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WEAK CONVERGENCE OF APPROXIMATE SOLUTIONS OF STOCHASTIC
EQUATIONS WITH APPLICATIONS TO RANDOM DIFFERENTIAL AND
INTEGRAL EQUATIONS *
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ABSTRACT:

In this paper, we considerably extend our earlier result about
convergence in distribution of approximate solutions of random operator
equations, where the stochastic inputs and the underlying deterministic
equation are simultaneously approximated. As a by-product, we obtain
convergence results for approximate solutions of eguations between
spaces of probability measures. We apply our results to random

Fredholm integral equations of the second kind and to a random fion-
linear elliptic boundary value problem.

* Research supported by the Scientific Exchange Treaty between BAustria
and the GDR

61

Copyright © 1987 by Marcel Dekker, Inc.




62 ENGL AND ROMISCH

1. INTRODUCTION AND PRELIMINARIES

In [12], we developed an approach for proving weak compactness and
weak convergence of sequences of probability distributions of random
variables which are approximate random solutions of random operator
equations. This approach allows the simultaneous approximation of the
underlying deterministic equation and of the stochastic inputs with
respect to convergence in distribution. The proof of the main con-
vergence result ([ 12, Theorem 2.11]) is essentially based on
Prokhorov's Theorem (see [ 27, Theorem 1.121). Another, but related
approach for attacking this problem can be found in [51.

For concepts and general results concerning other modes of convergence
of approximate random solutions (a.s.-convergence, convergence in
probability), we refer e.g. to [23], [ 11].

In this paper, we considerably generalize the approach of [ 12]:
Instead of compactness assumptions about the operators we need only
more general regularity assumptions; the approximate equations are
now allowed to be defined only on subspaces (and on different pro-
bability spaces): instead of convergence of subsequences, we will
also be able to prove convergence (in distribution) of the whole
sequence of approximate solutions. These extensions allow much more
far-reaching applications than those considered in [ 12]. In order to
achieve this, we have to develop an approximation concept for
equations in spaces of probability measures ("stochastic equations"),
which might also be of independent interest.

We will be concerned with a random equation

T(z(w) ,X) = y(w) (w ¢ Q) (1.1)
and its approximations

Tolz lw),x) = yn(w) (w e Qur B M) (1.2)

where T is a mapping from Z x X into ¥, Tn from 2 x Xn into ¥, and

X, Xn’ Y, 7 are metric spaces with Xn c X: z, y and Zor Yo Doe N,
are random variables (defined on possibly different probability
spaces (n,A,P), (an, An' Pn), ne N),

We assume that the joint probability distributions (D(yn,zn))

converge weakly to D(y,z) (in the space of probability measures
on ¥ x Z) and ask for conditions on T and (Tn) that imply weak

convergence of (D(xn)) to a “solution” of (1.1). Here (xn) is a
sequence of X -valued random variables (defined on (a,, A nr Pn))

that are almost surely solutions of (1.2). The basic convergence
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results are Theorem 4.6 and its Corollaries. It turns out that the
weak limit of (D(xn)) is a probability measure defined on X which

is a solution of (1.1) in a weak sense (see the definition of a

weak solution in 4.1). This solution concept for (1.1) is motivated
by Ershov's concepts (see e.g. [14]1). The concept of a weak solution
we use generalizes that of a "D-solution" used in [12] (for a further
discussion we refer to Remark 4.2).

The approach for establishing the convergence results is based on

the observation that the joint distribution D(zn,xn) is a solution

of the special "stochastic equation" (in the sense of [ 14])
L
W = Dy .z) (n e N) (1.3)

N
with suitable mappings T , n ¢ N (see (4.5), (4.8)).

In Sections 2 and 3, we develop an approximation concept for general
stochastic equations and establish an abstract convergence result
(Theorem 3.10) which is applied to the special equation (1.3) in
Theorem 4.6. It turns out that well-known concepts from (deterministic)
operator approximation theory such as "discrete convergence",
"A-regularity" etc. (see e.g. [28], [29], [19], [2]) are also
essential tools in this context.

In Sections 5 and 6, we apply our convergence results to approxi-
mations for random Fredholm integral equations of the second kind
and to a Galerkin scheme for a nonlinear elliptic partial diffe-
rential equation with random coefficients.

We dedicate this paper to the memory of our mentor and friend
A.T.Bharucha-Reid; his work, especially [ 4], was a major guideline
for research in the field of random equations for many people
(including both authors of this paper). Furthermore, his steady
interest in our work and his encouragement was essential for both
authors' professional development., Moreover, as can be seen from
the list of references, some of his work is of direct importance

for this paper.

We now fix the terminology of this paper. For a metric space S we
denote by B(S) the og-algebra of Borel subsets of § and by P(S) the
set of all probability measures defined on (S,B(S)) equipped with
the topology of weak convergence (see [6, p. 2361, [27]1). It is
known that P(S) is metrizable (Polish) if S is separable (Polish)
(see [6]).

Suppose that So is a Borel subset of S and that SO is endowed with

the relative tovolegy Then B(SO) = {B n SO|B e B(S)}. If y is a

probability measure on (so, B(so)), let ue ¢ P(S) denote the
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"canonical extension" of u, defined by ue(B): = (B n SO), for all

B ¢ B(S) (see [6, p.381).

If x isan S-valued random variable defined on some probability space
(2,A,P) (i.e.,x_1(B) ¢ A for all B ¢ B(S)), let D(x) ¢ P(S) denote
its "probability distribution", i.e.,

D(x)(B): = P(x"'(B)), B e B(S).

In the following, a sequence (sn) in a certain metric gpace S' will

be called "relatively compact" if it contains a convergent subsequence.
(s,) will be called "discretely compact" (see e.g. [28, p.288]}) if

every subsequence of (sn) contains a further subsequence that is

convergent in S'., The respective notions for weak convergence in

P(S) (where S is separable) will be called "relatively w-compact"

and "discretely w-compact".

It is known from Prokhorov's Theorem ([ 27], {6, Theorem 6.1]) that

a sequence (un) in P(S) with a separable metric space S is discretely
w=-compact if it is (uniformly) "tight", i.e., for all ¢ > O

there exists a compact subset Ke of S such that

inf u _(K_}) 2 1-¢.
neN % €

The converse is true if S is Polish ([ 6, Theorem 6.2]).
A sequence (un) in P(S) will be called "w-bounded" iff for all

¢ > 0 there exists a bounded Borel set Be < § such that

inf u (Be) 2 1-g,
ne N
Note that a sequence (xn) of S-valued random variables is D-bounded

in the sense of [12] if (D(xn)) is w-bounded.

If u, My € P(S), n ¢ N, we denote by ¥h L4 u the weak convergence

of (un) to u. Note that if S is Polish, then every weakly convergent
sequence (un) in P(S) is tight and, hence, w-bounded.

2. AN APPROXIMATION CONCEPT FOR EQUATIONS IN SPACES OF
PROBABILITY MEASURES

Let X and Y be separable metric spaces and 4 be a mapping from
P{(X) into P(Y). In this Section, we consider the equation

T = v, (2.1
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where v ¢ P(Y) is a given probability measure, and its approximations

A
Tn(u) = v, (n ¢ N), (2.2)

A A
where Tn: P(Xn) + P(Y) are given mappings (converging to T in some

sense, see Def. 2.2) and v n € N, are given probability measures

n’

in P(Y) (converging weakly to v); Xn (n ¢ W) are Borel subsets of X.

In the following, we are interested in conditions guaranteeing

"convergence" (see Notation 2.1)of a sequence (un) of solutions of

(2.2) to a solution p of (2.1). Note that (2.1) and (2.2) (for n ¢ W)
can be viewed as equations in certain metric spaces (of probability
measures). Hence, the well-developed approximation theory for operator
equations in metric spaces (see e.g. [ 1], [2], [191, [26], [28], [29],
[30]) can be applied.

Notation 2.1: (see [21, Sect. 3])

Let u ¢ P(X) and Hy € P(Xn), ne N. (u)) will be called "weakly
convergent" to u (unli w), if (ui) is weakly convergent to u in P(X)
(see Sect. 1 for the notations). Analogously, (un) ig called
"relatively w-compact", "discretely w-compact", "tight", "w-bounded",

whenever (u:) has these properties in P(X).
The following are straightforward adaptions of the corresponding
approximation concepts in [ 2], [28], [ 30] to the context of this

Section.

Definition 2.2:

A
a) % and (Tn) are called "w-closed" iff for all Ny < Dy < Ny < ... € N

and sequences (u_ ) with u e P(X_ ) for k ¢ N, we have that
n n n
k k k

w A W : A
b —u and T, (un ) v imply T(u) = v.
k k k

A
b) (Tn) is called (asymptotically) "w~regular" iff for all

Ny € Ny < Ng < ... ¢ N and sequences (unk) with unk € P(xnk)

for k ¢ N, we have that (un ) is relatively w-compact if (un ) is
k k

A .
w-bounded and (Tn (un )) is relatively w-compact. (Note that it
k k

obviously suffices to prove relative w-compactness of (un ) only
k
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A
for those sequences (y_ ) for which (T_ (u_ )) is weakly convergent.)
fx P

These notiong turn out to be useful for the following convergence
result which is closely in the spirit of [2], (191, (28], [3o].
Its proof is straightforward and is included here only for convenience,.

Theorem 2.3:
A A A
Let T, (Tn) and v, (vn) be as above. Assume that (Tn) is w-regular,

A A
T and (Tn) are w-closed and that vn_ﬂ»v. Then, every w-bounded
seguence (un) of solutions of (2.2) (for the index n ¢ N) is

discretely w-compact and every limit u ¢ P(X) of a weakly convergent
subsequence is a solution of (2.1).
If, furthermore, (2.1) is uniquely solvable, then (un) converges

weakly to the unique solution of (2.1).

