¢ IN. By assumption, outside a set of measure

0, lim Tn(w,xn(w)) = T(w,x(w)), thus a.s.-1im T (.,xn(.)) =
n-w nelN

= T(.,x(.)). Obviously, ~lim xn = x. Obviously, under our

P
X
neIN

assumptions T and (Tn) are also (pX,P)-consistent. A generali-

zation for Py = a.s.-convergence will be given in Theorem 4.5.

+
b) Let h: @ x Ro + R be such that h@w,.) is continuous in t=0

a.s. and that the following holds almost surely:
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For all n ¢ IN and x,y € C(w), d(Tn(w,x), Tn(w,y)ﬁih(w,d(x,y)).
Then (Tn) is (a.s., a.s.)-stable., This follows easily from

the definition of stability and the conditions. Note that a

special case of such operators Tn are operators that fulfill

almost surely a Lipschitz- or HSlder-condition uniformly in n.

These two results are of some Importance since they allow to
check consistency and stability "realization-wise'": We do not
have to check the conditions of the definitions for random vari-
ables x ¢ S(C), but if suffices to check conditions for fixed

elements x ¢ C(w) for almost all w ¢ Q.

As one would expect, the following result links stability,

consistency, and convergence as in the deterministic case:

Proposition 2.5: Let T and (Tn) be (px,py)—consistent. Then
(Tn) is (pX, py)—convergext to T if and only if (Tn) is (px,py)—

stable.

Proof: follows immediately from Definition 2.3.

Remark 2.6: This result can be used in the following way:

Let for all n ¢ N, yn ¢ S(Y), and assume that (yn) is pY—conver—
gent to y. Let L : = {Xn € S(Cn) / Tn("xn(')) = yn}’

L: = {x ¢ 8(C) / T(.,x(.)) =y} and assume that for all n ¢ IN,

Ln #z @. If T and (Tn) are (px,pY)—con51stent and (Tn) is

- ~ Limi L.
(ox,py) stable, then p,~ Liminf L <
neiN
However, we cannot conclude from these assumptions that
p. = Liminf Ln z @. In other words: pX—limits of solutions of
neIN

the "approximate equations"” Tn(°’xn(')) =y, are solutions of the

"exact equation' T(.,x(.)) = y; however, the existence of such
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limits cannot be guaranteed at this moment. If we require inverse
stability, we can guarantee the existence of such limits, but by
requiring this, we Impose uniqueness on the solutions of the

exact equation:

Theorem 2.7: Let T and (Tn) be (pX,pY)—consistent and (Tn) be
(px,py)—inversely stable. Let (yn) € S(Y)Iv be py—convergent to

y, and xn (n ¢ IN) and x be random solutions of Tn(.,xn(.)) = yn

and T(.,x(.)) =y, respectively, which are assumed to exist.

Then x = Py ™ 1im X . If x is another random solution of
ne N

T(.,x(.)) =y, then x = x a.s.
Proof: follows easily from Definition 2.3; see also [26].

In section 4 we will give a sufficient condition for (a.s.,a.s.)=-
inverse stability.
To obtain similar convergence results for non-uniguely solvable

equations, we need the following concepts:

Definition 2.8:

a) (Tn) is called “pY—compact” 1ff for all (xn) € S(X)IV with
X, € S(Cn) for all n ¢ I, ({Tn(.,xn(.))}) is compact (in the

sense of Definition 2.1 d).

b) T and (Tn) are called "(pX,pY)-closed” 1ff for all

nq < ngz < ns < ... and seguences (xn )} with xn € S(Cn )

k k k
for all k € N we have: If x = p_ - lim X and
kel Tk

y = Py ~ lim Tn (.,xn (.)), then x ¢ S(C) and T(.,x(.))=y a.s.
kev k k

c) T and (Tn) are called "(pX,pY)-regular” Iff for all
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nqy <nz <nzg < ... ¢ W and all sequences (xn ) with
X

x € S(C_ ) for all k ¢ N we have: If y = p_~1im T_ (.,x_ (.)),
g e Y ke Pk Tk

then there exists an x e¢-S(C) with T(.,x(.)) = y a.s. and

x € p, ~ Limsup {x_ }.
X ke 2y

P [ £1 2.9: L = - Li -
roposition et S(C) Py im S(Cn) and (Tn) be (pX,py)
neIN :
convergent to T. Then we have:

a) T and (Tn) are (pX,pyj-closed.

b) 1f (S(Cn)) is px—compact, then (Tn) is py—compact.

Proof:

a) Let nq <ng <ns < ... € W, (x_) such that x € S(C_ )
% Tk Ay

for all k ¢ IN be arbitrary, but fixed, x = oy” 1lim xn ,
kel 'k

y=op, =~ lim Tn (.,x_ (.)); if one of these limits fails to
kem "k Tk

exists, nothing remains to be shown. We assume without loss of

generality that W\{n4, na, ns, ...} is infinite; this can be

achieved by picking a subsequence of (nk), which can be done

without changing the definitions of x and y because of (1.5).
By definition and our assumption on S(C), we have

x ¢ p, - Limsup S(C_) = $(C) = oy = Liminf g¢cC ). Thus,
nelN n nelN n

there exists a sequence (;n) with ;n € S(Cn) for all n e N

and x = Py ~ lim x_. Let
neN

X, ifne {nq, ny, Nz, ...}
X, otherwise.

Since {n4, nz, na, ...} and W\ {nq, nz, na, ...} are in-

finite, we can apply (1.6) and obtain
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(2.2) X = OX - ll@ xn.
neIN

Since for all n ¢ W, x, € S(Cn), and since (Tn) is (px,py)—
convergent to T, (2.2) implies

(2.3) T(.,x(.)) = p, = lim Tn(.,;(.)).
nelN

Because of (1.5) and the definition of (;n), (2.3) implies
(2.4) T(e,x(.)) = p, - 1lim T_(.,x_(.)).
Y kemw "k Tk
Together with (1.8), (2.4) implies
(2.5) y="T(.,x(.)) a.s.
Thus T and (Tn) are (pX,py)-closed.

Let ny < ng <na < ... € N, (x ) be such that x_ ¢ S(C_ )
n, ny ny

for all k € IN. It suffices to show that

(2.6) Py - Liz;yp {Tnk(-,xnk(-))} z Q.

Since (S(Cn)) is by assumption pX-compact, we have

(2.7) Py = Limsup {xn } = @.

keIN k
Thus, there is an infinite subset K of {n4, naz, nNa, ...}
(which, as in part a, we can choose such that IN \ K is in-

finite) and an x ¢ S(X) such that

(2.8) x=p = 1im x,_.
X keK k
As in part a, we conclude that x ¢ S(C) and construct a

sequence (;n) such that

(2.9) in € S(C ) for all n ¢ N
and
(2.10) X =p, - lim x

neN
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with
(2.11) % =x_ if n e K.
I n

Because of (2.9), we can conclude from the convergence of

(Tn) to T and from (2.1o) that

(2.12) T(.,x(.)) = p, ~ lim Tn(.,):(n(.)).
neIlN

As in part a, we obtain from (2.11) and (2.12) that

(2.13) T(.,x(.)) = Py ~ i:z}n{ Tk(.,xk(.)).

Thus, T(.,x(.)) € p_ - Limsup {T_(.,x_(.))},
Y n n
keIN k k

so that (2.6) holds.

Corollary 2.lo: Let S(C) = p, - Lim S(C ), T and (T ) be
X nelN n n

(px,py)-con51stent and (Tn) be (px,py)-stable. Then we have:
a) T and (Tn) are (px,py)—closed.

b) If (S(Cn)) is px—compact, then (Tn) is py—compact.

Proof: Follows from Propositions 2.5 and 2.9

O

The main result of this section, Theorem 2.11, will be a conver-
gence result for solutions of egquations involving operators T

and (Tn) that are closed and compact and right-hand sides that

are assumed to be regular in the sense of Definition 2.8.
Sufficient conditions for the assumptions on the operators were
already given in Propositions 2.9 and 2.lo (see also Example 2.4);
sufficient conditions for the regularity assumption will be given

in Remark 2.12.
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In addition to C, Cn' T, Tn’ let AxB (X)-measurable mappings
U: Gr C » Y and Un: Gr Cn >~ Y (n e IN) be given.

We consider the random operator equations

(2.14) T(w,x) = U(w,x)

and

(2.14 n) Tn(w,x) = Un(w,x)-

We define

(2.15) L: = {x € S(C)/T(.,x(.)) = U(.,x(.))}

and for all n ¢ IN

(2.15 n) L= {xn € S(Cn)/Tn(.,xn(.)) = Uh(.,xn(.))},

the sets of all random solutions of (2.14) and (2.14 n), respec-

tively. See the remarks preceding Definition 2.3 concerning the

notation. We view (2.14 n) as approximations to (2.14).

