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Stability in multistage stochastic programming* 

Olga Fiedler** and Werner  R6misch 

Humboldt-Universitiit Berlin, Institut f~r Mathematik, D-10099 Berlin, Germany 

Multistage stochastic programs are regarded as mathematical programs in a 
Banach space X of summable functions. Relying on a result for parametric programs 
in Banach spaces, the paper presents conditions under which linearly constrained 
convex multistage problems behave stably when the (input) data process is subjected 
to (small) perturbations. In particular, we show the persistence of optimal solutions, 
the local Lipschitz continuity of the optimal value and the upper semicontinuity of 
optimal sets with respect to the weak topology in X. The linear case with deterministic 
first-stage decisions is studied in more detail. 

Keywords: Multistage stochastic programs, optimization in Banach spaces, stability, 
approximation. 

1. Introduction 

Multistage stochastic programs arise in the modelling of  finite horizon sequen- 
tial optimization processes, in which a decision is made at stage t (1 < t < T ) based 
only on information available at time t. In most  practical situations, the available 
information becomes more  refined with the passing o f  time. In our  case, the informa- 
tion flow is generated by random variables (t at each stage t (1 < t < T ) defined on 
some probability space (f~, E, #). The (random) decision xt (at stage t) should then 
depend only on the information (or data) ~ l , . . . ,  (t, i.e., xt should be measurable 
with respect to the a-algebra Et c_ E, which is generated by the random vector 
( ( l , . . . , ( t ) .  I f  the decision process x = ( x l , . . . ,  x r )  is adapted to the data  process 

= (~ l , . - - ,  ~r)  in this way, we call the process x nonanticipative (of. [27, 33]). 
We shall be concerned with the following multistage stochastic program: 

Minimize E [f0(xl (w) , . . . ,  xr(w))] subject to the constraints (1.1) 

a t x t ( ° ' ) )  = gt(xl(°))'"""' x'-I (ta))' ~'(t'°)) / 

x,@) C, 

xt is E,-measurable 

#-a.s., t = 1 , . . . ,  T. (1.2) 
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Here, f0 is a real valued measurable function defined on xtr=llR n', Ct is a nonempty 
[.  t-l~'~n~x subset o fR n', A t is an (st, nt)-matrix and gt is a measurable function from ~ × i=l ~ ) x 

]~r, into R s' for every t = 1, . . . ,  T. E denotes the expectation with respect to (f~, E, #), 
and/z-a.s, means that the constraints are required to hold with #-probability one. 

Further hypotheses on the data in (1.1)-(1.2) are presented at the beginning 
of section 3. They enable, in particular, the formulation of (1.1)-(1.2) as a linearly 
constrained convex programming problem in an Lp-space. This Lp-space (or vector) 
formulation of multistage stochastic programs has been studied in several papers 
(e.g. [4, 8, 14, 18, 27, 28]). For further information on multistage models the 
reader is referred to [9, 12, 34] and to the recent overview [7]. We also mention appli- 
cations of multistage stochastic programs in mathematical economics [1], stochastic 
scheduling [3], finance [6], resource management [10] and power generation [20]. 

In this paper, we analyze the effect of perturbations of the data process ~ on 
the optimal value and optimal decision set to (1.1)-(1.2). We show that, under 
reasonable assumptions, the optimal value and optimal decisions enjoy certain 
continuity properties if ~ is subjected to (small) perturbations with respect to 
some metric data space I'd. Stability results of this kind are available for certain 
two-stage models (see [15, 23, 29-31] and the survey [5]). 

Those results assert exclusively stability for the deterministic first-stage 
decisions and rely on finite-dimensional parametric optimization, whereas our 
approach necessarily utilizes stability results for programs in Banach spaces. Stab- 
ility investigations for stochastic programs have a twofold motivation. Their out- 
come forms a theoretical basis for dealing with approximation schemes and 
incomplete information on the data. 