Proof:

Let (un) be a w-bounded sequence of solutions of (2.2):

Tn(un) = v, (h ¢ N), (2.3)
and let (un ) be an arbitrary subsequence. (2.3) implies that
k
A
(Tn (un y) is weakly convergent to v. Hence, because of the w-
k k

A
regularity of (Tn), (un ) is relatively w-compact. Hence there
k

are a further subseguence (un ) and a probability measure u ¢ P(X)
k.
A ) A
such that Yo _y*u. Since T and (Tn) are w-closed, this implies
K.
b}
A A
T, (i )y = T()
k. k.
] J

Now, let (2.1) be uniquely solvable. We have proven that every
subsequence of (un) contains a further subseguence that converges

weakly to a solution of (2.1) and, hence, to the unique solution
« Of (2.1). Thus, [ 6, Theorem 2.3] yields that u . y.

Remark 2.4.:

Note that every w-bounded sequence (un) of solutions of (2.2) is
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A
already discretely w~compact if (Tn) is w-regular and (vn) is

discretely w-compact.

The reasons for introducing these concepts and stating Theorem 2.3
will become clear in the following Sections. Here, we indicate that
(natural) sufficient conditions for the "w-closedness" and "w-
regularity" are given in Section 3 (Prop. 3.4 and 3.9) for the case

A
that the mappings % and Tn’ n e« N, are induced by Borel measurable

mappings T: X - Y and T, X, ~ Y, n e N, respectively.

These conditions are essentially based on Rubin's and Prokhorov's
Theorems ([ 6, Theorem 5.5] and [27], [ 6, Theorems 6.1 and 6.2]).
For applying Theorem 2.3 one has to show that a sequence of
solutions (un) of (2.2) is w-bounded. The w-boundedness of (“n)

can be proved in many concrete situations using additional properties
of (%n), as can be seen in [ 12, Sect. 31, [5] and the Sections 5 and

6 of this paper. Roughly spoken, the motivation for the w-boundedness
condition for a sequence of probability measures is nearly the same

as the boundedness contained in the concept of "A-properness" (see

e.g. [26]) or in other compactness and regularity concepts (e.g. {273,
[19], [30]) for the approximate solution of operator eguations:

One needs some further information (e.g. a priori bounds) about the
approximate solutions in order to be able to conclude their convergence.

If X is a real separable Banach space, then a result of de Acosta
(L8, Theorem 2.3]; see also [5, Prop. 2.2]) implies that (%n) is

w-regular if and only if for all Ny < ny <ny< ... N and

sequences (u_ ) with u e P(X_ ) (k e N), we have that (p° ) is
nk nk nk nk
A
flatly concentrated (see [8]) if (Trl (un }) is relatively w-compact
k k
and (un } is w-bounded. An approach of this kind was used in [ 5] to
k

prove tightness of the set of probability distributions of approximate
random solutions of random operator eguations., However, we do not
pursue this line of research here.

3. WEAK CONVERGENCE OF APPROXIMATE SOLUTIONS TO STOCHASTIC
EQUATIONS

In this Section we present a general framework for proving convergence
of approximate solutions of stochastic eguations, i.e., equations
between spaces of probability measures. In the following Sections,
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we apply these results to more concrete equations (random operator
equations, random integral and differential equations) .

Let X and Y be separable metric spaces and T: X » Y be a (Borel)
measurable mapping. We consider the associated mapping

A A -

T: P(X) » P(Y) defined by T(n) (B): = u(T 1(B)), uw e P(X), Be B(Y).

In this Section, we are concerned with "stochastic eguations"

T(u) = v (3.1)
where v is a given probability measure on Y.
Now, a probability measure u on X is called a solution of (3.1) if

u(T_1(B)) = v(B) holds for all B ¢ B(Y). Existence and uniqueness of
solutions of stochastic egquations of this type were first studied by
Ershov (e.g. [ 1431, [15]) (in a more general framework).

In the following, we are interested in the study of approxzimations
for (3.1) using the concepts of the preceding Section.

Let, in addition, for all n ¢ W Xn be a Borel subset of X,

T,: X - Y be Borel measurable mappings and v ¢ P(Y) be probability
measures. As above,we consider the associated mappings

A A -
T : P(X,) + P(Y), defined by T (1): = u ¢ T w e PR, ne W,

and the "approximate" stochastic equations

T () =v, (ned). (3.2)

Now, we aim at establishing conditions on (Tn) and on T that imply

uniqueness of solutions of (3.1), "w-closedness" and "w-regularity"

(see Definition 2.,2) of the sequence of the associated mappings

A
(Tn) (as needed for the application of Theorem 2.3).

Proposition 3.1:

Let X and Y be Polish spaces and T: X » Y be measureable and
injective. Then, for every v ¢ P(Y), the solution of (3.1) is unique.
Proof:

Let uy o€ P(X), £ = 1,2, be solutions of (3.1) for some v ¢ P(Y).

Then, [ 25, Theorem 3.9] implies that for every B ¢ B(X), T(B) ¢ B(Y)
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and hence u1(B) = u1(T_1(T(B))) v(T(B)) =

(T H(T(B))) = 1, (B).

Definition 3.2:

Let S and S' be metric spaces, S_ < S for n ¢« N, and let

n

A: S » 8', An: Sn +> 8' forne N.

(An) is said to "converge discretely" to A (see e.g. [28], [29]) iff
(1) a(s,8_): = inf {d(s,8)|8 ¢ S } » 0, for all s ¢ S, where 4 is

the metric in S, and

(ii) for all s ¢ S, S, € S,y ne N, with s, + s in S, we have

3 ]
Ansn - As in S'.

Remark 3.3:
If (An) converges discretely to A, then A: S » S' is continuous

(see [ 29, Theorem 6.2, p.239]). For the relevance of "discrete con-
vergence" of mappings we refer to the extensive literature on
numerical functional analysis and "discretization methods" for
operator equations (see e.g. (21, [191, {283, (297, [301).

Proposition 3.4:

A A
Let T and (Tn) be as above and T, (Tn) be the associated mappings.

A A
Then, T and (Tn) are w-closed if (Tn) converges discretely to T.

Proof:

Using the same idea as in the proof of [21, Theorem 3.1], we define
the mappings%n: X+Y, ne¢ M, by

T x , X ¢ X
_ n n
I
™ , X € X \ Xn.
Because of ¥2'(8) = T_'(®) u (7 (B) \ X)), for all B ¢ B(Y), the

mappings %n' n ¢ N, are Borel measurable.
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Now, let Ry <N, <Ng < ... ¢ N and (un ) with Wy € P(Xn ),
k k k
A .
for k ¢ N, u .lLu and T (u Lzav be chosen arbitrarily.
n n, o Tny
A
To prove that this implies T(u) = v (i.e.,"w-closedness"), we use

Rubin's Theorem ([ 6, Theorem 5.5]) to show that
A - - - -
T (un ) = L T L. I %n1 _E,uT 1 and hence uT o v, i.e.,%(u) = v.
M Py k "k Py Py
To this end, we first show that the sequence (%n ) satisfies the
k

assumptions of that Theorem. Let Xx, Xy € X, k ¢ N, with X, > X be
arbitrary. We have to prove that

¥oox, > Tx. (3.3)

n, k

If the set K: = {k ¢ N|x, ¢ X } is finite, then (3.3) holds
k

because of the continuity of T (see Remark 3.3). Now, let K be
infinite, i.e., K = {k1 < k2 < ...}. Since (Tn) converges discretely
to T, there exists a sequence (;n) with kn € Xn for all n ¢ N,

that converges in X to x. We define a further sequence by

Xy o if n = n, for some j ¢ W,
% & = J i e X, ne N,

&% ‘
Xn ,» otherwise,

Clearly, (§n) converges to x and, hence, Tnin + Tx. This implies

T X
n k.
k.
3 J

every subseguence of (¥n xk) converges to Tx. Hence, (3.3) is proved
k

+ Tx. This, together with the continuity of T, yields that

and we can apply [ 6, Theorem 5.5] and obtain:
e %-1 -1 A w -1

u =pu T =T (up — > uT = v,

n Tny n oy ny nk)

This completes the proof.

Remark 3.5:

Note that in the proof of Proposition 3.4 we did not use the

A
assumption that Tn (un )} converges weakly; indeed, we proved that
k k

A A
if unk_‘"'.u then T (u )—"s Tu. This implies that if X = X for all
k "k
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A
n ¢« N, then we can even conclude in Proposition 3.4 that (Tn)

converges discretely to iy (see Definition 3.2).
If the Xn are not necessarily all equal, then one would have to

show that for all u ¢ P(X) there is a seguence My € P(Xn) with
un.ﬁlu in order to prove discrete convergence. This holds for all

u e P(X) with the property that u(X_ ) + 1, as can be seen as follows:

n
. _ 1
For sufficiently large n ¢ N, let un(A). = ETigT . u(A n Xn)

for A € B(X); we consider Yy also as a probability measure on Xn'
One can conclude from the Portmanteau Theorem ([ 6,Theorem 2.1]) that
un-izu. However, it can happen that un_ﬂéu also if u(Xn) # 1, as the

example X: = [0,11, X+ = {1, 11, u(1o)) = 1, w ({3 = 1 shows:

Here u, « P(Xn), un-ﬁgu, but u(X ) = 0 for all n ¢ N. Thus, we do
A
not know if the conditions of Proposition 3.4 imply that T, converges

A
discretely to T in general.

