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WEAK CONVERGENCE OF APPROXIMATE
SOLUTIONS OF RANDOM EQUATIONS

Olga Fiedler and Werner Rémisch

Fachbereich Mathematik
Humboldt-Universitdt Berlin
D-0-1086 Berlin, Germany

ABSTRACT

Approximations of random operator equations are considered
where the stochastic inputs and the underlying deterministic
equation are approximated simultaneously. The main conver-
gence result asserts that, under reasonable and verifiable assump-
tions, a sequence of weak solutions of approximate random equa-
tions converges weakly to a weak solution of the original
equation. It is shown that this theorem extends and unifies results
already known. We apply our theory to approximations of ran-
dom differential equations involving stochastic processes with
discontinuous paths and to projection methods for nonlinear ran-
dom Hammerstein integral equations in spaces of integrable
functions.

1. INTRODUCTION

During the last fifteen years, approximation methods for solving random operator
equations have been investigated by many authors (see e.g. [4, 5, 8~10, 14, 19]).
In this paper, we study approximations of a random equation

T(z(w),x) =0 we (1.1)

where T is a mapping from Z X X into Y, 0 a fixed element of Y, z a Z-valued
random element on some probability space (2, @, P) and X, Y, Z metric spaces.
We aim at extending and unifying the main result of [10] (Theorem 4.6) on the
weak convergence of approximate (weak) solutions of (1.1) when approximating
the stochastic input z (in the sense of weak convergence of the probability distri-
bution) and the mapping T (in the sense of discrete convergence) simultaneously.
The proof of our central convergence result (Theorem 3.1) is considerably shorter
than that in [10] and does not rely on the methodology developed there. In our
analysis we show that the crucial assumption of our convergence result is implied
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496 FIEDLER AND ROMISCH

by two types of conditions: (i) The first one (Lemma 3.3) unifies a similar result
from [10] and makes use of the well-known concept of A-regular (deterministic)
operator approximations; (ii) the second one (Lemma 3.7) is formulated in terms
of the uniform inverse Lipschitz continuity of the approximate operators. The
in [14] on the tightness of distributions of approximate solutions. Our approach
allows in addition to identify weak limits of approximate solutions as weak solu-
tions of (1.1).

Our paper is organized as follows. In Section 2, we discuss the concept of a
weak solution of random operator equations (1.1) in complete separable metric
spaces and present an existence and uniqueness result. Section 3 contains the
general theory on the weak convergence of approximate weak solutions. In Sec-
tion 4, we apply the general results to nonlinear ordinary random differential
equations where the stochastic inputs appearing in the right-hand side vary in
spaces of cadlag functions equipped with the Skorokhod topology. Our Theo-
rem 4.2 generalizes the corresponding result of [9] (Section 3) and allows applica-
tions to random differential equations driven by semimartingales. In Section 5, we
establish a convergence result for Galerkin approximations of nonlinear random
Hammerstein integral equations in spaces of integrable functions, thus, supple-
menting the results given in [9] and [10], where quadrature methods for integral
equations were studied in spaces of continuous functions and generalizing results
in [5] and [10] to the nonlinear case.

Now, let us fix the terminology of this paper. For a metric space X we denote
the g-algebra of Borel subsets of X by & (X) and the set of all probability measures
defined on (X, (X)) by #(X). ?(X) will usually be equipped with the topology of
weak convergence. Weak convergence of a sequence in $(X) will be abbreviated
by ““—"’ ([6]). For u € X let §, € ?(X) denote the unit mass at . If x is an X-
valued random variable defined on a probability space (2, @, P) (i.e. x:Q = X
having the property x~'(B) € @ for each B € #(X)), we denote its probability
distribution by D(x) := P ° x~! € 2(X).

2. RANDOM OPERATOR EQUATIONS: SOLUTIONS
CONCEPTS, EXISTENCE AND UNIQUENESS RESULTS

Let X, Y, and Z be separable metric spaces, z a Z-valued random variable (defined
on some probability space (2, @ P)) and T a mapping from Z X Xinto Y. We will
consider the random operator equation

Tz(w),x) =0 we® 2.1)

where 0 is some fixed element in Y.

A random variable x : Q@ — X is called a random solution of (2.1) iff T(z(w),
x(w)) = 0 holds P-almost surely. This is a classical notion in probabilistic func-
tional analysis (see [3]) enjoying a well-developed existence theory (e.g. [7, 20,
21]) which is based on measurable selection theorems (cf. [13, 18, 29]). This topic
has found continuous interest up to now (see the more recent contributions [22,
26]). The first result we state is an immediate consequence of [20, Theorem 1].

Theorem 2.1: Let Xbe complete and T: Z X X — Y Borel measurable, i.e.
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measurable with respect to 8(Z X X) and #(Y). Assume that there exists a B €
B(Z) such that D(z)(B) = 0 and T(Z, x) = 0 is solvable for all 7 € Z\B. Then
(2.1) has a random solution.

Remark 2.2: An example in [20] shows that Theorem 2.1 would not re-
main true if 7 were Borel measurable only separately in each variable. Note that
T:Z x X — Yis Borel measurable if for each Z € Z, T(Z, *) is continuous and for
each x € X, T(-, x) is Borel measurable ([13, Theorem 6.1]).

Definition 2.3: A probability measure u, € ?(X) is called a weak solution
of (2.1) iff there exists a u € P(Z X X) such that

uT~' =6 D@ = pp;' and  p, = ppy’

where py and p, denote the coordinate projections from Z X X onto X and Z,
respectively.

Lemma 2.4: Let 7:X X X — Y be Borel measurable.