Theorem 2.11: Let L and Ln (n ¢ N) be as in (2.15) and (2.15 n),

respectively. Assume that U and (Un) are (pX,pY)—regular, that T
and (Tn) are (pX,pY)—closed and that (Tn) is pY-compact.

If for all n ¢ N

2.
(2.16) Ln z g
then
. - Li .
(2.17) g = oy imsup Ln c L

neIN

Proof: Let (xn) be such that

(2.18) x € L for all n e IN.
n n

By the compactness assumption, Py~ Limsup {Tn(.,xn(-))} z Q.
neiN

Let z ¢ Py - Limsup {Tn(.,xn(.))}. Then there is a subsequence
nemw

(x ) of (xn) with z = p_, =1im T (.,xn (.)) =

: o~ Lim U (.,x_ (.))

k kenw "k x kemw "k Tk
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because of (2.18). The regularity assumption now implies that

o, - Limsup {x_} # @.
X
keIN nk

Shmer-me@ {ﬁI}SDX—meW {%}ng—LMw@ L,
keIN k nelN ne N

this implies

(2.19) Py Limsup Ln z Q.
new

Now, let x € pX - Limsup Ln be arbitrary, but fixed. It suffices
nelN

to show that

(2.20) x ¢ L,

since together with (2.19), this implies (2.17).

By the choice of x, there are a seguence nq < Nz < ns < ... ¢ W

and a sequence (xk) with

(2.21) X, € Ln for all k ¢ IN
k
such that
(2.22) x =p - lim x,.
X kelv k

Let y € p, - Limsup {Tn (.,xk(.))} (which is non-empty because
kelN k

of the compactness assumption; note that (xk) is a subsequence
of some sequence of elements of Ln c S(Ch) because of (2.16)!).

Because of Definition 2.1 b, (1.5), and the closedness assumption
we have

(2.23) x € S(C) and T(.,x(.)) = y.

Because of (2.21) and the definition of y,

y € p, ~ Limsup {U_ (.,x,(.))}. By Definiticn 2.1 b and the
Y kev nk k

regularity assumption, this Iimplies the existence of a sequence
ky < kg <kz < ... € N and an X € S(C) such that
(2.2¢) U(.,x(.)) =y and x ¢ p, - Limsup {x, }.
Jemw 7
Because of (1.5), (2.22) and (2.24) imply that
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(2.25) X = X a.s.
This implies together with (2.23) and (2.24) that (2.20) holds.

Remark 2.12: We interpret Theorem 2.11 in the following way:

Under the conditions stated, there is a sequence of random solutions
of the "approximate problems" {(2.14 n) that has a px—convergent
subsequence; all limits of px-convergent (sub)sequences of random
solutions of the approximate problems are random solutions of the
"exact problem'" (2.14). As noted above, various sufficient condit-
ions for the assumptions on T and (Tn) in Theorem 2.11 were

already given above; other sufficient conditions (especially for

the compactness assumption) will be given in Section 4. The
regularity assumption on U and (Un) is fulfilled in two important

special cases: One is the case of "random fixed point problems'
(2.26) T(w,x) = x

and their approximations in the form

(2.26 n) Tn(w,x) = X.

Here, X =Y, U: Gr C > X and Un: Gr Cn + X are defined by

Uf{w,x): = x and Uh(w,x): = x, respectively. Obviously, U and (Un)
are (pX, pX)—regular for arbitrary convergences with Py < Pyt

e.g., U and (Un) are (P, a.s.)~regular. Because of the relation-
ship between a.s.-convergence and convergence in probability (see

Example 1.4), U and (Un) are also (a.s., P)-regular.

Another case where the regularity assumption is fulfilled is the
case of equations of the form (1.3) and their approximations by

equations of the form

(1.3 n) Tn(w,x) = yn(w)

under the following assumptions: y = Py lim Yy, (S(Cn)) is
nelN

pX—compact and Py Limsup S(Cn) S(C). Here U: Gr C »- Y and

neN

n

Un: Gr Cn + Y are defined by U(w,x): =y, Uh(w,x): = Y-
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From this the following results follow:

Corollary 2.13: Let y: Q »> Y, R Q@ >Y (n ¢ IN) be measurable,

y = pY - 1im yn, S(C) = pX - Lim S(Cn), (S(Cn)) be pX—compact,
nelN neiN

T and (Tn) be {px,oY)—conSJStent and (Tn) be (pX,pY)—stable.

Let L: = {x € S(C)/T(.,x(.)) = y} and for all n ¢ IV,
L : = {xn € S(Cn)/Tn(.,xn(.)) = yn} and assume that Ln % @ for
all n e N. Then @ # Py~ Limsup L, cti.

neIN

Proof: follows from Theorem 2.11, Corollary 2.1o, and Remark 2.12.

O

Corollary 2.14: Let X =Y, Py < EX be convergences on X,

S(C) = Py = ﬁizvS{c“)' (S(Cn)) be Py compact, T and (Tn) be

(oX,pX)-con51stent and(Tn) be (pX,pX)-stable.

Let L: = {x € §(C)/T(.,x(.)) = x} and for all n ¢ I,
L:= {Xn € S(Cn)/Tn(.,xn(.)) = xn} and assume that L = @ for
allne N. Then @ = Py = Limsup Ln c L.

nelN

The result holds also if pX denotes a.s.-convergence and EX
denotes convergence in probability.
Proof: follows from Theorem 2.11, Corollary 2.lo, and Remark 2.12.

0

Remark 2.15: In Theorem 2.11 and Corollaries 2.13 and 2.14,

there appears the condition ”Ln # @ for all n € W". This condition

has to be checked by applying the results about existence of random
solutions quoted in section 1. The conditions of Theorem 2.11 can
be modified in various ways. E.g., it can be seen from the proof

that the compactness of (Tn) has only been used to conclude that
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o, = Limsup {T (.,x (.))} = @, where x ¢ L , whereas from
V' kem ™k oy oy

Definition 2.8 a we could conclude this for Xn € S(Cn ), which
k k

is much more than we need, but all we can usually check. Thus,
the following variant of Theorem 2.11 can be proved analogously
to Theorem 2.11:
Let the assumptions of Theorem 2.11 with the exception of the
compactness of (Tn) be fulfilled; for each n ¢ IN, let @ =z ingLn.
Assume that for each segquence (xn) with X € Zn for each n ¢ N,
({Tn(.,xn(.))}) is py—compact. Then @ = oy = Limsup En c L.
nelN
This modified compactness may sometimes be easier to check, if
Zn is a set of solutions of (2.14 n) fulfilling additional
requirements like assuming only finitely many values (such
solutions will be considered in section 3 in connection with
"discretization schemes”); sufficient for such a modified com-

pactness condition will be that ({Tn(.,xn(.))}) is py—compact
for all (xn) with Xn € Dn for all n ¢ IN, where Dn < S(Cn) is a
set characterized by the same additional regquirements as Zn and

is chosen in such a way that I =L nobD.
n n n

In general, it cannot be guaranteed that oy = Liminf L = @
nelN

in Theorem 2.11. However, in the case that (2.14) is a.s.-uniguely

solvable, the following result holds.

Theorem 2.16: Let the assumptions of Theorem 2.11 be fulfilled.
In addition, assume that for all x and % ¢ L, x = X a.s. and

that Oy fulfills (1.7). Then (Ln) is pX-convergent to L = @.

Proof: Because of Theorem 2.11 and (2.1), it suffices to show

that

(2.27) L ¢ px - Liminf Ln'
neN
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Let x € L and (x ) be such that x ¢ L for all n elN, (x ) be
n n n ny

an arbitrary subsequence of (xn). Using the compactness, the

closedness and the regularity assumptions, one shows similarly to

the proof of Thecrem 2.11 that (xn ) has a subseguence (xn )
k k

J
that is pX—convergent to an x ¢ L.

Since X = x a.s. by assumption, it follows from (1.7) that

Xx=p, - lim X This implies (2.27).
nelN

|

The Corollaries 2.13 and 2.14 can be complemented in an analogous

way.

3.) DISCRETIZATION SCHEMES FOR APPROXIMATING RANDOM OPERATOR

EQUATIONS

In section 2 we presented an approximation concept for random
operator eguations. Of course a central guestion is now how to
construct approximations of the form (2.14 n) to a given equation
of the form (2.14). We restrict ourselves to the more special
equations (1.3) and (1.3 n).