Another natural question is if discrete convergence of (Tn) to T
could be replaced by closedness (see [28]) of (Tn), T in the

assumptions of Proposition 3.4. This is not the case, as the
following example shows:

Let X: = I(;, Y be the metric space of compact subset of [0,1],

T: X > Y be defined by T(x): = {1} for x » 0, T{O): =[0,1], Xn = X,
Tn = T for all n ¢ N . Then (Tn), T is closed. For all n ¢ N, let
b, € P(X)) be defined by u_({0}) = 3, u_({1}) = % . Then u oy with
w({Q})}) = 1, but (%nun) does not converge to %u. Thus, (%n),@ is not
w-closed.

After having made the observations 3.1 and 3.4, we now turn to
A
sufficient conditions for the w-regularity of the sequence (Tn).

Definition 3.6:
Let 5, S', Sn ¢ 8, ne N, and A, An’ ne W, be as in 3.2.

a) A is called "regular" iff A-1(K) n B is relatively compact in S
for each bounded B ¢ S and compact K ¢ S'.

"V (A)) is called "collectively regular® iff \__/ A;
ne N

1(K) n B
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is relatively compact in § for each bounded B ¢ S and compact
R ¢ 8'.

c) (An) is called "asymptotically regular", in abbrevation "A-regqular",

iff for all Ny <Ny <0y < ... € N and all snk € Snk, k<« N,
the seguence (sn ) is relatively compact in § if (sn ) is bounded
k k
in § and (A s_) is relatively compact in 5'. (Note that it
k 7k

obviously suffices to prove relative compactness of (sn ) only for
k

those sequences where (A s_ ) is convergent.)
Bk Py

The notions of regularity and A-regularity are known to be important
for approximations of operator equations (see e.g. [2], [191, [28],
[30]). In the sequel, the "collective regularity" of the sequence

(Tn) turns out to be useful for the study of approximations of

stochastic equations (compare Prop. 3.10). The next result provides
a link between the introduced regularity concepts.

Lemma 3.7:

Let S, Ss', Sn ¢ 8§, ne N, and 3, An, ne N, be as in 3.2.
(An) is collectively regular if and only if (An) is A-regular and

An is regular for each n ¢ W.

Proof:

Let (An) be collectively regular. Since the definitions imply that
An is regular for each n ¢ N, it remains to be shown that (An) is

A-regular. To this end, let D <Dy <Ny < ... € N, s e S_ ,

R Ty
k ¢ N, be such that (s_ ) is bounded in S and (A_s_) is con-
n n,n
k k Tk
vergent. We put B: = {sn |k ¢ N}, define K as the closure of
k

. -1
{A_ s |k ¢ N} and conclude that \_/ A

By Nx ne N
compact in S. Because of

(K) nB is relatively

s eAl(x) 0B \_/ A(K) B, forallk e N, (s ) is
g Dy newn D k

relatively compact and, hence, (An) is A-regular. For the converse,

assume that (An) is A~regular and that AL is regular for each n ¢ N.
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Let B ¢ S be bounded and K ¢ S' be compact and let (wk) be an
arbitrary seguence in \_/ A;1
ne N

(wk) has a convergent subsequence. To this end, we distinguish two

(K) nB. It suffices to prove that

cases.

Case 1: There exists n, e N such that the set

(A;1(K) nB) n{w |k ¢ W} is infinite. Then the regularity of A
o o

completes the proof.
Case 2: For each n ¢ N the set (A;1(K) nB) n{wlk e N} is finite.

Now, we construct a subsequence of (wk) by induction as follows.
1

Let n; ¢ N be such that w, ¢ A; (K) 0B and k;: = 1.
1
Assume that k, <k, <... < Kioqr By <Dy <oy ny_q ¢ N are
already defined with Wy € A;1 {(K) n B for 1 < 3 < i.
=1 =1

-1
Then we have that {n ¢ llf(An (K) nB)n {w [k > ki 4} =@, n>n_ 3

is nonempty (since the contrary would imply case 1). Hence, there

e N such that ki—1 < ki' n.

< n, and
i-1 oy

re k, .
a My

\ € An'(K) n B. (3.4)

This inductive procedure defines a subseguence (wk ) of (wk).
i

Now, we define a new sequence sn T W i e N, and have from
i i

{(3.4) that s e 8 ,1e¢ N, (s ) is bounded and (A_ 5_ ) is a

ng n; ny n. ng
seguence in K, hence, is relatively compact.
Because of the A-regularity of (An), this implies that (sn ) is

i
relatively compact, i.e., (sn ) = (wk ) has a convergent subsequence;
i i

thus, (wk) has a convergent subsequence, which completes the proof.

]

Remark 3.8:

Because of Lemma 3.7,the well-developed concept of A-regular operator
approximations (see e.g. [2], [19], [30] and also [26] for the related
concept of A-proper maps) also applies to collectively regular
operator approximations. Note that in many applications the
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approximations An’ n ¢ N, are defined on finite~dimensional spaces

and hence are regular, because sets of the form A;1(K) n B are then

bounded subsets of finite-dimensional spaces and, hence, are relatively
compact.

The next result shows that (as one would expect in the view of [21)

the collective regularity of a sequence of mappings (with values in

a linear space) is invariant under additive "collectively compact

perturbations”:

Lemma 3.9:

Let S be a metric space, Sn' n ¢ N, be subsets of S, S' be a linear

metric space and An, Cn: Sn > 8', n ¢ N, be such that (An) is

collectively regular and <Cn) is "collectively compact", i.e.,

\\// Cn(B) is relatively compact for each bounded B ¢ S. (3.5)
ne©XN

Then (An + Cn) is collectively regular,

Proof:

Let B ¢ S be bounded and K ¢ §' be compact, and let us consider

vi = \J a ¢ cn)'1 (K) n B. (3.6)

ne N

We show that there is a relatively compact subset of S which contains
V. To this end, let s ¢ V be arbitrary.

By (3.6) there exists n, € N such that

(An + Cn )s ¢ K and s ¢ B, (3.7)
o e}

Let XK' be the closure of “._/ c,(B); we obtain from (3.7) that
ne« N

S ¢ A;1((-K')+K) nBc \_/ A;1((-K‘)+K) n B. (3.8)
o ne N

By (3.5), K' is compact in S' and, therefore, (-K')+K is compact.
This, together with the collective regularity of (An) and with (3.8),

implies that V is contained in the relatively compact subset

-1
\_/ An ((-K')+K) n B of S. Since B and K were chosen arbitrarily,
n ¢« N
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this implies that (An + Cn) is collectively regular.

Proposition 3.10:

A
Let Y be Polish, (Tn) be as above and (Tn) be the sequence of
associated mappings.

A
Then (Tn) is w~regular if (Tn) is collectively regular.

Proof:

Let Ny <N, <ng <... ¢ N, unk € P(Xnk), ke N, (unk) be

)) be weaklv convergent in P(Y). By

w-bounded and (%n (un
k k

Prokhorov's Theorem it suffices to prove that (ui ) is tight (cf.

Def. 2.2).
Let ¢ » O be arbitrary, but fixed. By assumption, there exist a
bounded BE ¢ B(X) and a compact KE c Y such that

. e -1
inf y (BE) z 1= and inf Vi (’I‘n (KE)) 2 1= (3.9)

keN Tk keN "k Px

|
N

(The latter again follows from Prokhorov's Theorem [ 6, Theorem 6.2]
since Y is Polish.)
Let ¥ denote the closure of \_J T.'(K ) n B . Since (T ) is
€ n € € n
ne N
collectively regular, ﬁe is compact in X and we obtain from (3.9)
that

e e

N e -1 -1
unk(X\KE) < unk(xvn\EJNTn (K) nB)) s u_ ‘X\‘Tnk(KQ nB))

e e

-1
G SN
< % + % =¢, for all k ¢ N.

Hence (ui ) is tight and the proof is complete.
k

The main convergence result of this Section is now an immediate con-




76 ENGL AND ROMISCH

sequence of Theorem 2.3, the Propositions 3.1, 3.4 and 3.10, and of

Lemma 3.7,

Theorem 3.11:

Let X and Y be Polish spaces, T: X + Y be measurable, Xn’ ne¢ N,

be Borel subsets of X, Tn: Xn + Y, n e N, be regular and measur-
A A

able and T, Tn’ n ¢ N, be the associated mappings defined as above,

and let v, v, o€ P(Y), n ¢ WN.

Assume that (Tn) is A-regular and discretely convergent to T and
that vnj-’; V.
Then, every w-bounded sequence (un) of solutions of (3.2) (for the

index n ¢ W) is discretely w-compact and every limit of a weakly
convergent subsequence is a solution of (3.1).

If, furthermore, T is injective, then (un) even converges weakly

to the unique solution of (3.1).

Remark 3.12:

Note that the assumptions of Theorem 3.11 imply that the mapping

T: X + Y is continuous (see Remark 3.3) and regular. Indeed, it

can be shown similarly as in [ 2, Theorem 4.1] that the regularity

of T is implied by the discrete convergence of (Tn) to T and (already)

by the A-regularity of (Tn).

For a discussion of various aspects of Theorem 3.11 we refer to the
Remarks 2.4 and 4.11.

4, APPROXIMATIONS OF NONLINEAR RANDOM OPERATQR EQUATIONS:
WEAK CONVERGENCE OF DISTRIBUTIONS OF APPROXIMATE RANDOM SOLUTIONS

Throughout this Section, let X,Y and 2 be Polish spaces and y and z

be Y-valued and Z-valued random variables (defined on some probability
space {(Q,A,P)). Let T be a mapping from 2 x X into Y that is Borel
measurable, i.e., measurable with respect to B(Z x X) and B(Y).