(i) The probability distribution of each random solution of (2.1) is a weak
solution.

(ii) There exists a probability space (2, & P) such that for each weak
solution p, of (2.1) there are random variables ¥:Q = Xandz:Q - Z having the
property that D(Z) = D(z), D(X) = p, and T(Z(w), X(w)) = O holds P-almost
surely.

(iii) Let X and Z be complete and (2, @, P) be nonatomic. Then for each
weak solution of (2.1) the assertion of (ii) holds (even) for (2, @, P) instead of
@, @, P).

Proof (i) Let x:Q — X be a random solution of (2.1). Setting p :=
D(z, x) = P ° (z(), x(*))~! we obtain, for each B € QB(Y) w(T-Y(B)) =
P({w € Q:T(z(w), x(w)) € B}) = 6¢(B). Hence, p, := ppx! is a weak solution
of (2.1). ”

(ii) We choose (2, @, P) as the universal probability space of Theorem
2.5.1 in [23]. Now, if u, is a weak solution of (2.1), for the corresponding
measure p € P(Z X X) there exists a random variable (Z(+), X(*)): 2 - Z x X
with D(Z, X) = p (Theorem 2.5.1 in [23]). Hence, we have P({w € Q: T (Z(w),
F() = 0}) = 1.

(iii) This follows by the same argument as in (ii), but now we appeal to
Lemma 2.5.1 in [23].

According to Lemma 2.4 a weak solution of (2.1) is the probability distribu-
tion of a random solution on some probability space (with given input distribution
D(z)). Part (iii) of the lemma asserts the existence of a so-called D-solution of
(2.1), a notion introduced and used in [9].

The following example shows that the set of weak solutions of (2.1) is, in
general, larger than that of (distribution of) random solutions and that (iii) does
not remain true if (2, @, P) has atoms.

Example 2.5: Let X := Y:= R, Z := {a, b} (equipped with the discrete
metric), (Q, @) := (Z, %(Z)), let P be the discrete uniform distribution on }(Z)
and z be the identity.

LetT:Z X X— Ybedefinedby T(a,x):=1 - x, T'(b,x) := Oforallxe X.
Clearly, T is Borel measurable.

We show that u. := 3(6, + ») is a weak solution of (2.1) for arbitrary v €
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P(R). To this end we define u: (Z X X) = [0, 1]by (D) := 0, p({a} x B) :=
16,(B), u({b} x B) := {v(B) and u(Z X B) := i(8,(B) + v(B)) forall Be 3(X).
We have p € 9(Z X X) upz! = u, and up;' = D(z) immediately. It remains
to show that pT=! = §,. For the case of B € #(Y), O ¢ B, we have uT~'(B) =
p(fa} X {xeX:1 —xeB}) =16(B) = 0.1f Be B(Y) and 0 € B we obtain

pT~'(B) = p({b} x X U {a} x {x e X:1 — x€B})
=z p{b} xX) +p{@ DY) =:+:=1

Thus uT~! = §, and, therefore, u, is a weak solution of (2.1). However, u, is not
the distribution of a random variable on (2, @, P) in general.

The following result provides a characterization of weak solutions; more-
over, it turns out to be useful for the proof of our existence and uniqueness
result.

Lemma 2.6: Let T:Z x X — Y be Borel measurable and the mapping T
Z X X = Y x Zbe defined by T(Z, %) := (T (%, %), Z) forall (¢, £) e Z X X. Then
u, is a weak solution of (2.1) iff there exists a u € $(Z X X) such that pT-! =
8 X D(z) and upx' = p., where §, X D(z) is the usual product measure on
RY X Z).

Proof: It is easy to check that T is Borel measurable ([10, Prop. 4.3]). In
view of Definition 2.3 it suffices to show that pT~! = §, X D(z) holds iff uT~! =
8 and ppz' = D(2).

The first direction is immediate, since uT~' = §, X D(z) implies e.g.
D(z) = p(pzT)~! = up;'. For the converse, let uT~' = oand upz' = D(z). It
is sufficient to show that uT~1(B; X B,) = 8,(B,)D(z)(B,) holds for all B, € (Y),
B, € 3(Z). For B, € ®(Y) and B, € B(Z) we obtain uT~'(B, X By) = u(T~'(B))
n Bz X X). If0 EB] we have [.L(T-I(Bl)) =1 and, hence, H.T_l(Bl X Bz) = [L(.Bz
X X) = pp7 \(B,) = 8¢(B,)D(z)(By). If 0 ¢ By, then p(T~'(By)) = 0and uT~'(B,
X B;) = 0 6y(B)D(2)(B).

Lemma 2.6 suggests that existence and uniqueness results for weak solutions
can be derived by studying the stochastic equation (in the sense of [11]) 7T~} =
8y X D(z). In the following we provide a direct approach.

Theorem 2.7: Let X and Z be complete and T:Z X X — Y Borel measur-
able. Suppose there exists a B € 3(Z) such that D(z)(B) = 0 and that the equation
T(z, x) = 0 has at most one solution for each £ € Z\B. Then (2.1) has at most one
weak solution. ,

Proof: Let p, be a weak solution of (2.1). Then it follows from Lemma 2.6
that there exists a p € $#(Z x X) such that uT-' = §, x D(2) and g, = ppx’.
Now, let A € 3(X) be chosen arbitrary. First we take B € 3(Z) according to the
assumption and show that the mapping T:(Z\B) x A N T~'({0}) = Y X Zis
one-to-one. To see this, let (z;, x;) € (Z\B) x 4 N T-'({0}), i = 1, 2, be such
that T(Z], x;) = T(Zz, x;). Thenz; = 2, € Z\B and T(zy, x)) = T(z5, x5) =
T(z,, x,) = 0. Our assumption implies x, = x, and, consequently, T restricted to
(Z\B) x A N T-'({0}) is one-to-one. This observation together with the general
assumptions on X, Y, Z and with the Borel measurability of T implies that
T((Z\B) x AN T-'({0})) e B(Y X Z) (see [17], Section 39). Finally, in view of
pT=}({0}) = 1, we have
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pe(4) = p(Z x 4) = p((Z\B) x 4) = p((Z\B) x 4 N T~'({0}))
= uT-\T((Z\B) x 4 N T-'({0})))
= 8y X DE@)T((Z\B) x 4 N T-'({0}))).