The approximations (1.3 n) should be such that the approximate
operators and right-hand sides are more easily computable than

the exact ones and that resulting approximate eguations are more
easily solvable. It seems to be a reasonable approach to construct
(1.3 n) in such a way that the underlying probability space (2,A,p)
is "discretized" to a finitely generated probability space; the
operator and right-hand side in (1.3 n) are then defined such that
they are constant ( in w) on each set of the finite generator.

The resulting problem is then a random equation on a finitely
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generated probability space, which can be thought of as a collect-
ion of finitely many deterministic problems. More precisely:
Let C be a multifunction from § into X, T: Gr C » Y be AXB(X)—

measurable, y: Gr C » Y measurable. Let n ¢ IN be arbitrary, but

fixed.
Let s, eV, Anl' cees g Ansn ¢ A be pairwise disjoint with
s
n
&’/Ani = Q and P(Ani) > O for all i ¢ {1, ... , sn}. By An we
i=1
denote the o-algebra on ) generated by {Anl’ cee s Ans }. For
n

each 1 ¢ {1, ... , sn}, let Cni be a non-empty subset of X,

T ,: C ,»Yand y . ¢ Y. Now, let C_ be the multifunction from
ni ni ni n

Q into X defined by

(3.1) Cn(w): =C

. ] A .
ni if w € ni’

yn: Q > Y be defined by

(3.2) yn(w): =Y. if w e a

and Tn: Gr Cn - Y be defined by

(3.3) Tn(m,x): = Tni(X) if w e Ani’ X € cni'
Th 1 ] A ] "di i ]
e collection ( n’ Cn’Tn’ yn)n c W is called a "discretization

scheme (for (1.3))".

Note that (Q, An’ P/, ) 1s a complete probability space and that

A

n
the generating sets Ani (i € {1,...,sn}) are precisely the atoms

of An'

If such a discretization scheme is given, we use

(1.3 n) Tn(w,x) = yn(w)

as approximation for (1.3), where Tn and yn are given by (3.3)

and (3.2), respectively. Note that (1.3 n) reduces to the S,
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deterministic equations

(3.4 1) Tni(x) =Y., if w e Ani (i € {1,...,sn}).

If all of the eguations (3.4 i) are solvable, then one can con-
struct a random solution of (1.3 n) in the following obvious way:

For i € {1,...,sn}, let X i € Cni be a solution of (3.4 i} and
let x: Q - X be defined by

(3.5) x(w}): = xni if w e Ani'

Then x solves (1.3 n) and x is An - B(X)-measurable and hence

also A -~ B(X)-measurable. However, note that not all random
solutions (with respect to A) of (1.3 n) need to be of the form

(3.5), i.e., constant on each Ani; a random solution of (1.3 n)
could jump between different solutions of (3.4 1) on Ani in a

measurable way. In this context we refer to Remark 2.15. Some-
times it may be easier to check e.g. a compactness condition

only for ({Tn(.,xn(.))}), where X, € Dn c S(Cn) and Dn consists
of all functions that are constant on each Ani' Then the modified

version of Theorem 2.11 outlined in Remark 2.15 has to be used,

yielding a result only about - Limsup L_, where L_ is the set
Px n n
nelIN

of solutions of (1.3 n) that are of the form (3.5). This is not
too bad, however, since the simple solutions of the form (3.5)
are the intrinsic reason for constructing discretization schemes
anyway!

Note that by construction of a discretization scheme, Tn (as
defined by (3.3)) is An x B(x)-measurable if for all

L v , 1 ~- B -

ie {1, ,sn}, Coi € B(x) and T is B(x) (Y)-measurable

(these are reasonable assumptions, which are fulfilled e.g. if

all Cni are closed or open and all Tni are continuous). This

follows from the fact that for each B ¢ B(Y), {(w,x) ¢ Gr C_/

s
n -1
Tn(w,x) e BY = \/ [An' x (cni n Tni (B))]. Under those

i=1 1
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assumptions, T, is (since An ¢ A) also Ax B/X)-measurable. Thus

the general measurability assumptions of section 2 are fulfilled

for such Tn' It is easy to see that even without any assumptions
about the Cni and Tni’ Tn (as defined by 3.3) is always a random
operator with stochastic domain Cn in the sense of Definition 1.2

with respect to (Q, An) and also with respect to (9, A).

The idea of a discretization scheme goes back to [27] and was
developed further in [25], [26]. In [27] and [25] a method for
constructing approximation schemes using conditional expectations
is outlined. We do not pursue this line of research further here.
Instead, we address the gquestion under which conditions a dis-
cretization scheme can be constructed in such a way that properties
of the random operator to be approximated like continuity or
compactness are preserved and that the approximate operators have
properties that were relevant in section 2 like consistency and

stability. By C(X,Y) we denote {f: X > Y / f continuous}.

Theorem 3.1: Let h: X x ﬂ?z -~ R be such that for all x ¢ X,
h(x,.) is continuous in O and h(x,0) = 0, and K be a non-empty
subset of C(X,Y). Let T: Q X X » Y be a random operator such thatthe

following holds for all y e Q:

(3.6) T(w,-) € K
and
(3.7) d(T(w,x), T(w,2)) < h(x, d(x,z)) for all x,z ¢ X.

Then the following holds for each n ¢ IN:

There are s, € IN, pairwise disjoint sets AnJ"""Ans ¢ A with
n
Sn
\~/ Ani = Q and operators Tnl""'Tns ¢ K such that with
i=1 n
Tn:SZxX->Y
(3.8)

(w,x) - Tni(X) if w e Ani
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we have: Tn is a random operator and (3.7) holds with Tn instead
of T. Furthermore, for all (w,x) ¢ Q x X we have

(3.9) lim T (w,x) = T(w,x).
nreo O

T and (Tn) are (px,py)-consistent, where pX is any convergence on
S(X) and Oy denotes a.s.-convergence or convergence in probability.

, = + , . ) -
If there exists h: Ro +» IR continuous in O with h(0) = O such

that h(x,t) < E(t) for all x ¢ X, then (Tn) is also (a.s., a.s.)-

stable, and (Tn) is (a.s., a&.s.)~-convergent to T.

Proof: Let Z a countable dense subset of the Polish space X.

For all z ¢ Z let iz: C(X,Y) - Y be defined by iz(f): = f(z).

Since Z is dense, {iz/z € Z} separates the points of C(X,Y)
(by continuity!). Let T be the weak topology on C(X,Y) generated
by {iz/z ¢ Z}, i.e., the coarsest topology on C(X,Y) such that

all iz are continuous. It is well-known that (C(X,Y),T) is

homeomorphic to a subspace of XY (equipped with the product
zeZ

topology} and hence metrizable and separable. Let
(3.10) B: = {f e K/d(£(x),£(z)) < h(x,d(x,2)) for all x,zexX}.

vy ,
If we equip 1“5 with the subspace topology T n K, K becomes a metriz-
o
able separable (and hence second countable) space. Let B be the
n n
g-algebra on ¥ generated by the sets of T n K and T: Q -+ C(X,Y)

be defined by %(w): = T(w,.). Because of our assumptions,
ny N

(3.11) () < K.

We show that

(3.12) * is A- B -measurable.

To this end, let C € T n %; then C has the form C = O n % with
0 ¢ T. Since (C(X,Y),T) is second countable and hence Lindeléf,
0 is a countable union of finite intersections of sets of the

form iz_l(oz) with z ¢ Z, Oz open in Y. Thus, in order to show
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that %ﬁl(C) ¢ A (which proves (3.11)) it suffices to show that

for all z ¢ Z and open Oz c Y,
% , =1
(3.13) {we /T(w) € i (0,0} € A.

Let z € Z, Oz ¢ Y be open. By definition of % and since T is a
, =1
random operator, {w ¢ a/tlw) e i, (Oz)} = {w e Q/T(w;Z)EOZ}EA-,

so that (3.13) and thus (3.12) holds.
We now apply Criterion 5 of [14] to the measurable mapping ¥
from Q into the separable metric space ¥ and conclude:

For each n ¢ IN, there is an A - ¥ -measurable map %n: 0> K
such that %H(Q) is finite and such that for all g ¢ Q, (%n(w))
converges to %(w) with respect to the topology T n .

Let n ¢ IN be fixed, 5, be the number of elements of

n ~ .
Tn(Q) = {Tnl""’Tnsn} ¢ K. For i ¢ {1,...,sn}, let

y
(3.14) Ani: = {w e Q/Tn(m) = Tni}'

Because of (3.12), we have Ani e A for all i ¢ {1,...,sn}.

Let T: QX X > ¥ be as in (3.8); then T_(u,.) = %n(w)

a
and thus Tn(w,.) € K for all w ¢ Q. Because of (3.10), this implies

that Tn(w,.) € K and that (3.7) holds with Tn instead of T.