We will be concerned with the random operator eguation

T(z(w),x) = yvi{w) (w e Q). (4.1)

In the sequel, we make use of the following solution conceprts for
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equation (4.1) and, in particular, introduce the concept of a “weak
solution" of (4.1) which turns out to be suitable in the context of

"weak approximations”:

Definition 4.1:

a) A mapping x: @ » ¥ is called a "random solution" of (4.1} iff x
is measurable and T(z{w), x(w)) = y(w) holds P-almost surely.

b) A mapping x: 9 » X is called a "D~solution" of (4.1) iff x is
measurable and there exists a random variable Z: @ -~ 2 with
D(z) = D(z) such that

D(T(2(.), x(.))) = D(y). (4.2)

c) A probability measure My € P(X) is called a "weak solution" of
(4.1) Liff there exists a probability measure y ¢ P{(Z x X) such
that

uT—1 = D{(y) and (4.3)

uy = up;(1 , D{z) = upg1 (4.4)

where Py and p, are the coordinate projections from 2z x X onto

X and 2, respectively.
(Note that the coordinate projections are Borel measurable and

that upx1 and up;1 are the so-called marginals of p ¢ P(2Z x X).)

Remark 4.2:

The concept of random solutions is already classical in probabilistic
functional analysis (see e.g. [4], [20]). An existence theory for
random solutions (of random operator equations) is well-developed
(e.g. [9], [24]). The concept of a D-solution was introduced and
discussed in [12]. (Note that Definition 4.1 b is an adaptation to

the type of random equationswe consider in this paper.) Our motivation
for introducing D-solutions stems from the fact that (as proved in
[121) a seguence of random solutions of approximate random operator
equations (defined on the same probability space) converges in
distribution to a D-solution of the original equation under reasonable
conditions (see also Corellary 4.7). If the approximate random
operator equations are considered on (possibly) different probability
spaces, it turns out (Theorem 4.6) that a sequence of probability
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distributions of approximate random solutions converges weakly to a
weak solution. Of course, the concept of a weak solution of (4.1)
reminds of and is motivated by Ershov's concent (e.g. [14]1 ) for
solutions of stochastic eguations (see also Remark 4.4).

Finally, we add the following obvious observations: A random solution
is also a D-solution of (4.1): the distribution of a D-solution is
a weak solution of (4.1) (the latter follows from

D(T(Z(.),x(.))) = D(Z,x)T"! and the fact that D(x) and D(z) = D(2)
are the marginals of D(zZ,x)). However, a weak solution need not be
the distribution of a D-solution. Hence, each solution concept of
Definition 4.1 is a strict generalization of the preceding one.

For the treatment of (4.1) and of its approximations we now aim at
using the concept and the results of the preceding Sections.
However, we first have to transform (4.1) to a suitable form, since

in (4.1) the "stochastic inputs" do not only appear in the right-hand
side as in (3.1) (which is called a "standard stochastic equation”

in [16J). To transform (4.1) into this standard form,we make use of
an idea of Ershov ([ 16, p.606]) and consider the following "induced"

stochastic equation:
¥:z x x+ ¥ x2, ¥(z,x):= (T(z,x),2), (z,%) ¢ Z x X, (4.5)

w1 = ply,2) . (4.6)

Proposition 4.3:

a) The mapping ¥ is Borel measurable (from B(Z x X) to B(Y x 2)).
b) If u ¢ P(Z x X) is a solution of (4.6}, then up;1 is a weak

solution of (4.1).
c) ¥ is injective if the mapping T(z,.):X » Y is injective for

each z ¢ 2.

Proof:

a) Since B(Y x 2) is the smallest o-algebra containing all sets of
the form B1 X Bz, B1 e B(Y), 52 ¢ B(Z) (see (25, p.61), it

suffices to note that for sets of this form we have

&‘”(31 x By) = T-1(B1) npz—1(B2) ¢ B(Z x X). (4.7

b) Let u € P(Z x X) be a solution of (4.6). It follows from (4.6) and
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(4.7) that D(y) (B,) = ¥ (B, x 2) = wr™(B,), for all B, < B(V),

and D(Z)(Bz) = u%—1(Y % B2) = up;1(Bz), for all B, « B(Z).

Hence (4.3) and (4.4) hold.

c) Let (21,x1), (22'x2) e Z x X be such that %(21,x1) = %(zz,xz).
This implies 2z, = 2, and T(z1,x1) = T(zz,xz) = T(z1,x2).
Thus, by assumption, Xy = X, This shows that T is injective.

Remark 4.4:

Proposition 4.3 seems to motivate an alternative for defining a

weak solution By € P(X) of (4.1), namely, by requiring the

existence of a solution p ¢ P(2 xX) of (4.6) such that uy = up;1.

This notion is stronger than the original one (Prop. 4.3 b !) and
seems to be advantageous in some respects, since existence and
uniqueness results for solutions of (4.6) are well-known ([ 143, [15],
Prop. 3.1). However, it seems to be a disadvantage that this notion
depends on the choice of ¥ and, thus, on the particular way of
transforming (4.1) into some "standard form" and not on the original
eguation alone. For this reason,we feel that the original definition
of a weak solution of (4.1) is justified and more suitable than the

above alternative.

Now, let additionally for all n ¢ N Borel subsets Xn of X, mappings
Tn: Z x Xn + Y that are Borel measurable from B(Z x Xn) to B(Y) and
random variables Yo and z, wlth values in Y and Z, respectively
(defined on some probability space (Qn,An,Pn)), be given.

We consider the "approximate" random operator eguations
Tn(zn(w)lx) = yn(m) {w € Qi ne N, (4.8)

and define mappings %n: Z x Xrl + Y x Z, ne¢ N, analogous to (4.5).

In view of Proposition 3.10, the next observation is important for
the proof of our basic convergence result (Theorem 4.6).

Proposition 4.5:

Let Tn and %n' n e« N, be as above and assume that
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for all z ¢ 2, each Tn(z,.) is regular and

(T_(z,.)) is A-regular (4.9)
and

for all bounded B < X and compact K = 2, (4.10)

{Tn(.,x)[x € B nX,, e N} is equicontinuous on X,
Then (%n) is collectively regular,
Proof:
Let B be bounded in 2 x X and K be compact in Y x Z, and let
((z,,%)) be an arbitrary sequence in U 3‘;1 (R) n B: = X,

n e« N
It suffices to prove that ((zk,xk)) contains a convergent sub-
sequence. For all k ¢ N there exists ny e N such that
(zk,xk) € %;1(ﬁ) n B.
X

Hence, B: = {xklk ¢ N} is bounded and

y -

Tnk(zk,xk) = (Tnk(zk,xk),zk) ¢ K for all k ¢ NWN. (4.11)

This implies that (%n (Zk’xk)) has a convergent subsequence, and
k
we may assume w.l,0.q. that (¥n (zk,xk)) converges to some
k

element, say (y,z) ¢ K. Hence, we have

z * 2 (in Z) and Tnk(zk,xk) + vy (in Y). (4.12)

Because of (4.10), {Tn (.,xk)]k ¢ W} (as a subset of
k

{Tn(-,x)lx ¢ B n Xn’ n ¢« N}) is equicontinuous on the compact
set pz(i). This, together with (4.12), implies by standard arguments

that (Tn (z,xk)) also converges to y. Hence
k

Ko: = {Tn (z,xk)[k e W) u {y} is compact in Y and we have
k

-1 -1
% e [T {z,.})] (K )nB < [T (z,.)1 "(K) nB
k ny o nkzdéN n [}

(4.13)
for all k ¢ N.
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Because of (4.9) and Lemma 3.7, the set on the r.h.s. of (4.13)

is relatively compact. This implies that (xk) has a convergent
subsequence and hence, by (4.12), ((zk,xk)) has a convergent sub-

sequence. This completes the proof.
0

Assume for the following that random solutions X8 80> X of the

n
approximate equations (4.8) are given for all n ¢« N . We are now

interested in sufficient conditions on T and (Tn) that imply weak
convergence of the seguence (D(xn)) to a weak solution of (4.1) if
(D(yn,zn)) converges weakly to D(y,2z).

(Note that we do not distinguish whether D(xn) is viewed as an
element of P(Xn) of of P(X). This is justified because the
"extension” D(xn)e ¢ P(X) of D(xn) € P(Xn) is just the distribution

of x, on X) .

Theorem 4.6:

Let T, (Tn), zZ, (zn), v (yn) be as above and let for all n ¢ N

%, be a random solution of (4.8) for the index n. Assume that

(Tn) satisfies the conditions (4.9) and (4.10), (4.14)

(Tn) converges discretely to T

(4.15)

(jointly in both variables)
(D(yn,zn)) converges weakly to D(y,z) (4.16)
(D(xn)) is w-bounded. (4.17)

Then (D(xn)) is discretely w-compact, and every limit of a weakly

convergent subsequence is a weak solution of (4.1).
I1f furthermore T(%,.) is injective for all % e Z, then (D(xn))

converges weakly to a weak solution of (4.1).

Proof:

Since Xy, is a random solution of (4.8), we have for all n ¢ N
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that %n<zn<m), x(w)) = (v (), z (w)) P -almost surely. This

. ; &=1

implies D(zn,xn)Tn = D(yn,zn) for all n ¢ WN.

This means that Hpd = D(zn,xn) is a solution of the stochastic
. Nl _

equation uTn = v, = D(yn,zn) for all n ¢« WN.

Decause of (4.14) and Proposition 4,5, (%n) is collectively regular.

Moreover, (4.15) implies that (%n) converges discretely to ¥,

Hence, we can apply Theorem 3.11 to the present situation noting
that (u,) is w-bounded because of (4.17), (4.16) (which in particular

implies that (D(Zn)) is w-bounded) and the simple inequality
D((zn,xn))(B1 x B,) z D(z ) (By) + D(x,)(B,y)-1. Then, Theorem 3.11

yields that (un) = (D(zn,xn)) is discretely w-compact and every

limit ¢ of a weakly convergent subsequence of (Un) is a solution of

(4.6), i.e., we have u%—1 = D(y,2).