Hence, p, is uniquely determined.

Corollary 2.8: Let X and Z be complete at T:Z x X — Y be Borel
measurable. Suppose there exists a B € B(Z) such that D(z)(B) = 0 and that the
equation T(Z, x) = 0 is uniquely solvable for each 7 € Z\B. Then there exists a
random solution x:Q — X of (2.1) and p, = D(x) is the unique weak solution.

Proof: The proof is an immediate consequence of the Theorems 2.1
and 2.7.

Remark 2.9: If the domain of the mapping Tin (2.1) is Z X X,, where X, is
a Borel subset of the metric space X, it is sometimes convenient to introduce a
weak solution as a probability measure belonging to ?(X) instead of #(X,). This
can be done in a natural way as follows: We take u € ?(Z x X,) from Definition
2.3 such that upx ! is a weak solution of (2.1). Let € #(Z X X) be the (canonical)
extension of u, i.e., 7(B) := u(B N ZX X X,) for all Be B(Z x X) ([6, p. 38]).
Then u, := 9px' € P(X) is the desired ‘‘extended’’ weak solution.

3. APPROXIMATE SOLUTION OF RANDOM
OPERATOR EQUATIONS

Throughout this section, let X, Y, and Z be complete separable metric spaces, X,
(n € N) Borel subsets of X, and 0 € Y some fixed element. Let T: Z X X — Y and
T,:Z X X, = Y (n € N) be Borel measurable mappings, z and z, (n € N) Z-valued
random variables defined on some probability space (2, @ P). We consider the
random operator equation

T(z(w),x) =0 we 3.1
and its ‘‘approximations’’
T, (z,(w), x) = 0 wedneN (3.2)

Now, our aim is to find sufficient conditions on 7 and 7, (n € N) that imply the
weak convergence of weak solutions u, of (3.2) to a weak solution of (3.1) if
(D(z,)) converges weakly to D(z).

(By the extension argument in Remark 2.9 we may tacitly assume for the
following that each weak solution p, of (3.2) belongs to $(X).)

The followmg notion of ‘‘discrete convergence”’ (see [25, 27]) turns out to
be essential in this context. (T},) is called discretely convergent to T iff inf{dy(x,
¥):y € X,} — 0 for each £ € X (dx denoting the metric in X) and forall £ e X, %, €
X., Z, Z, € Z (n € N) such that £, — %, £, = Z we have T,(,, £,) = T(Z, ).

Now, we are in the position to state the main convergence result of this
section, which, in fact, is an extension of Theorem 4.6 in [10]. Although this
result can be proved by using the same technique as in [10], we provide a more
direct and shorter proof.

Theorem 3.1: Let T, (7,), z and (z,) be as above and assume that
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(@ Unex T7'({0}) N K x B is relative compact in Z x X for each
bounded B € X and compact K & Z.

(b) (T,) converges discretely to T.

(c) (D(z,)) converges weakly to D(2).

(d) for each n € N there exists a weak solution g, of (3.2) and {u,:n e N}
is stochastically bounded, i.e., for each ¢ > 0 there exists a bounded Borel set B,
in X such that inf,.y p.(B:) = 1 — &

Then {u, : n € N} is relatively compact with respect to the weak topology on
9(X) and every weak limit of a subsequence of (u,) is a weak solution of (3.1).
Moreover, if the weak solution of (3.1) is unique, (g,) is weakly convergent to
this limit.

Proof: Let 1, € §(Z X X) be such that .T7! = & and u, = n,px’,
D(z,) = n.p3’ foralln € N (see Remark 2.9). In a first step we show that {»,:
n € N} is tight in 2(Z x X) ([6, p. 37]).

Let ¢ > 0 be arbitrary. (c) together with Prokhorov’s theorem ([6)) implies
that there exists a compact subset X, of Z such that inf,eyx D(z)(K,) = 1 — &/2.
(d) implies that there is a bounded Borel subset of B, of X such that

. €

gle"ig P'n(B.s) =1- 5
We define K := cl{U,ex T7'({0}) X K, X B.} and conclude from (2) that Kis
compact. We obtain for each n € N that

1(Z X X\K) < n(Z x X\IT7'({0}) N K; X Bel)
= 1,(Z x X\T;7'({0}) + n(Z X X\K; X B;)
= 7,(Z\K) X X U Z X (X\B)

< D(z)(Z\K.) + p.(X\B,) = g + %’ =¢
Hence, we have inf,ey 7,(K) = 1 — &, i.e. {n,:n€ N} is tight. This implies that
{p.:n € N} = {n,px':n € N} is tight and thus, by Prokhorov’s Theorem,
relatively compact w.r.t. the weak topology on $(X).