Let x € X and O ¢ ¥ be open, I  : = {i e {1,...,s }/T .(x) ¢ O}.

x,0
Then {w € Q/T (w,x) € 0} = . \_/ a ;¢ A. Thus T is a random
ielI
x,0
operator.

, , n
Let w ¢ @ be arbitrary, but fixed. Since (Tn(w)) converges to

%(w) with respect to T n %, we have that for all z ¢ Z,

(i, ) > 1 (Bw)), i,

(3.15) (Tn(w,z)) + T(w,z) for all z cZ.
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Now, let also x ¢ X be arbitrary, but fixed. We show that (3.9)
holds. To this end, let ¢ > O be arbitrary. Since Z is dense, there
is (because of the properties of h) a z ¢ Z with

(3.16) h(z,d(x,z)) < £ ;

we fix such a z ¢ Z. Because of (3.15), there is an ng ¢ IN such

that for all n 2 ng

(3.17) d(Tn(w,Z), T(w,z)) <

w|m

holds. Since T and Tn fulfill (3.7), we obtain from (3.16) and
(3.17) that for all n 2 ng, d(Tn(w,x),T(w,x)) < d(Tn(w,x),Tn(w,z))+

+ d(Tn(w,Z)/T(w,z))+d(T(w,z),T(w,X))sh(X,d(X,Z))+% + h(x,d(x,z))<e.
Thus, (3.9) holds.

The consistency follows now from Example 2.4 a. Under the
additional assumption involving h, the stability follows from

Example 2.4 b, the convergence from Proposition 2.5.

0

Remark 3.2: This result says that under its conditions, a
consistent approximation by random operators defined via a
discretization sclizme always exists. Moreover,if each realization
of T has a cercain property (described by the set K) such as com-
pactnsss, contractivity or differentiability, the approximations

Tn share this property.

Note that Theorem 3.1 is only applicable to continuous random
operators (see (3.6)) for which in each point, the continuity is
uniform in w (see (3.7)). If the continuity is also uniform in
X (i.e., if the function h exists), then the approximation can be
guaranteed to be stable and hence convergent (with respect to
a.s.-convergence); this is especially the case for Lipschitzian
random operators with a Lipschitz constant independent of w.

In (3.14), there may be Ani with P(Ani) = 0; 1f we add those to
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one of the other sets in (3.14) with positive probability and

redefine the corresponding Tni in an obvious way, we can fulfill
the condition P(Ani) > 0 for 1 ¢ {1,...,sn} (with a smaller sn)

required in the definition of a discretization scheme; however,
in the statement of Theorem 3.1 "for all w ¢ Q" has to be re-
placed by "for almost all w ¢ Q" throughout.

By combining the construction of Theorem 3.1 with a finitely-
valued approximating sequence (yn) for y (more precisely: by
taking all intersections of the sets in (3.14) with the sets

where Y, is constant) the existence of a discretization scheme for

(1.3) can be asserted for the case that all T(w,.) are defined

on all of X.

Extensions to the case of stochastic domains should be possible.
However, since Theorem 3.1 (though its proof is in principle
constructive) does not give a concrete method for constructing a

discretization scheme, we do not pursue this any further.

we add in passing that frequently random operators T: § x X - Y

have the special form

(3.18) Tlw,x): = Dlz(w),x) (weg xeX,

where z 1is a random variable from (I into a separable metric space
Z and %: Z X X -+ Y is such that T(.,x) 1s continuous for all x ¢ X.
In this case, a result analogous to Theorem 3.1 can be proven
without continuity regquirements for T(z,.); this is done simply

by approximating z by a pointwise convergent sequence of finitely-

valued random variables z,: Q » Z (see Criterion 5 in [141) and
, A . s
setting Tn(w,x): = T(zn(w),x). We will consider such operators also

in section 4.
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4.) CONDITIONS FOR CONVERGENCE AND COMPACTNESS OF RANDOM OPERATORS

AND THEIR DOMAINS WITH RESPECT TO A.S.-AND P-CONVERGENCE

In this section, we will give sufficient conditions for various
assumptions of the results of section 2 to hold. We start with

conditions that guarantee that S(C) = p_-Lim S(C_) as needed in
ned

Proposition 2.9 and Corollary 2.lo.

For any F ¢ P(X) and x ¢ X, we denote by d(x,F): = inf d(x,z).
zZeF

Theorem 4.1: Let C and Cn (n ¢ IN) be measurable multifunctions
from §§ into X.

a) S(C) ¢ a.s.- Liminf S(Cn) if and only if there is an N ¢ A with
neIlN
P(N) = O such that for all w ¢ Q\N and all x ¢ C(w),

lim d(x,C_(w)) = O.
n-oo n

b) Assume that there is an N € A with P(N) = O such that for all
we NN and all x ¢ X, lim d(x,cn(w)) = d(x,C(w)).

1100
Then S(C) ¢ a.s.- Liminf S(Cn) € a.s. - Limsup S(Cn) < S(C),
nemw nelN

where C(w) denotes the closure of C(w) in X.

¢) Let C be closed-valued. Under the assumptions of b,

S(C) = a.s.- Lim S(Cn) and S(C)=P-Lim S(Cn).
neN nem

Proof:

a) Let S(C) ¢ a.s. - Liminf S5(C_).
n
nelN

Since (Q,A,P) is by assumption complete, (Q,A) admits the
Souslin operation (see [32]), we can apply the Corollary of [18,
p.408] to conclude that there exists a Sequence (xk) & S(C)W
such that
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(4.1) {xk(m)/k € N}z C(w) for all w e Q.

By assumption, for each k ¢ IN there iIs a sequence (xﬁ)n c N

with

4.2) k sS(C_ ) £ 11 n

(4. x € n or a n €

and

(4.3) lim xk(w) = xk(w) a.s.;
n-e a

= k

let N: = \_/ [{u « Q/xk(w) £ Clw)} u k,/ {we Q/Xn(w)écn(w)}],
k e ne N

N:= N

k k
U k\z’j; {w e S'Z/(xn(w))n e does not converges to x (w)}.

Because of (1.l)and (4.3), P(N) = O.
Now let w ¢ Q\W and x « C(w) be arbitrary, but fixed. Because

of (4.1), there is a sequence (x™) in {x*(w)/k ¢ N} with

(4.4) lim d(x",x) = O.
Viimad

Since all ¥ are in {xk(w)/k ¢ WY and w ¢ N, it follows from

(4.2) and (4.3) that for all m ¢ N, there is a sequence

m ,
(xn)n c W with

m
(4.5) x ¢ Cn(w) for all n e N
and
(4.6) lim d(x:,xm) = o.

n->e

We define seguences (mj), (nj) of Integers as follows by
induction: Let mq = ng = 1; for all j ¢ IN, let mj > mj_1

be such that

my G-

(4.7)  daxd, x < 27971,

which is possible because of (4.4), and nj > nj—l be such that
my ms -

(4.8) d(xnj, xJ) <277 ! for all n =2 nj,
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which is possible because of (4.6).
We consider the sequence

o
4.9 . = j
(4.9) (x): = ((x_ Injsncnsari e Mo’

i.e., the sequence

(x;, x;, e 4 xgz_l, xzz, e X:z-z' xgz, ....). Because
of (4.5),

(4.10) Xn € Cn(w) for all n ¢ WN

and thus

(4.11) d(x,Cn(w)) < d(xn,x) for all n € IN.

Because of (4.7), (4.8), and (4.9), for all n ¢ W,

-3 . ,
d(Xn,x) < 27, where j ¢ N is such that nj <n < nj+1.

As n > «», also j > «, so that lim d(x_,x) = O.
n-oo n
Together with (4.11), this implies 1im d(x,Cn(w)) = 0.
o

For the converse, assume the existence of a set N € A with

P(N) = O such that

(4.12) 1im d(x,Cn(w)) = 0 for w € Q\N, x € C(w).
110

For each n ¢ W, let (x k) € S(X)]v be such that

n 'k e IV
k
xn (w) € Cn(w) for all w ¢ Q,n, k ¢ W and that

(4.13) {xnk(w)/k e N} 2 C (w) for all w e &

the existence of such a sequence follows as above from [18].

Let x € S(C) be arbitrary, but fixed. It suffices to show that

(4.14) X € a.8. -~ Liminf S(Cn).
nelN

For all n,k ¢ N, let

(4.15) X ¥i=lu e /dixw),x (w)) < dixtw),c (w))r LY

273
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we show that

(4.16) Xnk ¢ A for all n,k ¢ I.

To see this, note that for all n ¢ W and w ¢ Q,

dix(w), Cn(w)) = d(x(w), Cn(w)). Since the multifunction En is

measurable, which follows from [15], we can conclude from

[9, Lemma 6] that d(x(.), Cn(.)) is measurable for all n ¢ N.
Since also d(x(.), x:(.)) is measurable, (4.16) follows.