9

This implies that also (unp; ) = (D(xn)) is discretely w-compact

and every limit of a weakly convergent subsequence has the form
up;1, where p is a solution of (4.6) (because of the continuity of

By and [6, Theorem 5.1 and Lemma 1, p.38]). Because of Proposition

4.3 b, = up;1 is a weak solution of (4.1).

Hy 8
Now, let T(%,.) be injective for all % ¢ 7. Because of Proposition
4.3 ¢, ¥ is injective. Hence, the second part of Theorem 3.11 im-
plies that (D(zn,xn)) converges weakly to the unique solution u of
(4.6) and, thus, (D(xn)) converges weakly to up;1 (L6, Theorem 5.1]).

This completes the proof.
4]

Corollary 4.7:
Let T and (Tn) be as above and let YrZi¥o 02,0 D€ N , be defined
on the same probability space (o,A,P). Let for 211 n ¢ N X, be a

random solution (on (Q,A,P)) of (4.8) for the index n.

Assume that (4.14) -~ (4.17) are fulfilled.

Then every subsequence (xn ) of (xn) has a further subsequence
k

that converges in distribution to a D-solution x of (4.1).
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Proof:

As in the proof of Theorem 4.6 we have that (D(zn,xn)) is discretely

w-compact and every limit u ¢ P(Z2 x X) of a weakly convergent sub-
sequence (D(zn Py )) is a solution of (4.6). Then the main result
k

of [13] implies that there exists a Z x X-valued random variable

(z,x) defined on the same probability space (&,A,P) such that

W = D(z,x). Hence, (D(x_ )) = (D{(z_ ,x_) p_1) converges weakly to
nk e nk X

D(E,x)p;{1 = D(x), i.e., (xn } converges in distribution to x.
k

Since u = D(z,x) is a solution of (4.6), we have

=1

D(¥(Z(.),x(.))) = D(Z,x)F ' = D(y,z). (4.18)

{(4.18) implies that

D(T(Z(.),x(.)) = D(F(Z(.),x(.)))p, = Dly) and

D(Z) = DA (), x()))p]" = Dl2).

(Here Pyt Y x %Z>Y and p;: Y x 2 » 2 are the coordinate projections

defined on Y x 2.)
Hence, x is a D-solution of (4.1) and the proof is complete.
0

Our next result is a sharpening of the convergence part of Theorem
4.6 and turns out to be useful in applications (e.g. in Section 5).

Corollary 4.8:

Let the assumptions of Theorem 4.6 be fulfilled and assume that

E: ={% ¢ 2|T(%,.) is injective} ¢ B(2Z) and
D(z)(E) = P({w|T(z(w),.) is injectivel}) = 1.

(4.19)

Then (D(xn)) converges weakly to a weak solution of (4.1).
If furthermore (4.1) has a random solution x, then (xn) converges

in distribution to x.

Proof:

A look at the proof of Theorems4.6 and 2.3, respectively, shows
that the sequence (D(zn,xn)) (and hence D(xn)) converges weakly if
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the solution of (4.6) is unique. Thus, it suffices to show that

'
under our assumptions uT 1a D{(y,z) implies that u(B) is uniquely
determined for all B ¢ B(Z x X).
Let B ¢ B(Z x X) and u ¢ P(Z x X) be such that u¥ | = D(y,z).

Then (4.19) implies (with the cocordinate projection p,: 2 x X - 7))
up;1(E) = w(E x X) = D(z)(E) = 1, and hence
p(BY = u(B n E x X}. (4.20)

As in the proof of Proposition 4.3 ¢ it follows that T viewed as
amap from B n E x X into ¥ x Z is one~to-one. Then, [ 25, Theorem 3.9]
implies that %(B n E x X) is a Borel subset of Y x Z. This, together
with (4.20), implies that

AT I Y

u(B) = u{T (T(B nE x X))) = D(y,z)(T(B n E x X}),
i.e., u(B}) is uniguely determined.

Finally, let x be a random solution of (4.1).

Then, T(z(w),x(w)) = (T(z(w),x(a)),z{a)) = (y(w),2z(v)) holds P-almost
surely. Hence D(z,x) is the unigue solution of (4.6) and, thus,

(D(xn)) converges weakly to D(z,x)p;(1 = D(x). This completes the proof.

C

Now, let us consider two types of particular situations for which
Theorem 4.6 and its Corollaries are applicable and which correspond
to the applications we study in Section 5.

Example 4.9:

(i) Let X, =X and T, =T for all n ¢ W . Then (4.14) and (4.15)

are implied by the following condition:

T: 2 x X+ Y is continuous,

T(%,.) is regular for all % e Zz, and
(4.21)
{T(.,x)|x ¢ B} is equicontinuous on K, for all

bounded B « X and compact K c Z.

(ii) Let X = Y be a separable Banach svace, C: 2 ¥ X ~> X and
Cn: 2z x Xn + X, n ¢ N, be mappings such that

(Cn(%,.)) is collectively compact for all Z ez, (4.22)
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for all bounded B < X and compact K < 2, (4.23)

{Cn(.,x)]x € BnX ,nce N} is egquicontinuous on K,
(Cn) converges discretely to C. (4.24)
If we put T(E,.) =1 - C(%,.), Tn(;,.) = I—Cn(;,.), ; ¢ Z, ne N,

(4.22), (4.23) and (4.24) imply (4.14) (because of Lemma 3.9)
and (4.15), respectively,

Remark 4.1%o:

In Theorem 4.6 and its Corollaries we need a sequence of random
solutions (xn) of (4.8)., As a first remark addressed to this

assumption, we note that all that is reallv needed in the
proof of Theorem 4.6 is that the joint distribution D(zn,xn) solves

the stochasticequation UT;1 =Dy ,z) (n e W),
Our second remark shows that it suffices to know a solution of
(4.8) only on a measurable subset of X, whose probability tends

to 1 as n > «; Assume that for all n ¢ W there exist An € An and

a measurable manning Xy An + ¥ such that

Tn(zn(w),xn(m)) = yn(m) for Pn-almost all w « An,
and that lim Pn(An) =1,
n-o

Then we define for all n ¢ N

B

xn(m), w € An _ yn(m) ¢ w o€ An
W= 1y ), v ga, 0 YalW)e T, (2 (0) % (@) , w £ A

where ;n is some X~-valued random variable on (Qn,An,Pn), and have
that D(z_,% )T, = D(¥_,z ).

n’“n’*n n’“n
In order to apply Theorem 4.6 to the sequence (in) we note that
D(§n,zn)_§ D(y,z) if D(yn,zn)Jﬁ D(y,z). To see this, let B be an
arbitrary closed subset of Y x Z. Then we have for n ¢ I

D(¥,,2,) (B) = P ({s e a [(F (w),2 () « B}

IA

P ({w e An|(yn(w),zn(m)) e« BH+P (o, \AD)

A

Dly,,z,)(B) + B (8 \A)
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and, hence, limsup D(;n,zn)(B) < limsup D(yn,zn)(B) < D(y,2) (B)

noo noe

because of the Portmanteau Theorem, which then also vields the desired
result.

Hence, we can apply Theorem 4,6 to the seguence (§n) if (D(in)) is

w-bounded., This latter condition obviously only depends on the
properties of (xn) and, hence, is independent of the particular

chcice of the Qn. This argument is useful in applications and will

be used in Remark 5.5.

Remark 4.11:

Theorem 4.6 states that under certain (deterministic) assumptions
on T and (Tn), a sequence (D(xn)) of approximate "solution measures"

is discretely w~compact or {even) weakly convergent (to a weak
solution of (4.1)) if (D(x.))) is w~bounded and D(yn,zn)_ﬂ,D(y,z).

The assumptions (4.15) and (4.16) are natural in this approximation
context, the "regularity assumption” (4.9) is known to be important
also for deterministic operator approximation (see Sect. 3}, and
(4.10) is not too restrictive: These assumptions can be checked in
concrete situations, as can be seen in the Sections 5 and 6, and in
[12, Sect.3].

Concerning the w-boundedness assumption (4.17), we feel that there
exist various approaches to show this property. Some of them are
used in the Sections 5 and 6. And after all, a-nriori bounds are
also freguently used in deterministic approximation theory.

Finally we note that in view of Example 4.9 (ii) and Corollary 4.7,
Theorem 4.6 extends and refines [12, Theorem 2.11]. Theorem 4.6 can
now be applied to more general equations and "approximations" and
gives (together with Corollary 4.8) a criterion for weak convergence
of (D(xn)) which is easy to check.

5. APPROXIMATION OF SOLUTIONS OF RANDOM FREDHOLM INTEGRAL
EQUATIONS OF THE SECOND KIND

In this Section, we are concerned with random Fredholm integral
equations of the second kind (for an introduction see [4, Chapt.4l).
We apply the results described in Section 4 to certain approximation
procedures for such equations, namely, a method based on the
approximation of the random kernel by random degenerate kernels

and a numerical method based on quadrature approximations. For a
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description of the underlying numerical methods in the deterministic
case we refer e.g. to [ 17, vol.4]. Selected references for the
"stochastic" case are [ 5, Sect. 41, (7}, {12, Sect. 3] and [ 23].

Formulating our setup in the framework of Section 4, we put

X = ¥: = L,([0,11), Z: = L,([0,11%) and define T: Z x X > X by
T(z,x): = x - [ 2(.,8) =x(s)ds, for x ¢ X, 2 ¢ 2. (5.1)

Note that T is well-defined and is (jointly) continuous (and thus
Borel measurable as needed in Sect. 4).