Let (u,) be a weakly convergent subsequence of (1), i.€., pn, = M €
@(X). Since {7, :n € N} is relatively compact w.r.t. the weak topology on (Z X
X), we may assume w.l.0.g. that (5,,) converges weakly to some 7 € $(Z X X).
Now, (b) together with Rubin’s Theorem ([6, p. 34]) implies &y = 7, T’ -
nT-"in @(Y). Hence, we have nT ~! = §,. Furthermore, because of the continuity
of the projections py and pz, we obtain from the continuous mapping theorem ([6,
Theorem 5.1]) that 9, pz ' = D(z,) = npz' and 7, px' = ptn, — npx'. Hence,
npz' = D(2) and 7px' = p, and pis a weak solution of (3.1).

Finally, let us assume that the weak solution p € P(X) of (3.1) is unique. We
conclude from the preceding proof that each subsequence of (un) contains a
further subsequence that converges weakly to p. This implies weak convergence
of (i) to u ([6, Theorem 2.3]) and the proof is complete.

Before discussing sufficient and verifiable conditions for assumption (a) of
Theorem 3.1, our next example shows that the assertion of the Theorem does not
hold if (a) is violated.

Example 3.2: Let H be a separable Hilbert space with inner product {*, *>
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and norm ||-||. We define X := H with the usual metric, Z := {Ze€ H:||z| < 1}
and Y:= {y € H:||y|| = 2} equipped with the topology of weak convergence in
H, which is metrizable on Z and Y, respectively. Furthermore we define 7, := T,
T:ZxX—->YbyT(,x):=x~<(x,z)zforall , x) eZ x X. Let (e,) be a
complete orthonormal basis in H and we choose D(z) := 8, and D(z,) := 0., for all
neN.

Since T'(e,, e,) = 0 holds for all n € N, d., 1s a weak solution of (3.2) for
each n e N.

Let us check the assumptions of Theorem 3.1: (b) holds since T is continu-
ous; (c) is satisfied since (e,) converges to 0 in Z, and (d) is evident by definition
of Z. However, {8, :n € N} is not tight in X. In fact, (a) is violated since the set
T-'({0}) N Z x {xeH:|x|| = 1} contains the sequence ((e,, ¢,)) and, hence, is
not relatively compact in Z x X.

The following result gives a first sufficient condition for (a). Although its
proof is an adaptation of that of Proposition 4.5 in [10], it is included for the
reader’s convenience.

Lemma 3.3: Let (7,) be as above and assume that

(i) Upen [Tx(E, )]1"%K) N B is relatively compact in X for each ZelZ,
bounded B < X and compact K < Y.

(i) {T,(,x):xeB N X,, n e N} is equicontinuous on X for each bounded
B £ X and compact K € Z.

Then (i) and (ii) imply condition (a) of Theorem 3.1.

Proof: Let B be a bounded subset of X, K a compact subset of Z and let
((Z& %)) be an arbitrary sequence contained in U,y T 1({0}) N K x B. Since
(Zx) is contained in the compact set K, we may assume that (Z,) is convergent to
some Z € K. Hence it suffices to prove that (%) contains a convergent subsequence.

For each k € N there exists an n, € N such that T,, (%, £) = 0. This, together
with (ii) and z; — Z, implies that (T, (Z, £;)) converges to 0 € Y. Now, we define
K:={0,T,(@Z %):ke N}. Because of (i) we obtain that U,y [T,(Z, -)]"'(K) N
B is relatively compact in X. But, the latter set contains the sequence (x;) and the
proof is complete.

Remark 3.4: Consider the situation that X, := X, T, := T for eachn € N.
Then the following conditions

@)’ [T, -)]"'(K) N B is relatively compact in X and {T(-,%):x€ - B} is
equicontinuous on X for each 7 € Z, bounded subset B of X, compact setsKS Y
and K € Z, respectively.

(M) T:Z x X — Yis continuous.
together with the conditions (c) and (d) imply the assertion of Theorem 3.1. In the
terminology of [10] condition (i) of Lemma 3.3 means that (7,(Z, -)) is collec-
tively regular for each Z € Z. Lemma 3.7 in [10] gives a complete characterization
of collectively regular sequences of mappings in terms of the well-known concept
of A-regular operator approximations (see e.g. [2, 25, 27, 28]).

Furthermore, we note that the mapping T (= T, for each n € N) considered
in Example 3.2 satisfies condition (ii) of Lemma 3.3. However, since T(0, ) is
the identity (of H), condition (i) is violated.

The following example, which is due to Heinz W. Engl, shows that even the
conditions (b) and (i) of Lemma 3.3 do not imply condition (a).
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Example 3.5: We consider the Hilbert space {, with the norm ||-|| and put
X:=Y:=10,Z:= {(Z) €tl,:|z| < k™! for each k € N}. It is well-known that the
“‘Hilbert cube’’ Z is compact in £, (see e.g. [15]). We define the following sets

M:=2Z x X A= {(k_lek, ek):ke N} B = {0} x X

where ¢, is the kth unit vector in £,. 4 and B are closed subsets of the metric space
Mwith A N B = . Due to Urysohn’s lemma there exists a continuous function f
from M into [0, 1] such that f|, = 1 and f|z = 0.

Now, we define mappings T, T:Z X X = Yby

_ .. 2 _
7, %) = {f COE 1*F0 1@ n=x-TE 5
0 i=0

for all z, £ € Z x X. By definition, T is continuous.

Next we show that condition (i) (with T, = T) is satisfied. It suffices to prove
that 7'(Z, B) is relatively compact in ¥ for each 7 € Z and each bounded set B C X
(see [10, Lemma 3.9]). For each Z € Z and each bounded B C X, the set 1@, B) is
a bounded one-dimensional set and thus relatively compact. However, K:
T-'({0}) N Z x {x € X:||%|| = 1} is not relatively compact and, thus, (a) is not
satisfied. This can be seen as follows: For each n € N we have that

T(—n_len, en) = en - f(n-lel‘l’ eﬂ)eﬂ = O

Hence, the set A is contained in K and A is not relatively compact.