Now let for all n,k € IN

S
I
[

(4.17) k

bS]

]
b
-
e

"
]
[y

Obviously, Ank n An] =@ for all n ¢ N and

, k v ok
i=k, U/ a” = \ A4, forallned;
k e N ke n
k
(4.18) An ¢ A for all n,k ¢ N
holds because of (4.16). Because of (4.13), \_/ Xnk =Q

k e I

for all n ¢ N, so that we have

k
(4.19) \_/ 4 =q forallneN.
ke

Thus it is possible to define for all n ¢ W
X : 0 =+ X

(4.20)
w > X k(w) for w e A k.
n n

Since the xnk are measurable, we can conclude from (4.18) that
all X, are measurable; by construction, for all n ¢ IN and

we Q, X, (w) € Cn(w), so that

(4.21) xn € S(cn) for all ne IV.
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It follows from (4.20), (4.17), and (4.15) that

(4.22) d(x(w),xn(w)) < d(x(w),Cn(w)) + %—for all nelN ,we Q.

Since x(w) ¢ C(w) a.s., it follows from (4.12) and (4.22)
that (xn) > X a.S.; together with (4.21), this implies (4.14).

This completes to proof of a.

b) Since for x € C(w), d(x,C(w)) = O, part a) is applicable;

it remains to be shown that

(4.23) a.s. - Limsup S(Cn) c S(C).
nelN

Let X ¢ a.s. - Limsup S(Cn). By definition, there exist
nelN

sequences nq < nz < nz < ... ¢ N and (xk) with X € S(Cn )
k

for all k ¢ N such that x = a.s. - lim x i.e.,

k/
kelV

1im d(xk(w), x(w)) = 0 a.s.; thus, 1lim d(x(w), Ck(w)) =0 a.s.
k> K00
Together with the assumption, this implies d(x(w),C(w)) = O

a.s, i.e., x(w) ¢ C(w) a.s.; since x is measurable, X ¢ S(C).

This implies (4.23).

c) This follows immediately from part b) and Remark 2.2.

0

For non-empty subsets E,F of X, let

(4.24) D(E,F):= max {sup d(x,F), sup d(x,E)};
XeE XeF

restricted to the bounded closed sets, D is a metric (the
"Hausdorff-metric"); if E or F are unbounded, D(E,F) may be

infinite.

Theorem 4.2: Let C, Cn (n ¢ N) be measurable multifunctions
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from Q into X, C be closed-valued. Assume that

(4.25) 1im P({w ¢ 9/D(C{w), Cn(w)) > g}) = O for all e> O.
N

Then S5(C) = P - Lim S(Cn).
nelN

Proof: Let x ¢ S5(C) be arbitrary, but fixed. As in the proof of

Theorem 4.1 a, we construct a sequence (xn) with (4.21) and (4.22).
Since for all n ¢ W we have d(x(w),Cn(m)) < D(C(w),Cn(w)) a.s.,

we obtain for all n ¢ N that
1
(4.286) d(X(w),xn(w)) £ DIC{w),Cplw)) #+ o @-Se;

together with (4.25), this implies that x = P-lim x_.

nemV
Thus, x € P-Liminf s(cn), so that
neiN
(4.27) S{C) g P-Liminf S(Cn).

nelN

Now, let x ¢ P-Limsup S(Cn). By definition, there exist seguences

neIN
nq < na < nag < ... € N and (xk) with x, € S(C_ ) for all k ¢« N
k n,
such that
(4.27) x = P-lim Xp-

keNN
Since for all w e Q, d(x(w), C(w)) svd(X(w),xk(w)) +

+ d(xk(w), C (w)) + D(C_ (w),C(w)) for all k ¢ W, it follows
g g

from (4.25), (4.27) and the fact that xk(w) € Cn {w) a.s. that
k

(4.28) P({w e Q/d(x(w),C(w)) 2 5}) = 0 for all i ¢ N

AN
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and hence
(4.29) d(x(w),cl{w)) = 0 a.s.;

since x 1s measurable, (4.29) implies that x € S(C), since C is
closed-valued. Thus,

(4.30) P - Limsup S(Cn) c S(C).
nemN

The assertion follows now from (4.27) and (4.30).

n

Remark 4.3: Theorem 4.1 a generalizes Lemma 3 of [25] consider-
ably. One can think of Theorem 4.1 as a result about convergence

of measurable selectors of Cn to measurable selectors of C.

For X = R", such results have been given in [28] for a.s.-con-
vergence and convergence in probability and in [29] for conver-
gence in distribution. In both papers (like in our Theorem 4.1),

the functions w d(x,Cn(w)) play an important role. Note that

in [28] the basic concept of convergence is a.s.-convergence of

sequences of multifunctions (Cn), while our basic concept is
a.s.-convergence of sequences of sets of selectors (S(Cn)).

The following is easy to see, 1f one uses the results of [28],

especially Theorem 4.3 there: If C, Cn (n e N) are closed-

valued measurable multifunctions from  into r™ and (Cn) > C

a.s. in the sense of [28], then S(C) = a.s.~ Lim S(Cn).
nelV

It is not clear 1if the converse holds; here one also has to
take into account that not all sets Z ¢ S(X) are selector sets
of a measurable multifunction, i.e., there need not exist a
multifunction C with Z = S(C). This shows that a.s.-convergence

in the sense of [28] may not even be definable if Z=a.s.-Lim 2
neiN

with Zn, Z @ S(X). In this sense, our concept of convergence is

weaker and more general than the concept in [28]. The essential

277
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difference is that in our concept, the "exceptional sets" that
appear are allowed to depend on the selector considered, which
gives us the flexibility we need in that respect for our purpose.
It follows from these remarks that Theorem 4.1 can be thought of
as a generalization of some of the results of [28] from r”
(which was essential in the proofs there!) to a Polish space X.
We note that after this paper had been drafted, another such
generalization (see [24]) had been brought to our attention.

That paper contains two main results. In Theorem 1 there, which
is proved by a method similar to that used in the proof of [25,
Lemma 3], the author assumes completeness of the values of all
multifunctions considered and does not permit exceptional sets
of measure zero; at least In one of the two parts of that theorem,
exceptional sets cannot be added easily in the same way as they
appear in our Theorem 4.1: Note again that in our

"S(C) ¢ a.s. = Liminf S(Cn)”, the exceptional sets may depend
nelN

on the selectors! This 1s not the case in Theorem 2 of [24],
where in addition the multifunctions considered are assumed to
be compact-valued. Under this stronger assumption, the author
obtains a stronger conclusion, namely uniform convergence on
certain sets. Thus, our results are not directly comparable to
those of [24].

It should also be noted that we do not always assume that Cn and

C are closed~valued. In Theorem 4.2, we do not assume that Cn

and C have bounded values. In [28], various possible definitions
for convergence in probability of measurable multifunctions are
given, one of them being essentially our (4.25). There no results
about convergence in probability of selectors are stated, so that
our Theorem 4.2 can be thought of as a continuation of that paper

in this respect.

+
Example 4.4: Let X be a separable Banach space, r: @ ~» R ,

- + -
x: Q> X and for all n ¢ I, rn: Q > R and xn: Q -+ X be measur-
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able, and let for all w ¢ Q and n ¢ IN, Cn(w):={x € X/d(x,Qn(w))ﬁ
< rn(w)} and C(w): = {x ¢ X/d(x,%x(w)) < r(w)}. It is easy to see
that C and Cn (n € IN) are measurable closed-valued multifunctions

and that for all n e N, w ¢ 1, X € X we have:

(4.31) d(x,C (w)) = max {O,d(x,;_tn(w))-rn(w)},
(4.32) d(x,C(w)) = max {0,d(x,%x(w))-r(w)},
(4.33) D(C(w),Cp(w)) = dlx(w),x () + |r(w)-r (u)].

Note that (4.31)-(4.33) and also the conclusions below need not
be true in general Polish spaces, as can be seen e.g. in discrete
separable metric spaces.