Let z,2,, ne¢ N and Yi¥yr D€ N, be Z-valued and Y-valued random

variables, respectively (on possibly different probability spaces
(2,A,P) and (Qn,An,Pn), n ¢ N). Consider the random Fredhom
integral equation

1

T(z(w),x) = x = [ z(u,.,s)x(8)ds = y{w) (w e Q) (5.2)
o]

and its "approximationsg"
T(zn(m),x) = yn(w) (w € Qs D« nN). (5.3)

We note that this framework already contains "kernel approximation
methods" mentioned above (see e.g. [ 5, Sect.4]) if the "approxima-
tions" z, and Y, (n ¢ N) are required to belong to certain finite-

dimensional subspaces of Z and Y, respectively.

v t v : PR : :
The set E: = {z ¢ Z|T(z,.) is injective} is Borel.

If D(z)}(E) 2 v, for some r ¢« [0,1], and if D(zn).z.D(z) then we

have liminf D(zn)(E) > r. Especially, if D(z) (E) = 1, then
n—)w

lim D(zn)(E) = 1.

n+o

Proof:

Let Z ¢ E be arbitrary. Then T(%,.) is injective and Fredholm,
hence, T(%,.): X > X is continuously invertible. Let w ¢ Z be such
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_1H—1, where the latter is the operator

that lw-%], <5 [[T(%,.)]

norm and ".ﬂz denotes the norm on 2Z. We have

o=

Lmtwe) - 205, 00 Jim3, 017 s Tw-3l, leT,0177] <

Then, the well-known perturbation lemma implies that T{w,.): X» X
is continuously invertible, i.e., w ¢ E. Thus E is open and, hence,

is Borel.
If D(z)(E) 2 r and D(zn)_ﬁ D(z), [ 6, Theorem 2.1] implies

liminf D(zn)(E) > D(z)(E) 2 r, since E is open in Z.
N+

Note that, by the same arguments, this result is also true for the
case that 2: = C([0,11%) and X: = C([0,1]).

Theorem 5.2:

Let (D(yn,zn)) be weakly convergent to D(y,z) and let for all
ne N Xy be a random solution of (5.3) (for the index n ¢ W).

Assume that P({w ¢|T(z(w),.) is injective}) = 1.
Then (xn) converges in distribution to the (a.s.) unique rani™m
solution of (5.2).

Proof:

We apply Theorem 4.6 and Corollary 4.8. To this end, we have to check
the assumptions of that Theorem (since (4.19) is fulfilled by Lemma
5.1 and our assumption). Hence, it remains to be shown that (4.21)
holds (cf. Example 4.9) and that (D(xn)) is w-~bounded. To begin with,

we first note that T: 2 x X » X is continuous and T(%,.) is regular
for all 2 ¢ Z, since T(%,.) = I-C(%,.), where the mapping
C(Z,.): X » X is compact for % ¢ 7 (see also Lemma 3.9).

Furthermore, it holds for all z, # ¢ Z and % ¢ X that
IT(z,%) - T(%,i)ux s nz-%|z [%]y. This implies that {T(.,X)|X ¢ B}

is uniformly equicontinuous (even) on Z, for all bounded B c X.
Hence, (4.21) is fulfilled.

Now, we show that (D(xn)) is w-bounded. Let ¢ > O be arbitrary, but
fixed. Since T(z(w),.): X » X is linear, continuous and bijective

for P-almost all w ¢ 2, |[T(z(.),.)1" '] (possibly modified on a
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subset of @ with probability zero) is a real-valued random variable
(see [ 20, ».192]). Hence there exists r€ > O such that

D(z)(F) = 1 -5, (5.4)

-1

where F_: = {Z ¢ z|T(%,.) is injective, |[T(¥,.)] | < r ).

Let % F_and w ¢ Z be such that H%-w”z < a. Then we have

T, = (Z, 00Tz, 037" <ar,

and, by the perturbation lemma, T(w,.) 1is continuously invertible
with

-1 r(3,.)17"
frrew, 0177 < LERLze)d

e
if ar_ <1,
e
Hence, there exists a_ > O such that H[T(w,.)]_1i <r_ if

W=z <o . Thus,F_ is an open subset of Z.
Z € €

Then the Portmanteau Theorem ([ 6,Theorem 2.1]) and (5.4) imply

liminf D(Zn)(FE) > D(z)(FE) > 1 - % . Hence, there exists
n > o
n_ =n_(e) ¢ N such that
o o
[ 4
D(zn)(Fa) =z 1 - 3 for all n = ng- (5.5)

Since (D(yn)) is weakly convergent and hence tight, there exists

CE > 0 such that

Dly,) ({¥ ¢ ¥|[¥ly < C}) 21 -5 forallne N. (5.6)

Let n 2 ng be arbitrary, but fixed and define

=
[

{u e Qn'”yn(w)”Y < C. 1y By = {ue aplz () e F_} and

o]
]

{w ¢ Qn|”xn(m)HX <c.rl.

Let N ¢ An with Pn(N) = 0 be such that for all w ¢ o, \ N,
T(zn(w), xn(w)) = yn(m) holds; such an N exists, since X, is a

random solution of (5.3). Now, let w ¢ (2 \ N) n A1 n A2. Then we

have [x_ (w)] = "[T(zn(w),.)]_1”Uyn(w)ﬂ <r.C_, and hence w ¢ Aj.
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This implies that

Q_ A\ A3 c N u (@

a VA (e N a,)

n
and hence, because of (5.5) and (5.6) and the definitions of A, and

£ E _
A2, Pn(ﬂn \A3) <7+—2——a.

Since n = n, was arbitrary, this means
Y ~y
D(x ) ({x ¢ X|||x1[X <c.r }) 2 1-e for all n 2 n_. (5.7

Since {D(xn)[1 < n < n,} is tight by (6, Theorem 14] and ¢ > O was
arbitrary,(5.7) implies that (D(xn)) is w~bounded,

Finally, since T(z(.),.): 2xX » X is a continuous random operator
that is bijective P-almost surely, [ 24, Theorem 1] implies that (5.2)
has a (P-almost surely) unique random solution x. Thus it follows
from Corollary 4.8 that (xn) converges in distribution to x.

o

Remark 5.3:

An inspection of the above proof shows that D(anJﬂ D(z) and
P({w ¢ 2|T(z(w),.) is injective}) = 1 (5.8)

imply that (D(xn)) is w-bounded (tight) if (D(yn)) is w-bounded

(tight). This observation extends [ 5, Theorem 4.1] in the sense
that instead of requiring the convergence of the sequence (zn) of

kernels (defined on the common probability space (Q,A,P)) P-almost
surely to z we need only its convergence in distribution.

If (5.8) is not fulfilled in the situation of Theorem 5.2, we can
still conclude the following from Theorem 4.6 (see also [5, Theorem
4.21):

If D(yn,zn)—ﬂaD(y,z) and (D(xn)) is w-bounded, then (D(xn)) is

discretely w-compact and every limit of a weakly convergent sub-
sequence is a weak solution of (5.2).

Now, we consider a method for solving (5.2) based on guadrature
approximations for the integral operator; simultaneously, the
"stochastic input" (y,z) will be approximated. For a description

of this method we consider the integral operator as acting on C([O,1])
and use the same setting as in [12, Sect. 3.2].
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Let X: = Y: = C({0,1]), Z: = C({0,11°) and define T: 2 x X » X
to be the restriction of the mapping defined by (5.1) to spaces
of continuous functions, and Tn: Z x X»> X, ne N, by

n
Tn(z,x): = x_-E anj z(., snj) x(snj), %X, 2c¢Z, (5.9
j=0
where for each n ¢ Il’ano""’ann are the weights of a guadrature
formula with nodes Shoret r8nn {(in [0,11).

Note that T and Tn' n ¢ N, are well-defined and (jointly) continuous.

Let z, Zor D€ N, and vy, Ypr D€ N, be Z-valued and X-valued ran-

dom variables, respectively (on possibly different probability spaces

(2,A,P) and (Qn,An,Pn), ne N). We again consider the eguation

(5.2) and its "approximations™®

n

T, (z () ,x) = x—jioanjzn(w,.,snj) (snj) =y, ()

(5.10)

(w € Q0 N ¢ N).

Theorem 5.4:

Let (D(yn,zn)) be weakly convergent to D(y,z) and let for all n ¢ N

X, be a random solution of (5.70) (for the index n). Assume that

P({w ¢ @/T(z(w),.) is injectivel})= 1 (5.11)

and

the quadrature rule is convergent, i.e., for each
(5.12)

-

n
ve C(LO,11), 1lim I o
n+e j=0

njv(snj) = é v{s) ds holds.

Then (xn) converges in distribution to the (a.s.) unigue random

solution x of (5.2).

Proof:

We proceed similar as in the proof of Theorem 5.2 and show that the
conditions of Theorem 4.6 are fulfilled. To this end, we put
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1
C,Cn: 7 x X+ X, ne N, Clz,x)t =/ z(.,s)x(s}ds

(xeX, 2e2)}

Cn(z,x):—

[
el
2

:2(.,s -)x(sn

) .
o 13 nj i

To prove (4.14) and (4.15) (for (Tn) and T), it remains to be shown that

(4.22), (4.23) and (4.24) hold (see Example 4.9). Actually, this
part of the proof was carried out in [12, Sect. 3.21 (even for a
nonlinear integral operator)using essentially (5.12),

Hence, for the application of Theorem 4.6 and Corollary 4.8,
respectively, we only have to prove that (D(xn)) is w-bounded, since

we can conclude from the proof of Theorem 5.2 that (5.2) has a
P-almost surely unigue random solution.