Remark 3.6: Remark 4.12 in [8] contains an inaccuracy. But, by using the
same mapping T as in the preceding example and with K being the Hilbert cube,
we obtain that T(K x {x € X:||x] =< 1}) is not relatively compact. Thus the
conclusion of that remark remains true.

The next result presents a second sufficient condition for (a).

Lemma 3.7: Let T and (T,) be as above and assume that (7,) converges
discretely to T and that {x € X:T(Z, x) = 0} is nonempty for each 7 € Z.
Furthermore, assume that for each compact K S Z there exist a constant C =
C(K) and ny = ny(K) € N such that

dy(x, ) = Cdy(T,(Z, x), T,(Z, X))

holds foralln e N, n = ng, Z € K, x, £ € X, (dyx and dy denoting the metrics in X
and Y, respectively).

Then condition (a) of Theorem 3.1 is satisfied.

Proof: Let B © X be bounded, K S Z be compact and let ((Z, £,)) be an
arbitrary sequence in the set U,ex T, '({0}) N K X B. Again we may assume
w.l.0.g. that () is convergent to some Z € K and it suffices to prove that (%)
contains a convergent subsequence. For each k € N let n; € N be such that T,, (%,
%) = 0. We may assume that (r;) is monotonically increasing (otherwise we
choose a suitable subsequence).

By assumption there exist £ € X such that T(Z, ) = 0 and a sequence £, € X,,
(k € N) converging to £. This implies T, (%, £,) = T(Z, £) = 0. For k € N such
that n, = n, we obtain
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dX(‘ik’ ,fk) S CdY(Tnk(Z-k’ jk)s Tnk(z-k’ 'x-k))
= Cdy(T,, (%, %), 0)

Hence, dx(%;, %) — 0 and the proof is complete.

Remark 3.8: Let X := Y be a linear normed space (with norm ||-||). Let T,
be of the form T,,(, X) := % — A,(Z, *) (neN)and for4,:Z X X, > X(neN)
assume that for each compact K € Z there exist a constant @ = «(X) € (0, 1) and
ny = no(K) € N such that ||4,(Z, x) — 4,(, X)|| < «|lx — x| holds forallZe K, x,
xeX,, n = n,

Then the (main) assumption of Lemma 3.7 is fulfilled. We mention that a
combination of Lemma 3.7 (and of the above observation) with Theorem 3.1 leads
to a result that is very similar to Theorem 3.1 in [14] (and Theorem 3.3 in [14],
respectively). It is worth noting that our method of proving the results is different
from that of [14] (which extends the approach of [5]) and that distinct from [14],
our approach allows the identification of weak limits of approximate solutions as
weak solutions of the original random equation.

We close this section with a result presenting a sufficient condition for a
sequence of weak solutions of (3.2) to be stochastically bounded (condition (¢) of
Theorem 3.1).

Lemma 3.9: Let X be a linear normed space (with norm ||-||), (7,) be
as above and let D(z,) — D(z). Assume that there exists a continuous function
g:Z— R, such thatforallne N, (, ¥) € Z X X,, T,(Z, ) = O implies that
1] = g@.

Then each set {u,} of weak solutions of (3.2) is stochastically bounded.

Proof: Let {u,} be a set of weak solutions of (3.2) and, for each n € N, let
1, € §(Z x X) be such that 5,p;! = D(z,) and 7,px! = p,. Let € > 0. By
assumption, there exists a compact set K; & Z such that inf, .y D(z,)(K;) = 1 — &.
Then we have for each n € N.

1 — & < D(z,)(Ky) = (K, X X)
= 1.({Z %) € K. X X:T,(z, £) = 0})
=< 1,4@ ) € K, x X: ||| < @)
<1, ({(z', %) €Z x X:||%] =< sup g(f)})

< n, ({x €X:|| = sup g(z‘)D.

Since g is continuous, sup,cx, g(£) is finite and, thus, the assertion is proved.

4. APPLICATION TO PERTURBATIONS OF A RANDOM
DIFFERENTIAL EQUATION

In this section, we consider the initial value problem for a nonlinear random
ordinary differential equation
x(@t) = ft, 2(w, 1), x(@) tel0,1] x(0) =a 4.1

where f:[0, 1] x R"*" - R™, a € R™, and z:Q X [0, 1] = R’ is a stochastic
process on a probability space (2, @ P) with parameter set [0, 1], state space R”
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and with paths in the space D := D([0, 1]; R"), i.e., the space of right-continuous
functions from [0, 1] to B with left limits (see [6, 12] for more information on the
metric space 9; see below). It is well-known that z can be identified with a D-
valued random variable on (2, @, P) (see e.g. [6, Section 15]).

The aim of this section is to study the behavior of (weak) solutions to (4.1) in
case the distribution D(z) of z is perturbed with respect to the topology of weak
convergence on $(9D). Of course, our approach is the application of the machinery
developed in the prev:ous section. Let, for each n € N, z, be a stochastic process
on (2, @ P) with paths in D or, equivalently, a D-valued random variable. The
perturbed (or approximate) random differential equation then reads

x'(t) = f@t, zo(w, ), x(®)) te[0,1] x(0) =a 4.2)
Formulating our setup in the framework of Section 3, we put X := Y := C([0, 1];

R™) with the usual uniform metric and Z := 9 := D([0, 1]; R") equipped with the
following metric dj:

do(y, y) := inf {S“P ly@® — M) + HMlo} (y, 7€ D)
rehp (re(0,1)

where A, is the set of all functions A from [0, 1] onto [0, 1] that are continu-
ous, strictly monotonically increasing and have the property that ||A|o = sup,,
|llog AN#) — A(s)/t — s| is finite. It is known that d, generates the Skorokhod to-
pology on 9 and that (Z, d,) is complete and separable (see [6, Section 14], [12,
Sect. VI, part 5]).