Because of (4.31)-(4.33) and Theorems4.! and 4.2, the following
results are true:

a) If (§n) > x a.s. and (rn) ~ r a.s., then S(C) = a.s.~Lim S(Cn).
neIN

b) If x =P - 1im x and r = P - lim r_, then

neN n neN
S(C) = P - Lim S(C_).
nelN
Now we turn to sufficient conditions for (pX,pX)-convergence

of (Tn) to T (where Oy denotes a.s.-convergence Or convergence

in probability), which is needed in Proposition 2.9; together
with the results of Theorems 4.1 and 4.2, we thus will obtain

results that guarantee the closedness of T and (Tn) as needed

in Theorem 2.11. Together with a compactness result of below,
we obtain sufficient conditions for Proposition 2.9 b to be
applicable, which yields the compactness of (Tn) as required

in Theorem 2.11.
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Theorem 4.5: Let C, Cn(n ¢ IN) be mul+*ifunctions from ) into X,

T: Gr C »~ Y, Tn: Gr C» Y (n ¢ IN) be A x B(X)-measurable.

a) Assume there is an Ne¢ A with P(N) = O such that for all

w e Q\N we have: For all x ¢ C(w) and (xn) > X with Xngcn(w)
for all n ¢ IV, (Tn(w,xn)) + T(w,x). Then (Tn) is

(a.s., a.s.)-convergent to T.

If in addition S(C) g a.s. - Liminf S(Cn), then T and (Tn)
neN

are also (a.s.,a.s.)-consistent and (Tn) is (a.s.,a.s.)-stable.

b) Assume there is an N ¢ A with P(N) = O such that the following
holds for all w ¢ Q\N:

For all x ¢ C{w) and all sequences nq < Nz < Nz < «..,

(xk) > x with x

x € Cn (w) for all k ¢ IV,

(4.34) %

(Tn (w,xn )} o> Tlw,x).
k k

Then (Tn) is (P,P)-convergent to T. If in addition

S(C) ¢ P - Liminf S(Cn), then T and (Tn) are also (P,P)-con-
neIN

sistent and (Tn) is (P,P)-stable. If even

s({Cc) ¢ a.s. - Liminf S(Cn), then (4.34) needs to be assumed
nelN

only for (nk) = (1,2,3,...).

Proof:
a) The (a.s.,a.s.)-convergence of (Tn) to T is obvious. If

S(C) ¢ a.s. - Liminf S(Cn), then for all x ¢ S(C), there is
nelv

a sequence (xn) with xn € S(Cn) for all n ¢ N and

x = a.s. - lim X . By the first part, T(.,x(.)) =
nelN
= a.s., - 1im T (.,x_(.)). Thus, T and (T_) are (a.s.,a.s.)-
neiN n A
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consistent. The stability follows from Proposition 2.5.

b) Let x € S(CJ, (xn} be such that xn € S(Cn) for all n ¢ I

and x = P-l1im x_. We have to show that
nelN

(4.35) T(.,x(.})) = P-1im T (.,x (.)).
n n
nelN
Let n4y < Nz < ng < ... ¢ IN be arbitrary; there exists a sub-

seguence (nk,)i e of (nk)k c IV such that x=a.s.-%1m xn
i ielV ki

(£2]; see Example 1.4); together with (4.34), we obtain
(4.36) T({.,x(.))} = a.s.- 1lim T (.,Xn (.)).

iewv Tk, k.
1 1

Since (nk) was arbitrary, (4.36) implies (4.35) ([2]). This

completes the proof of convergence.

If S(C}) ¢ P- Liminf S(Cn), we obtain (P,P)~consistency and
neiN

(P,P)-stability analogously to the proof of part a).

Let S(C) ¢ a.8.~ Liminf S(Cn) and (4.34) hold for
nelN

(nk) =(1,2,3,...). It suffices to show that (4.34) holds for

all sequences n, < nz < nzg < ... € WN.
Let nq < nz <ng < ... € W and (xn ) be such that for all
k

ke W, x e C (w) and (x ) » X € C{w) for all w € Q\N.
n n n
k k k

Because of Theorem 4.1 a, lim d(x,Cn(w)) = O holds for all

N

w € Q\N, where N ¢ A with P(N) = O and N does not depend on

X, (xn ), or (nk). For simplicity, we denote the set N u N

again by N. Let w € Q\N be arbitrary. Then there is a segquence

(;?n) with (;?n) + % and ;?n € C (w).

For all n ¢ I, let

281
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X ,
(4.37) ;h:= n if n e{n4,ng,nz,...}
X otherwise.
n
Y]
Then (xn) -+ x and }n € Cn(w) for all n e IN. By assumption,
T(w,x) = 1im T_(w, } ). Since (x_ ) is a subsequence
n n n
n-eo k ke IN

of (%), T(wx) = 1im T_ (w,x_ ). Thus, (4.34) holds (with a
n n n
Koo k k

new set N, that is independent of x,(xn ), or (nk)).
k

This completes the proof.

Remark 4.6: We consider operators of the type (3.18); let
A
T: 2 x X - Y be jointly continuous, where Z is a separable metric

space, z and z, (n € IN) be random variables from Q into Z,
A A
T(w,x): = T(z(w),x) and for all n eWN, Tn(w,x):= T(zn(w).x)

for all w € Q, X € X. The following facts are easy to prove:

If z = a.s.- 1im z , then (Tn) is (a.s.,a.s.)-convergent to T.
ne€mN

If z = P - lim L then (Tn) is (P,P)-convergent to T.
nemw

From Example 2.4 a we can conclude that T and (Tn) are also

(a.s,a.s.)-consistent (or (P,P)-consistent, respectively), so

that by Proposition 2.5, (Tn) is (a.s.,a.s.)-stable (or (P,P)-

stable), respectively.

We now give a sufficient condition for Iinverse stability as

needed in Theorem 2.7.

Proposition 4.7: Let C, Cn (n € W) be multifunctions from Q
into X, T: Gr C> Y, T : Gr C > Y (n ¢ N) be A x B(X)-measur-

able. Assume that there is an N ¢ A with P(N) = O such that for
all ¢ € QW we have:
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) , + +
There is a function o(w,.):R o + R o with

lim o(w,t) = a(w,0) = O such that for all n ¢ W and all
>0

X, X ¢ Cn(w) we have

(4.38) d(x,x) < alw,d(T_(w,x), T _(w, x))).

Then (Tn) is (a.s., a.s.)-inversely stable.

Proof: Let (xn), (;n) be sequences such that X € S(Cn) and

X € S(Cn) for all n ¢ N and assume that (xn), (Tn("xn('))) and

(Tn(";n('))) are a.s.-convergent with a.s.-lim Tn("xn(')) =
nelN

= g.58. -~ lim Tn(.,xn(.)).
nelN

For all w ¢ Q\N we have because of (4.38):

d(x (w), X (0)) € a(w,d(T, (0,x, (w), T (w,X (0))));

because of our assumptions, the right-hand side tends to O as
n > ®, so that (d(x (.),x, (.))) > 0 a.s.; thus, (x,) is a.s.-
convergent and a.s.-lim x = a.s.-lim X .

neN nelN

This completes the proof.

Remark 4.8: The condition (4.38) is "inverse" to the sufficient
condition for stability used in Example 2.4 b. Note that the
common philosophy of most of the results given so far in this
section Is the following: We wanted to give sufficient conditions
for properties that are defined via measurable selectors in terms
of assumptions not involving measurable selectors but only members
of almost all realizations of the measurable multifunctions in-

volved.

We now turn to compactness conditions for sequences of sets of
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random variables or of random operators. While for convergence

in distribution, Prohorov's Theorem (e.g. [6]) provides a
comfortable basis for such considerations, the situation is less
satisfactory for a.s.=-convergence and convergence in probability.
The following result gives a sufficient condition for compactness
of a set of random variables with respect to the modes of conver-

gence that we are interested in here.

Surprisingly, we could not find such a result in the literature;
only for real-valued random variables, such a result can be found
in [20] without proof. We thank Anton Wakolbinger for valuable

discussion concerning the following result.

Theorem 4.9: Let E ¢ S(X) and assume that for all e > O, there

are n(e) € N, A4, oeus An(g) ¢ A and a compact set KE c X

that the following hold:

n(e)
(4.39) P\ Ay = 1-g,
i=1
n(e)
For all x € E and all w ¢ \_/ a,
(4.40) i=1

d(x(w), Ks) < €.

(4.41) For all x € E and i € {1,...,n(c)}there exists

R . <g.
ul’x € X such that for all w € Ai’ d(x(w), ul'x) €

Then every sequence cof elements of F has a subsequence that con-~
verges in probability, almost surely and almost uniformly to

some element of S(X).

Proof: Let D:S(X) x S(X) - R be defined by

di{x{w),y(w))
+d(x(wl),ylwl))

(4.42) D(x,y}:= f d P(w).
2
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It is easy to see (and well-known at least for the case X = R)

that

(4.43) x =P - 1limx_ & lim D(xn,x) =0
new neo

for x € S(X)}, (xn) € S(X)IV.

D is a pseudometric, (S(X),D) is complete; this follows from the
fact that each segquence that is Cauchy in probability is P-conver-
gent (see e.g. Theorem 1.4.18.3 and its proof in [33]; note that a

different metric is used there). Thus it suffices to show that
(4.44) E is totally bounded in (S(X),D).