The proof is similar to that of Theorem 5.2: It suffices to show
that for all ¢ > O there exist n, € N and KE > O such that

Dlz) ((Eez|f0T (3,037 <K 1) > 1~c for alln > n (5.13)

o!
which corresponds to (5.53).

To this end, let ¢ > O be arbitrary, but fixed, and let r, > o]

and FE < 2 be defined as in (5.4). One can prove analoguosly to
the proof of Theorem 5.2 that F, is open in 7 = C(EO,1]2) and that

this implies the existence of an ng e N such that
£
D(zn)(Fe) 1 -3 for all n = n,. (5.14)

Since (D(zn)) is w-bounded, there exists RE > O such that

D(z)({Z ¢ 2!]3] <R} 21 -5 forallne¢ N. (5.15)
n € 4

It is well-known that (5.12) implies that

n
K: = sup T
nelN J3=0

lanj[ < « holds, (5.16)

Then we have for z ¢ Z with | Z]

"

R_ that
5]

1Y n Y
ch(z,.)l < jio{unj{ lZ] < KR_ for all n ¢ N.

This implies together with (5.15) that
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D(z,) ({Zez] }|cn(%,.)u S KR 1) 2 1 - for all n ¢ N. (5.17)

]

Now, we define for each n ¢ W hn: Z > R by

N

hn(%’): = H(cn(%,.) - c(%,.))cn(z,.)u, Z ¢z, {5.18)
We note that hn is Borel measurable for each n « N, since
C(%,x), Cn(g,x), n ¢« N, are continuous with respect to 3 for all
X ¢ X and because of the separability of 2.
Let Z, 2_¢ Z, n « N, with #_ > 3. Then, both (C_(¥_,x)) and

n n n n
(C(%n,x)) converge to C(%,x) for all x ¢« X and (Cn(Qn,.)) is

collectively compact (cf. [ 17, p.163 f£f]). Then, it is a well-known
consequence of collectively compact operator approximation theory
(see [ 1, Cor.1.91) that

") " " Y
hn(zn) = H(Cn(zn,.) - C(zn,.))Cn(zn,.)H ;:T:_: 0.

Hence, [ 6, Theorem 5.5] implies that (D(zn)h;1) converges weakly
to Hot where Mo is the unit mass at O ¢ R, Because of the Portmanteau

Theorem [ 6, Theorem 2.1], this implies

: -1 1 1
liminf D(z )h_ ' ({reR| |z < ) 2 u ireR| r] < 5 = 1.

n-> « € £

Hence, there exists n, e N, ng 2 R such that for all n = ng

1
2r

D(zn)h;T({re]R [r] < €})= D(z,) ({Zezh (%) <2;€

1)z~ %. {5.19)

Now, we fix ne¢ N, n =2 n and consider the following Borel sets

o’

(cf. the proof of Theorem 5.2) in Z:

4" Y
Fi: = F_, Fyr =1z zf fc (z,0] < KR_},
v N 1
Fy: = {2 ¢ Zlhn(z) < P Y,
Fy: = {7 « Z]Tn(%,.) is continuously invertible and

fer (2,037 < 20+r xR ) 3.

Let z €

1

F.. Then a variant of the perturbation lemma (17,p.368,

3
_ i

1
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-1

Satz 4] implies that [Tn(;")] : X > X exists and that

1+ im0 fe E )
-1
[T (%,.)3 ')+ — -
% N R R I ICRE TN R CIRR PN C IS Y
holds.
Hence, N 1+ r KR
ler (2,037} < 3 = 2(1 + r KRR )
1= r_5—
lee 3
and thus % « F,. This implies that Z \Fy < .kﬁ(z \ F;) and hence
l:

by (5.14), (5.17) and (5.19)

D(z) (2F,) < = e, ( (5.20)

Since n ¢ N, n 2 n,, was arbitrary, this implies (by definition of

F4) that (5.13) ig fulfilled with Ks: = 2(1+ rEKRE). This completes

the proof.
P o)

Note that the second approximation procedure for random Fredholm
integral equations of the second kind and the convergence result
presented above provide a theoretical basis for the computational
analysis performed in (7].

Remark 5.5:

It follows from the proof of Theorem 5.4 that for all ¢ > O there
exists n, = no(e) e N such that

Pn(An) 21 - ¢ for all n 2 Ngs (5.21)

where A : = {w ¢ nn]Tn(zn(w),-) is continuously invertible} ¢ A ,

and hence lim Pn(An) = 1.

n+oe

Now, the argument of Remark 4.1o yields that the sequence (in),
defined by

[T (z (), )1y (W), w e A

xn(w): = . y ne N, (5.22)

N
xn(w) r W 1 Aﬂ
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where ;n is some X-valued random variable on (Qn,An,Pn), converges
in distribution to the unique random solution of (5.1).

This conclusion (under the assumptions of Theorem 5.4) is valid in
any case, even if (5.10) has no solution for some y ¢ Q-
One can apply this conclusion to study convergence in distribution

of a seguence of "generalized solutions” of (5.10) (for n ¢ WN)
connected with the use of certain kindsof (random) generalized
inverses. We give an outline of such an application to the case of

the "Drazin inverse" (see [22] for a systematic treatment of gener-
alized inverses). First we note that for each % ¢ Z and n ¢« N the
mapping Tn(;”) =1 - cn(%,.) is a bounded linear operator from X into

itself with finite ascent and descent (see e.qg. [22,p.77]).
Hence, the Drazin inverse [Tn(%,.)Jd of Tn(%,.) exists ({22, p.9%9/1001)

and is a bounded linear operator from X into itself. Now, we define

ig(m): = [Tn(zn(w),.)]dyn(m), wef, neN,

and note that this is a particular case of (5.22) (since the Drazin
inverse of a mapping coincides with its inverse if the mapping is

bijective) if §g is measurable. Evidently, it suffices to prove that

the mapping (from Qn x X into X)

(w,x) > [Tn(zn(w),.)]dx

is a random operator.
To this end, we use [ 1o, Theorem 5.14] and, thus, we only have to

show that for all u « Qn’ the ascent an(w) of Tn(zn(m),.) is bounded
by an integer k(n) ¢ ™ (independent of w).
To see this, one first observes that for all % ¢ 2 = C([O,1]2) and

)14 = 0,...,n}) and, hence,

ne N, R(Cn(%,.)) = span({%(.,snJ

dim R(Cn(E,.)) < n+1. Since

k

k
T (3,01% = (1~ (3,15 = 1 + :

=03 e300,

j=1

for all k « N, this implies that the nullspace N([Tn(g,.)]k) is
contained in R(C_(¥,.)) and, thus, aim N(CT,(¥,.)1%) < n+1 for all
ke N and 3 ¢ Z. Let 7 ¢ Z be arbitrary.

Since (N([Tn(%")]k)kelq is increasing, this implies that

ascent (T, (¥,.)): = min{ke® [N(TT,(%,.)3%) = wre (3,001 < n+ 1.
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Hence, we obtain for all n e N, w € Qpe that
a_(w): = ascent (Tn(zn(m),.)) < n+t.
Now, [ 10, Theorem 5.14] yields that §g is measurable for all n ¢ IN.

(Note that in [ 10], the underlying probability space was assumed to

be complete; if (9 ,An,Pn) is not necessarily complete, [ 10, Theorem

d
o -~d
of (Qn,An,Pn) and thus the An-measurability of X, modified on a

n

5.14] yields the measurability of X2 with respect to the completion

suitable Pn-nullset.)

Summarizing these observations we conclude that

(ig) = (ETn(Zn(.),.)]dyn(.)) converges in distribution to the unigue
random solution of (5.1) (under the assumptions of Theorem 5.4)}!

We note that this result can also be proved without using our
abstract setting if one proceeds as follows:

In a first step one shows that for all z ¢ E: = (Z ¢ Z[T(%,.) is

continuously invertible}, ¥y ¢ X, and all sequences (En) in 2,

(?n) in Y converging to z and y, respectively,

[Tn(En,.)Jd v, > [z, 017" § (5.23)

holds (e.g. using [1, Theorem 1.6] and the Banach~Steinhaus~Theorem) ,

Then one shows that the mappings £, £ Z x X »>X, ne N, defined

nt

by
. (T4z,017'§ 1£2c8, §ex,
f(z,y): =
(o] otherwise,
fn(2,§); = [Tn(E,,)]d ¥, (z,¥) € 2 % X, are measurable (using

{1o, Theorem 5.141).
Since D(z,y)({(Z \E) x X) = O, it follows from (5.23), the definitions
of £ and fn and Rubin's Theorem ([6, Theorem 5.,5]) that

D(x3) = blz,,y ye2 ' ¥, piz,y et = pix) .

n’"n
Instead of the Drazin inverse, one could also use other generalized
inverses for which a measurability result is available (see [10],
£231y.

We stress that in this way we prove only the weak convergence of a
special sequence of approximate solution, while Theorem 5.4 yields
a much more general result.
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6. APPROXIMATION OF SOLUTIONS OF A RANDOM NONLINEAR
ELLIPTIC BQUNDARY VALUE PROBLEM

In this Section, we present an application of Theorem 4.6 to a
method of Galerkin type for nonlinear random eguations involving

a monotone mapping. Later on we indicate that this result is rele-
vant for a finite element method for solving a random nonlinear

elliptic boundary value problem.

Let X be a real separable Hilbert space with inner product (.,.)

and norm | .|, respectively. Let (Xn,Qn) be a Galerkin scheme

neN
for X, i.e., for each n ¢ N Xn < X is a finite-dimensional sub-
space and Qn: X - Xn is the orthogonal projection onto Xn: the
sequence (Qn) is assumed to converge pointwise to the identity.