Furthermore, we define the mapping 7:Z X X — X by

(TG, 2)0) = x(0) — a — SD £Gs, 2(5), x(s)) ds
forallte[0,1] ZeZ xeX

and we put T, := T for each n € N. As we will assume later on that fis continuous,
T is well-defined and (4.1), (4.2) are equivalent to (3.1), (3.2). In addition, in
Theorem 4.2 we show T to be continuous and, hence, Borel measurable.
The following auxiliary result provides a necessary condition for relatively
compact subsets of 9 and will be used subsequently.
Lemma 4.1: Let K C 9 be relatively compact. Then we have
lim sup sup |ly(®) — y(A@)|| =0 4.3)
IINlo=0 yeK zel0,11
Proof: Let € > 0 be chosen arbitrary. Then, according to [6, Theorem
14.3], there exist6 = 6(¢) > 0,neN,0 =1 <1, < **- < t, = 1suchthatz; —
t;i_y>dforalli=1,...,n,and '
sup max sup |[y(@) -yl < ¢ 4.4
yeK i=1,...,n t,5€lti—1,%)
We assume without loss of generality that § < § and we choose §, € (0, 6) such
thatz, — #,_, > 6 + 26, foralli = 1, ..., n. Let A € Ao with ||A]|p < 8/2. We
show that

sup [ly@) — yQ@)|l = sup [[y(A~'@) - y(0)|| = ¢ “.5)
r€[0,1] e[0,1]
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holds for each y € K and, hence, (4.3) is proved. Let y € K and ¢ € [0, 1]. Since
A(1) = 1, we may assume z € [0, 1). Then there exists an i € {1,...,n} withzre
[:i-1, t;). Since ||A|lp < 80/2, it follows from [6, Section 14, (14.22)] that
sup |t — A(@#)| = sup A7) — t] < & (4.6)
1€[0,1] €[0,1]
Hence, we have A(t) € (t — 8y, t + &) S (t;—; — 6y, t; + &;). For the case of
A@) € [t;-1, t;) the desired conclusion (4.5) follows from (4.4). Let us consider the
remaining cases:

(i) For N(#) € (t;—, — 8, t;-;) we have that + < A~!(¢), and (4.6) implies
teftimy, tioy + 8) and N71(¢) € [#;_,, =, + 28¢). Because of the inequality ¢, —
8 > t;_y + 28, > N"(z) we obtain A\~!(¢) € [z, t;) and (4.5) follows again
from (4.4).

(i) For A() € [#;, t; + &) we have that r < A(r). Hence, (4.6) implies
N"1(e) € (1, — 28y, ;) S [t;-1, 2,). This together with (4.4) implies (4.5) and the
proof is complete.

Theorem 4.2: Letf:[0, 1] x R™*™ — R™ be continuous and assume that
D(z,) == D(z) in 9(Z). Suppose that, for each n € N, there exists a weak solution
pr of (4.2) and {u,:n € N} is stochastically bounded.

Then there exists a subsequence of (u,) which converges weakly to a weak
solution of (4.1). If the weak solution of (4.1) is unique, the whole sequence (u,)
converges weakly in ?(X) to this limit.

Proof: To prove the assertion we apply Theorem 3.1. To this end, we have
to verify the conditions (a)’ and (b)’ from Remark 3.4. Let us start with (b)’. For
our convenience, we define the following mapping C:Z x X — X, [C(y, x)1(?) :=
a + §o f(s, y(s), x(s)) ds, forallte€ [0, 1], ye Zandx € X. Hence, T = I — C,
where 1 is the identity mapping on X. Let (y,) and (x,) be sequences (in Z and X,
respectively) converging to y and x, respectively. This implies sup,c 1 ||x,(f) —
x(@)|| = O0and y,(r) = y() forall € [0, 1] \M, where M is the (at most countable)
set of discontinuity points of y ([6, Section 14]). Since, in addition, convergence
of (y,) in Z, i.e. convergence with respect to the Skorokhod topology, implies that
SUP,en SUPero,1; [|¥2()|| < o0 and, since fis continuous, we can apply Lebesgue’s
dominated convergence theorem and obtain:

Sup I[Cn> x1() — [C(y, 0)I@®)]

1
= So £, ¥2(2), x:(2)) — f(t, y(@), x())|| dt —=2> O.

Hence, T is continuous. )

To verify (a)’, let B be a bounded subset of X and K a compact subset of Z.
We have to show that {T'(-, x):x € B} is equicontinuous on K. Let £ > 0 be
chosen arbitrary. We put

a:= {sup lx@®]:x e B} and
r€(0,1]
B := sup{dy(y, 0):y € K} = sup { sup [y@:y e K}
re[0,1]

Since f is continuous, there exists a 8, > 0 such that || f(z, w, v) — f(t, W, V)|| <
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£/2 whenever ¢ € [0, 1], v € R™, with ||[v]| = «, w, w e B with |[w|| < B, ||W] =
B, |w — w|| < 8. Lemma 4.1 implies that there exists a & & (0, &) such that

sup sup [ly() — YOI < 8 if N € Ao, Mo < 8.

yek tel0,1

Letx € B, y, § € K with do(y, ¥) < 6. Then there exists a N € Aq such that sup;c(o,1)
ly@ = FAEDI + Mo < 8. We obtain

sup [|[[7(y, 0] = [T(F, )@l

tef0,1]

1
= So £, y@), x@) = fG, SN@), x(@®)]| dr

1
+ [, 176 50v0, 20) = 0,50, x@Dl dr < 5+ 5 = o

LS TN )

Hence, {T(-, x):x € B} is equicontinuous on K.