To see this, let & > O be arbitrary, but fixed. Let A1,...,An(€)

and KE be as in the assumptions of the Theorem; we assume with-

out loss of generality that Ai n Aj =g fori=jell,...,n(e)}

Since Ke is compact, there exist k{e) ¢ N and x14,.. € KE

k(e
such that for all z ¢ Ke’ there exists j ¢ {1,..., k(e)} with

d(zlxj) < e

Let J: = {f:{1,...,n(e)} >~ {1,...k(e)}}, and for all f ¢ J, let

z Q> X

f.‘

(4.45) , ,
Xf(i) if w e Ai’ 1 <1 < n(e)
w >

a otherwise,

where a is an arbitrary fixed element of X. {zf/f e J} is a

finite subset of S§(X). To prove (4.44), it suffices to show that

for each x ¢ E, there exists an f ¢ J with
(4.46) D(x,zf) < 5g,
since then {zf(f € J} is proven to be a "finite 5e-net".

Let x ¢ E be arbitrary, but fixed. For each i ¢ {1,...,n(e)},

we choose an wy € Ai' Because of (4.40) and the properties of
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{x ""’Xk(e)}’ for all 1 ¢ {1,...,n(e)}, there is a

je {1,...,k(e)} such that

(4.47) d(x(wi),xj) < 2¢.
Let f € J be such that with j = f(1i), (4.47) holds; if Zg is
defined as in (4.45), it follows from (4.47) that
(4.48) dix(w;), zg(w;)) < 2e for all i ¢ {1,...,n(e)}.
Together with (4.41), this implies
n(e)
(4.49) d(x(w), zg(w)) < 4e for all w e \_J A,;.
i=]
Because of (4.49) and (4.39) we have:
n(e) n(e)
d(x(w),zr(w))
< <
Plrizg) S X Thatmte),zgw) @ P F PN A A S

< 4e + € = 5 ; thus, (4.46) holds. By the remarks of above, this
implies that every sequence Iin E contains a subsequence that
converges in probability to some element in S(X); by Example 1.4,
this subsequence contains another subsequence converging almost

surely and almost uniformly.

Remark 4.1o: The conditions (4.39) - (4.41) seem to be quite
natural; (4.39) - (4.40) remind of the usual tightness conditions
in Prohorov's Theorem (see e.g. [6]1, [161) for weak compactness

of probability measures. Note that (4.40) is in one respect weaker
than the usual tightness requirement, which would involve

"x(w) € KE”. However, since convergence in probability implies
convergence in distribution ([6]), it follows from Prohorov's
Theorem that under the assumptions of Theorem 4.9, for every

€ > O there is a compact set is ¢ X such that for all x ¢ E,
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Pi{w/x(w) € ?e}) 2 1-g. In another sense, (4.4o) 1is stronger than
a tightness assumption, since d(x(w), Ke) < ¢ 1s assumed to hold

for all w in a set with probability 2 l~¢ that is independent of
x € E.

In addition to (4.39) - (4.40), we need the condition (4.41) that
prevents the elements of E from oscillating too much on each Ai'
It can be seen from (4.69) and (4.70) in conjunction with (4.57)
that a condition of this kind is in fact necessary. See also
Remark 4.14.

If E consists of random variables that are constant on each set
of a fixed discretization of (Q,A,P) (see section 3), then (4.41)
is trivially fulfilled.

Theorem 4.9 can be used to prove compactness of (S{Cn)) as needed

e.g. in Proposition 2.9; just take E: = \\_// s(c, ).
n e N

Now we want to give a sufficient condition for compactness of a

sequence of random operators (Tn) that have the special form

(3.18). For this purpose, we need the following Lemma:

Lemma 4.11: Let Z be metric space, K ¢ Z be compact, C c X,

A
T: K x C - Y be such that

(4. 50) {?(.,x)/x € C} 1is equicontinuous on K
and
(4.51) %(z,c) is relatively compact for all z € K.

A ,
Then T(K x C) is relatively compact.

Proof: Let ((zn,xn)) be an arbitrary segquence in K x C. It

A
suffices to prove that (T(zn,xn)) has a convergent subseguence.

Since K is compact, there is a subsequence (zn ) of (zn)
1
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converging to a z € K. Since 9(2,0) is relatively compact, there

. A=

is a subseguence (xn ) of (xn } such that (T(z,xn )) converges
ij 1 ij

to some y ¢ Y. We will show that

(4.52) (ﬁ(zj,xj)) >y,

where j abbreviates ni’ from now on. Let ¢ > O be arbitrary.

3
Because of (4.50) and the compactness of K, {%(.,x)/x e C} is
uniformly equicontinuous on K. Thus, there is a § > O such that
for all z4,22 ¢ K with d(z4,z2) < 8§ and all x ¢ C,

a(d(z1,%), Blza,%)) < e.

For such a § > O, let jo ¢ NN be such that for all j 2 jo.
d(zj,E) < § and d(?(E,xj),y) < e. Then we have for all j 2 jo:

A A - A -
d(%(zj,xj),y) s dfzgxp), Bzxg)) + dh (2,x)),y) < 2e, where

the first term is less than ¢ because of the uniform equicontinu-

ity and the definition of S. Thus,(4.52) holds.

O

Remark 4.12: The assumption (4.50) cannot be dispensed with, as
the following example shows: Let X = Y = Z = L2, C can be the unit

for all n ¢ N},

3=

1
ball, K:= {(zn) € z/2—n— <z <

A A -2 N s

T: K x C > Y be defined by T(z,x):= Hz” . <x,z> . z. T is jointly
A

continuous. For all z ¢ K, T(z,C) is a bounded one-dimensional set

and thus relatively compact, so that (4.51!) holds. For all n ¢ W,

1 , s
let 2z : =—e_ € K, x_: = e_ € C, where e_ 1s the n-th unit vector.
n n n n n n
A s
Then, (T(zn,xn)) = (en), which has no convergent subsequence. Thus,

?(Kxc) 1s not relatively compact.

Now, let (in addition to X and Y) Z be a Polish space,C g X,

%: Z x C>Y; let z and z, (n ¢ N) be measurable mappings from

Q into Z, and let for all w ¢ Q and x ¢ C,
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(4.53) T (w,x): = %(zn(w),x) for all n ¢ W.

With this notation, we have the following compactness result for

(Tn), where we identify a C ¢ X with the constant map w +» C(w):=C.

Theorem 4.13: Let Tn (n ¢ N) be defined by (4.53) and assume

that
(4.54) {%(.,x)/x € C} 1is uniformly equicontinuous on Z,
(4.55) %{z,C) is relatively compact for all z ¢ Z,
and that
r
for all ¢ > 0, there exist pairwise disjoint
k(e)

B1,...,Bk(€) e A with P (&vj Bi) > 1-¢ such that

(4.56) i=]

for all z ¢ 2, x € S(C), and 1 ¢ {1,...,k(e)} there

is a u; ¢ Y such that for all w € Bi'

d(b(z,x(w)), u/)< e holds.

Furthermore, assume that

(4.57) z =P - 1lim z_.
nem

Then, (Tn) is pY-compact, where OY denotes convergence in proba-

bility, a.s.-convergence or almost uniform convergence.

Proof: It suffices to show that for each (xn) € S(C)Iv,
(Tn(.,xn(.))) is py~compact; we will show this by proving that

the set E: = {Tn(.,xn(.))} fulfills the assumptions of Theorem 4.9.
To this end, let (xn) € S(C)LI and € > O be arbitrary, but fixed.

By Egoroff's Theorem ([33]), there exists a subsequence of (zn)
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that converges to z almost uniformly; since we want to construct

a subsequence of (Tn(.,xn(.))), we may assume without loss of

generality that

(4.58) z = a.u. - lim z
nelN

Let § > O be such that

for all y4, y2 € Z with d(y+, y2) < § and all
(4.59) A A
x € C we have d(T(y4,x), T(Yya,x)) <

Njm

Such a § > O exists because of (4.54). Because of (4.58), there

exists an Q' ¢ Q such that P(Q') 2 1 - %-and (zn) -+ z uniformly

on ', Thus, there exists an mpe¢ N such that

(4.60) d(zn(w),z(w)) < g- for all n 2 ng and w € Q'.