Let Z be a Polish space, T: Z x X » X be a Borel measurable mapping,

z and (zn) be Z-valued random variables, ¥ be an X-valued and Y
be an Xn—valued random variable, n ¢ IN , respectively (defined on

(2,A,P) and (9,+A +/P), n ¢ N, respectively).

We defime T i 2 x X~ X by T (%,.): = @ T(3,.) X for Z ¢ Z, and
consider the equations
T(z(w),x) = yvi{w) (w € Q) (6.1)
Tn(zn(w),x) = yn(m) (w € Qn, ne N). (6.2)

Theorem 6.1:

Let T, (Tn), z, (zn), y and (yn) be as above and let for all n ¢ N

X be a random solution of (6.2) (for the index n « N ). Assume that
T: Z x X » X is continuous, (6.3)

{T(.,x)|%x ¢ B} is equicontinuous on X for all

(6.4)
bounded B <« X and compact K < Z,
v .
T(E,.) is strongly monotone uniformly w.r.t. z ¢ 2, i.e.,
there is a vy > O such that for all 27, %, %X, (6.5)

(T(2,5%) - T(¥,% %% = v|z-%]7,

D(y,,z,) = D(y,2). (6.6)
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Then (D(xn)) converges weakly to a weak solution of (6.1).

Proof:

To show that Theorem 4.6 is applicable, we have to check the
assumptions of that Theorem. It is easy to see that the properties
of (Qn) and (6.3), (6.4) imply that (4.10) and (4.15) are fulfilled.

Because of (6.5), T(%,.) is injective for all 2 ez, Hence, an
application of Theorem 4.6 yields the assertion provided we prove

that

(Tn(%,.)) is collectively regular for all 2 ez (6.7)
and

(D(xn)) is w~bounded. (6.8)

Since for all n ¢ N and Z e zZ, Tn(%,.) is regular {(consult Remark

3.7), (6.7) is implied by

(Tn(%")) is A-regular for all ez (6.9)

because of Lemma 3.7.

To prove (6.9) we proceed as usual in this context (cf. [31, p.201]):
Let % ¢ 2 be arbitrary and let n; <mn, <ng < ... ¢ N and

W € xn , Xk ¢ N, be such that (wn } is bounded (and hence discretely

By k k
comnact w.r.t. the weak topology in X) and (Tn (%,wn )) is relatively
k

comnact in X. We assume w.l.o.q. that (wn } is weakly convergent to
k

N 1
z,W )) converges (in the norm on X} to some
k

w ¢ X and that (T_ (
n
k

element, say y ¢ X.

Then (w_ - Q_ w) converges weakly to zero and
o N

(T (%,w )y - Q. T(Z,Q. W) converges in the norm to y-T(%,w).
n n n n

k k k k
Hence

1im(T._ (Z,w_ )-Q_ T(3,Q w),w_ -Q_w) = O, (6.10)
koo Dy ’ n, n, ! n, 4 n “ng

From (6.5) we obtain (note that w_ -Q_w = Q_ (w_ -Q_ w) and that
My By D M Ty

Qn is selfadjoint):
k



APPROXIMATIONS OF STOCHASTIC EQUATIONS 99

A

2 LY o
yﬂwnk anwﬂ (T(z,wn]i—T(z,anw),wn QW =

k k

Q. T(Z,w. )-0_ T(3,0 w), w_ -0 w)
nk nk nk nk nk nk

= (T, (Z,w_)-Q_ T(%,Q w), w_-Q_ w),
n, ny ny n. ! n “ny
Thus (6.10) implies that lim |w_~Q_ w| =0, i.e.,w_ > w.
ko Pk Pk Py
Hence, (6.9) holds, which implies (6.7).
Finally we prove (6.8), Since
Tn(zn(w),xn(w))-Tn(zn(m),0) = ¥ ()T, (2, (&) ,0)

holds almost surely, (6.5) implies for all n ¢ N that
hx )% 5 (v -1 (2, () ,0), %, ()
Gy} + HTn(zn(w),O)H) I, ()] a.s.

Hence we obtain for each n « N and for Pn—almost all w € e, that

Uy, ol + friz W) ,0]). (6.11)

Ix )] = 1

Let ¢ > O be arbitrary, but fixed. Since (because of (6.6))
(D(yn)) is w-bounded and (D(zn)) is tight, there exist a constant

Ce > O and a compact set KE ¢ 2 such that

1 £
inf P (tw e o | ly (] sc}) 21 -5 and
ne N
(6.12)
inf D(z )(K ) 2 1 - & .
neN n & 2
Since T is continuous, D_: = sup{fT(Z,00]] % « K_} is finite.

Let n ¢ N be arbitrary, but fixed and define

A = o« in (6.11) holds for w} « A, P(R) =1,
Agr = {w € in ﬂyn(w)u < CE, zn(m) € KE} € An,

1
Ay = {w € Qn[ Hxn(m)” < 7 (CE+ DE)} € An‘

By definition, A, N A1 < Ay; thus it follows from (6.12) and the
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€ €
fact that Pn(AO) = | that Pn(Q \Az) < Pn(Q \A1) <z t+t3 =

Since n ¢ N was arbitrary, this means that

; 1
;L\?fNPn({w € nn) ”xn(w)“ <5 (C 4+ D1 =1 - ¢y

which implies (6.8).

Finally, we outline how Theorem 6.1 can be applied to Galerkin
type methods for solving random nonlinear partial differential
equations.

Let G be a bounded open subset of Eim, b be a mapping from
G x RY x R™ into Bim, w and z be LZ(G)—valued and L:(G)-valued

random variables, respectively (defined on some probability space
(9,A, P)). We consider the following randem nonlinear p.d.e. in its
variational form

ax () ax(g) 2h(E) 4

bi(E,z(m,s), o, PR T aE;

= fw(w,g)h{g)dg,
G
1 (6.13)
for all h ¢ HO(G) (w e Q).
where H;(G) ig the usual Sobolev space ([ 18], [31]), i.e., the closure
of C:(G) in the Sobolov space H1(G) of real functions u ¢ Lz(G) whose
generalized derivatives of the first order also lie in L2(G).

First we show that (6.13) fits into the setting of this Section.
We define X: = H;(G) with inner product (x,y): =

and Z to be a closed subset of L:(G). We assume that the mapping
b: G x rIT R™ satisfies the following conditions:

b is a Caratheodory map, i.e., measurable on G

(6.14)
and continuous on n{r+m;

there exist M > 0 and a «¢ LZ(G) such that .
Ibe,v,w)| < ale) + Mlvi|ul, for £¢G, ve RY, ue ®R®,] (6.15)

Ib(g,v,u)-b(g,v, 0| < M{v=¥[ (1+{ul), ¥ ¢ RY;
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there exists y > O such that

m m
v v
T by (g, vou)mby (g, v ) (=) =y T (i)Y (6.16)

i=1 i

for £ ¢ G, v ¢ nir, u,ﬁ e R,

Then tne mapping B: Z x L;(G) > L;(G) given by

B(Z,u)(g): = ble,2(e),u(e)), £ ¢ G, % ez, ucrie),

is well-defined and continuous (because of (6.14), (6.15)). Let

L denote the mapping from H;(G) into L;(G) defined by

(Lx) (£): = grad x(g): = (ZFEL 2Ky e o6, x cwl(e).
1 m

Now, we define T: Z x X » X (via the Riesz Representation Theorem)
by
(T(Z,x),h): = (B(Z,Lx),Lh) 2
m
ah(g) z x,h ¢ X.

/T by (g,E(2), grad x(9) EEloag, ¥ .z,
G i=1 i

One can show, similar to [18,p.67 f£f], that T is continuous and T
satisfies (6.5) (because of (6.16)). Furthermore, (6.15) implies

that for all %, z ¢ Z, x ¢ X,
IT(z,x)- T(Z,x)] < M1+ |x]) l2-z|, holds.
Hence, (6.4) is fulfilled; thus Theorem 6.1 is applicable to an
equation of the kind (6.1) involving this mapping T.
Let y be the uniquely determined X-valued random variable (on
(2,A,P)) such that (y(w),h) =/ w(w,£)h(g) d¢, for all w ¢ & and
G
h ¢ X; it follows from the Riesz Representation Theorem that y exists;

since each (y(.),h) 1s measurable, we can conclude the measurability
of y (cf. [41).

Now, (6.13) is equivalent to
(T(z(w),x),h) = (y(w),h), for all h ¢ X, w ¢ Q,

which is in turn equivalent to (6.1) with T defined as above.
Let (wn) and (zn) be sequences of LZ(G)—valued and L;(G)-valued

random variables (defined on probability spaces (Qn,An,Pn)),
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respectively, such that D(wn,z ) » D{w,z), and let (Xn’Qn) be a

n
Galerkin scheme for X = Hé(G) (e.g., a finite element scheme:

cf. [31,p.234 ff.] for examples).For each n ¢ N we define ¥, to

be an Xn—valued random variable (see above) such that

(yn(.),h) = é wn(.,E)h(E)dE, for all h « X _.

Then (6.2) is equivalent to

bi(E,Zn(w,E),gradx(E))éﬁiél dg = Jw,(w,g)h(g)dg
G

m
;I
- 5y

G i=1

(6.17)
for all h « Xn ne N, we ﬂn).

If (xn) is a sequence of random solutions of (6.17) (for n ¢ N),
we can apply Theorem 6.1 and conclude that (D(xn)) caonverges weakly

to a weak solution of (6.13).

We mention that the ahove general approach arplies in particular to
linear partial differential equations with random coefficients and
random right-hand side, i.e.,

m
bi(g,v,u): = I aik(a,v)uk, i=1,...,m, with suitable coefficient
k=1

functions aik’ i,k =1,...,m.

Note that in this Section, it was essential that in our setup the
approximate equations may be defined on subspaces Xn of X.
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