To prove the remaining part of condition (a)’, let y € Z, a compact subset K
of Y = X and a bounded subset B of X be chosen arbitrary. Then [T(y, *)] KN
B is relatively compact in X if C(y, -)(B) is relatively compact in Y = X (see
Lemma 3.9 in [10]). The latter property can be shown by standard arguments
using the Arzela-Ascoli-Theorem.

Finally, we note that the existence of a weak solution p, to (4.2) (for each
n € N) follows from the P-almost sure pathwise existence of solutions to 4.2)
(Theorem 2.1 and Lemma 2.4(i)). Under a linear growth condition on f (see (3.6)
in [9]) it can be shown similar to [9, p. 71/72] and by applying Lemma 3.9 that
{un:n € N} is stochastically bounded.

5. APPLICATION TO A GALERKIN SCHEME FOR
NONLINEAR RANDOM HAMMERSTEIN INTEGRAL EQUATIONS

We are concerned with the following nonlinear random Hammerstein integral
equation in spaces of summable functions

1
x(t) + So 21(w, t, $)f(s, 2(w, 8), x(s)) ds = z3(w, 1) te[0,1] (5.1

where f:[0, 1] x R? — R is continuous,

2::Q x [0, 12 = Risan @ X 8([0, 1]*)-measurable stochastic process with
paths in L,([0, 1]*) (p > 1), and

2, 23:Q X [0, 1] = R are @ X 8([0, 1])-measurable stochastic processes
with paths in L.([0, 1]) and L,([0, 1]), respectively (on a probability space
«, &, P)). '

We are going to study a twofold approximation of (5.1): A finite-dimensional
Galerkin approximation of the integral operator and perturbations of the stochas-
tic inputs appearing on the nonlinearity f, as kernel, and as right-hand side in
(5.1). Again we aim at applying Theorem 3.1. In order to utilize the abstract
theory, we put
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X:=Ly([0, 1]}, Z:= Z, X Z, X Z3, Z; := L,([0, 11)(p > 1)
Z,:=L,[0,1]),2Z;,:=Y:= X

We also need the dual X* := L,([0, 1]) to X, where 1/p + 1/g = 1. Next we
define the kernel operator X:Z; X X* X X by

1
[X(@, »I@) = So 2@, 9)y(s) ds, € [0, 1], (&, y) € Z, x X*

and the superposition operator F:Z, X X — X* by
[F(229 x)](t) = f(t’ fz(f), X(t)), te [07 1]9 (223 x) € ZZ X X

F is well-defined under the growth condition for f appearing in assumption (i) in
Theorem 5.1.

Finally, we define the mapping T: Z X X = Xby T(Z, x) := x + K(Z,, F(,,
x)) — Z for all Z = (g, %, Z3) € Z, x € X. Since [24] implies that, under the
general assumptions, z:Q — Z defined by z(w) := (z;(w, *, *), 22(w, *), z3(w, *)),
for all w € Q, can be viewed as a Z-valued random variable, equation (5.1) is
equivalent to the abstract random Hammerstein equation

T(w),x) =0 wel (5.2)

Let (X,, O,).en be a Galerkin scheme for X, i.e. for each n € N, X, is a finite-
dimensional subspace of X and Q,: X — X, is a linear bounded projection onto X,
having the property that (Q,) converges pointwise to the identity. Foreachn e N
we define

Tn:z X Xn - X’ T,,(Z-, X) = QnT(Z-9 X), (Z: x) €Z X Xn
and consider the following approximations of (5.2)
T,z (), x) =0 weQ;neN 5.3)

where z, is a Z-valued random variable on (2, @, P) for each n € N. The next
theorem is the main convergence result of this section.

Theorem 5.1: In addition to the general assumptions we suppose that

(i) The set {f(z, -, v):z € [0, 1], v € R} of functions from R to R is
equicontinuous on each compact subset of R, and there exists a constant v > 0
and for each r > 0 there exists a function y, € X* such that the growth condition
|f@, u, v)| < y,(z) + v|v|?~? holds for all (¢, u, v) € [0, 1] x R?, |u] = r.

(ii) (D(z,)) converges weakly to D(z).

(iii)) There exists a weak solution u, of (5.3) foralln € N, and {u,:n € N}
is stochastically bounded.

Then there exists a subsequence of (u,) converging weakly to a weak solu-
tion of (5.2). If the weak solution of (5.2) is unique, the whole sequence (u,)
converges weakly to this limit.