Since the distribution of a single random variable is tight (see

(6, Theorem 1.4]), there exist compact sets Lo, La, ... » L, _,
o-

such that with Qo: = {w ¢ Q/z(w) € Lo} and

Qi: = {w €Q/z,(w) € Li} (1 < 1 < no-1) we have
(4.61) P(Q.) 21 =~ —— for all i € {0,...,n0-1}.
i 4no
Let
no—l
(4.62) ams = 'n 8y
i=0
and
no—l
(4.63) L:=\_] L,
€ , i
i=0
Then
" E
(4.64) P(Q") =2 1 -~ 3



Downloaded by [Humbol dt-Universit& auml;t zu Berlin Universit& auml;tshibliothek] at 11:50 14 October 2014

NONLINEAR RANDOM OPERATOR EQUATIONS 291

and Le ¢ Z is compact; thus there exist r' ¢ N and

21,...,2r, ¢ Z such that

rl
(4.65) e\ sk, 5.,
€ . A
i=]
where B(S , 8.): = { z2/dy,8,) < 5
PRSI G

For i € {l,...,2'} and 7 € {I,...,n0-1}, let

] = -1 i A "
(4.66) ajli =277 (Blz, Z)) 0@
and
(4.67) ar, : =z}t (13(g 2.)) n Q"
. i ; 5, 2 .

r'
For all 7 ¢ {0,...n0=1}, \_ &
i=1

ij' = Q"; this follows from

(4.62), (4.63) and (4.65). Now, let A1',...,Ar' be all non~empty

sets of the form ?2;1 A! . .. Then
4 1(7)3
=0

(4.68) Aq'U...U Ar' = Q",

and (because of the measurability of z and (zn)),
{a,', ...., Ar'}g A . Because of the definition of these sets,

we have for all i € {1,...,r}:

( There is a zio € Z such that for all w € Ai',

(4.69) )
§
L d(z(w), zio) <z
J For all n e {1,...,n0-1} there is a z, €72 such
(4.70)
§
that for all w ¢ Ai', d(zn(w), zin) < 7

A A
The zio and zin can be taken from the set {Z1,...., zr} because
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of (4.66) and (4.67). From (4.69) we obtain together with (4.60):

With Zio as in (4.69), we have
(4.71)
d(zn(w), zio) < 8 for alln 2 no and w € Ai'.

Because of (4.62) and (4.63), z(w) € L€ and zn(w) € Le for all

weR"and n ¢ {1, ..., no-1} ; together with (4.60), this implies

(4.72) d(zn{w), Le) < g- for all n ¢ N and w ¢ Q".
Now, let
A
(4.73) K : =T(L x C).
€ €

Because of Lemma 4.11, KE ¢ Y is compact.

be chosen as in (4.56) for E-instead

Let k: = k(%) and Bi,...,B, 5

of €. BY A1, ..., Am we denote all distinct non-empty sets of the
form BS n Aj’, where s ¢ {1,...,k}, j ¢ {1,...,r}. Then because of

(4.64) and (4.56),

m
(4.74) P(\J &) 2 I-e.
i=1

Let i ¢ {1,...,m} be arbitrary and let s ¢ {1,...,k},
j e {1,...,r} be such that

(4.75) A, =B_naA,".

For n e {1,...,n0-1}, let u; €Y be such that for all w ¢ A,

we have
(4.76) ack 2
. zjn, xn(w)), uin) <z
For n 2 ng and j ¢ {!,...r}, let z. : = z., (see(4.69)) and let

jn e

uin € Y be such that for all w ¢ Ai’ (4.76) holds. Such uin exist

because of (4.56) and (4.75).
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For all n €« N and w € Ai, we have:

Az, (w), x, (), uy,) € ATz % (0)) ug,) +

A A € A
+ d(T(zn(w),xn(w)), T(zjn, xn(w))) <5+ d(T(zn(w), xn(w)),

%(zjn, xn(w))) because of (4.76). Because of (4.59), (4.75),

(4.70), and (4.71) (together with zjn: = zjo for n = no), the

second expression is also less than %—, so that

A
(4.77) d(T(zn(w),xn(w)),uin) < g for all ne Nand w ¢ Ai'
m
Now let n € W and w € \_/ Ai be arbitrary. Because of (4.72),
i=1

there exists a v ¢ Ls with d(zn(w),v) < % . Because of (4.59),

A
this implies d(?(zn(w), xn(m)), T(V,xn(w))) < g; since

A . . . :
(v, xn(m)) € Ke’ this in turn implies

m
A
(4.78) d(T(z_(w), x,(w)), K ) < e for all neNand we \U/a;.
i=1

m
Since (4.78) is valid for all n ¢ N and w € \y/ A, we have al-
i=t

together shown the following:

For all € >0, there are setsA.‘,....,Am{s)E A with (4.74) and

a compact set Ks € Y such that for all a ¢ ﬂii) Ai, (4.78) holds.
i=1

Furthermore, for all n € N and I ¢ {1,...,m(e)} there exists a

uin € Y such that (4.77) holds. Thus we canconclude from

A .
Theorem 4.9 that {T (z (.), x (.))} = (T, (.,x (.))} is compact

with respect to convergence in probability and hence also with
respect to almost-sure and almost uniform convergence (cf.Example

1.4). This completes the proof.
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Remark 4.14: The uniform equicontinuity in (4.54) can be replaced
by equicontinuity 1f Z is compact; condition (4.56) is certainly
hard to fulfill if we really need it for all x ¢ S(C). In this
context it iIs advantageous to use the modified version of Theorem
2.11 as outlined in Remark 2.15, since then (4.56) has to be

checked only for x € Dn (see Remark 2.15 for the notation). If Dn

is the set of elements of S(C) that are constant on all sets of

a fixed discretization of Q which is Independent of n (see section

3), then (4.56) is trivially fulfilled.

We think that a condition like (4.56) has to be assumed in Theorem
4.13, since for obtaining P-compactness, one certainly has to bound
the oscillation on a finite discretization of Q. This belief comes
from the fact that for real-valued random variables, the analogue

of (4.41) is necessary for P-compactness (see [20]).

5.) CONCLUDING REMARKS

We have introduced many assumptions in this paper that we needed
for our general convergence results in section 2; for these
assumptions, we have given various sufficient conditions. The
following table will help to locate the most important places
where these concepts are needed and where sufficient conditions

are given; all numbers refer to Theorems, Remarks,etc.:

we formulated our results for convergences fulfilling (1.4),(1.5),
(1.6), and (1.8). Especially, we concentrated on convergence in
probability, almost-sure and almost uniform convergence. Since two
random variables may have the same distribution without being equal
anywhere, (1.8) rules our convergence in distribution. It can be
seen from the proofs that in some of our results (1.8) is in fact
not necessary. Hopefully, we can pursue our concept for conver-
gence in distribution In a subsequent paper. One obstacle is the

following: If x4 and x3 € S(X) have the same distribution, then
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Concept defined in needed in sufficient conditions

S(C)eLiminf S(Cn) 2.1 4.5 4.1

S(C)=Lim S(Cn) 2.1 2.9,2.10, 4.1,4.2,4.4,4.9
2.13,2.14

(T,) converges 2.3 2.9 2.5,3.1,4.5,4.6

to T
(Tn) and T 2.3 2.5,2.7, 2.4a,3.1,4.5,4.6
consistent 2.10,2.13,

2.14

(Tn) stable 2.3 2.10,2.13, 2.4b,2.5,3.1,4.5,4.6
2.14

(T_) inversely 2.3 2.7 4.7

n
stable

(Tn) compact 2.8 2,11 2.9,2.10,4.13

S(Cn) compact 2.1 2.9,2.10, 4.9
2.13,2.14

(T ) and T 2.8 2.11 2.9,2.10

n
closed
(Un) regular 2.8 2.11 2.12

T(.,xq(.)) and T(.,x2(.)) need not have the same distribution.

To see this, take P to be Lebesque-measure on §0: = [0,1],
A
T(x,y): = x.y for all x,y ¢ X: = [0,1]. For all @ ¢ Q, let
1
< =
xq(w: = © w=3
1 w > %
and
1
1 =
Xz(w): = LU<2
1
o w 2 k)
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x4 and xz have the same distribution.With T{(w,x): = 9(x1(w),x)

for w e Q, X € X, we have T(.,x4(.)) = x, and T(.,x3(.)) = 0O,
which do not have the same distribution.

Thus, the obvious idea to replace a.s.-egquality by equality of

the distribution in (1.8) does not work.

If one uses convergence in distribution, all compactness assumptions
will be more comfortable than in this paper, since our Theorem

4.9 is replaced by Prohorov's Theorem. In this context, until
recently there was the following additional obstacle: If a
sequence of random variables is proven by Prohorov's Theorem to
converge in distribution to a probability measure, is this measure
the distribution of a random variable on the same probability

space? This obstacle has been removed in [13].

Note that of course all our results that yield convergence in
probability imply convergence in distribution. However, an
adequate theory for convergence in distribution should also use
weaker assumptions that do not imply convergence in probability.

Thus, more work in this context seems to be justified.
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