Proof: Assumption (i) implies that the superposition operator F:2Z, X
X — X* and, hence, T:Z X X — X are well-defined (see e.g. [16]). In order to
apply Theorem 3.1, we have to verify the assumptions (a) and (b) of that result.
To show that (a) holds, we prove that the conditions (i) and (ii) of Lemma 3.3 are
satisfied. As already mentioned in Remark 3.4, condition (i) can be checked by
using Lemma 3.7 in [10]. According to that result it remains to be shown that
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(T,(z, -)) is A-regular for each z € Z. To thisend, let £ = (), Z;, Z5) € Z, ny <
n, < n; < --- € N and x,, € X,,, k € N, be such that (x,,) is bounded in X and
(T, +)) is convergent in X. Taking into account that the superposition operator
F(Z,, -): X — X* is bounded on bounded subsets of X (see [16, Section 17]), we
conclude that (F(Z,, x,,)) is bounded in X*. Since the kernel operator K, *):
X* — X is compact (e.g. [30, Cor. 28.5]), the sequence (X(Z,, F(Z;, x,,))) has a
convergent subsequence. This observation together with the equation

xm‘ = Tm;(zi xru;) - an sc(z-ls F(Z-Z: xn,,)) + 23 k € N

and the properties of (Q,) imply that (x,) also contains a convergent subse-
quence. Hence, (7,,(Z, *)) is A-regular and condition (i) of Lemma 3.3 is proved.
Next we prove the equicontinuity-condition (ii) of Lemma 3.3. Let B be a
bounded subset of X and K be a compact subsetof Z. Letn e N, x e BN X, and Z,
Z € K be chosen arbitrarily. Then we obtain the following chain of inequalities by
standard arguments.

IT.(z, x) = T.@Z, X)|lx
= 1. Kz, FZ, X)) — @K (Zi, F(Z, Dx + 15 — Zlix
= Cl("fx(z-h F(Z-g, x)) - m(th(zZ’ x))"x + ugc(zla F(Z-Z’x)) - ‘:K(zl’ F(EZ:x))"X)
+ |1zs — Z|lx
= G|z, = ZllzllIFE Dlx + Zllz|IF &, x) — F@, Olix) + |2 — Zllx
< C(GF(Z, x) = FZ, Dxe + Glzy — Zillz) + 11 — Bz

where the constants are chosen such that ||Q,|| = C, for all n € N (according to the
Banach-Steinhaus theorem), C, := sup{||zZ|]:Z = @, %, z2) € K} and G; :=
sup{||[F(Z;, X)||x»:Z € K, x € B}. In view of the above inequality it remains to
consider the term ||F(Z,, x) — F(Z,, x)||x« where x € B, Z;, 7, € K, and K, denotes
the projection of K onto Z,. Let C, := sup{||Z;||z,: Z; € K,} and let ¢ > 0 be chosen
arbitrarily.

Assumption (i) implies that there exists a § > 0 such that |f(z, u, v) —
f(t, 4, v)| < ¢ wheneverte[0, 1], u, i€ [-C,, C) with |u — 7| < §,veRR.
Hence, we obtain for all %,, 7, € K, with ||Z; — Z||z, < & and all x € B that | f(s,
(), x(5)) — f(s, Z2(s), x(s))| < € holds for almost all s € [0, 1], and, therefore,
“F(Zb x) - F(z2’ x)"X' = &

This proves condition (ii) in Lemma 3.3

Next we verify assumption (b) of Theorem 3.1. Letfe X, %, € X,,7,7,€Z
(n € N) such that (Z,, £,) = (£, £) as n = oo. We prove that lim, - || T,(Z,, £,) —
T(, H)x = 0.

Let B := {%,:ne N}, K := {Z, Z,: n € N}. The equicontinuity of {T,(-, x):
x € B} on K implies lim,o, | T,(Z,, %,) — T.(Z, %,)|lx = O. It remains to mention
that lim, . ||7,(Z, £,) — T(Z, %)||x = O follows from the continuity of T and from
the properties of (Q,). An application of Theorem 3.1 completes the proof.

Sufficient conditions for the existence and uniqueness of weak solutions to
(5.2) and (5.3) can be derived from the results of Section 2 together with the
existence theory for solutions of deterministic Hammerstein integral equations
(see e.g. [1], [30, Chapt. 28]). In the following example we finally demonstrate
how our theory works for a special weakly singular nonlinear random integral
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equation. In particular, we show how it can be verified that a sequence of weak
solutions of (5.3) is stochastically bounded.

Example 5.2: We consider the following weakly singular random integral
equation

x(t) + S Is fx(s)) ds = y(w, 1) te[0, 1] S.4

|t
where « is a real-valued random variable and y:Q x [0, 1] = R is an @ X
([0, 1])-measurable stochastic process on a probability space (2, @, P). We
assume that 0 < é < 1, fis continuous and satisfies the growth condition | f(v)| =
¥|v|?~! (v € R) where p is chosen such that 1 < p < min{6~!, 2}. We suppose, in
addition, that the paths of y belong to L,([0, 1]).

Then for z,: 2 x [0, 1]> = Q, z,(w, t,s) = a(@)t —s| % weQ,ts¢€
[0, 1], the general assumptions of this section as well as condition (i) for f are
satisfied. Let ((«r,,, y,,)) be a sequence of R x L,([0, 1])-valued random variables
such that D(e,, ¥,) = D(«, y) and let (X, Q,,) be a Galerkin scheme for X. Let
u, be a weak solution of

1
%+ O, (f I“"(“’)la Fo(s)) ds) =@ xmeX,

for each n € N. To show that {u,:n € N} is stochastically bounded, we use
Lemma 3.9. Let (&, y, ) e R x L,([0, 1]) X X, such that

L
£= -0, <j° T JE) ds) +7

We obtain the following chain of inequalities by using Hélder’s and Minkowski’s
inequalities:

. 1 1
late, = el ([} |[) =2 reon ) + g5,

1 P 1/p

< ety ([, ({71 - sz as) @) + s,
1 1

< tedialy ([ (§ 1 - si-e as) perg=e ) + 1o,

= temtat izt ([ 1 = o= asar)” + 151,

Hence, there exists a constant C > 0 such that
I%ll, = ClallI£15" + 5],

This implies |||, < max{1, (C|&@| + [7]l.,)"*"%} and Lemma 3.9 yields the
desired property.
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