Our paper is organized as follows. In section 2 we present a stability result 
(proposition 2.1) for a parametric program in a reflexive Banach space X under 
mild assumptions (e.g. without differentiability conditions). The result relies on a 
certain interaction of continuity and closedness properties (for the objective and 
the constraint set) with respect to strong and weak convergence in X as well as on 
a boundedness condition for level sets. As a conclusion we study a convex para- 
metric program where the parameter only appears in linear constraints (corollary 
2.2), which allows for a direct application to multistage models. Section 3 begins 
with the formulation of (1.1)-(1.2) as a mathematical program in a suitable Lp- 
space. Then the main stability result (theorem 3.1) is presented and followed by a 
discussion of the crucial condition that a certain level set is bounded. More pre- 
cisely, we show (corollary 3.3) that a linear multistage model is stable if the optimal 
solution set of its "dynamic" formulation is nonempty and bounded. Finally, we 
discuss the special case of  two-stage problems and the case of discrete approxi- 
mations to linear multistage programs. 

2. A stability result for programs in Banach spaces 

In this section we present a perturbation result for infinite optimization 



O. Fiedler, W. ROmisch/Stability in multistage stochastic programming 81 

problems which serves as a prerequisite for our stability analysis of multistage 
stochastic programs. 

Let X be a Banach space with norm I1" II and (P, d )  be a metric space. We 
study the parametric optimization problem 

m i n { f ( x ) : x E M ( p ) }  ( p E P ) ,  (2.1) 

wheref is  a mapping from X into II~ and M a set-valued mapping from P into X. We 
define the optimal value cp(p) := inf{ f(x) :  x E M(p)} and the set of optimal solu- 
tions ~b(p) := {x E M(p):  f ( x )  = ~(p)} of (2.1). For some fixed parameter P0 E P 
we refer to (2.1) with p = P0 as the "original program" and to the case ofp  # P0 as 
the "perturbed program". 

Our stability result relies on a certain interaction of properties (for the data of 
(2.1)) with respect to strong (norm) and weak convergence in X. Weak convergence 
in X is denoted by " ~ " .  For the formulation of the result we recall the following 
notions. The function f is called weakly lower semicontinuous on X if, for each 
x E X, x~ E X (n E N) with x, ~ x, we have liminfn__.oo f(xn) > f (x) .  M is said 
to be weakly closed at P0 if for each pair of sequences (p,) in P and (xn) in X 
with the properties Pn ~ Po, x,, E M(p,,), x,, ---" Xo, it holds x0 E M(po). M is 
called Hausdorff-continuous at P0 if dH(M(p),M(po))~p__,po O, where 
dH(A, B) := max {A(A, B), A(B, A)} is the (extended) Hausdorff distance between 
two subsets A, B of X and A(A,B):= SUpxeA infyes II x - y  II is the excess of A 
on B. (Note that dH(A, B) may be equal to +c¢ when A or B is unbounded or 
empty.) 

PROPOSITION 2.1 

(a) 
(b) 
(c) 

(d) 

The following holds: 

(i) 
(ii) 

(iii) 

Consider the program (2.1), fix some P0 E P and assume that 

X is reflexive; 

f is uniformly continuous and weakly lower semicontinuous; 

M(po) is nonempty, M is weakly closed at P0 and its values are weakly closed 
subsets of X, and M is Hausdorff-continuous at P0; 

the level set lc(Po) := {x E M(po):f(x)  < c} is bounded for each c E R. 

is continuous at P0, 

~b(p) ~ 0 for all p belonging to some neighbourhood U of P0 in P 
("persistence"), 

~b is weakly upper semicontinuous at P0, i.e., for all sequences (Pn) in P and 
(xn) in X having the properties pn ~ P0, x~ E ~b(pn), there exists a subse- 
quence of (Xn) which converges weakly in X to an element of ~b(p0). 
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eroof 

Let e > 0 be fixed. S incef is  uniformly continuous, there exists a 6 > 0 such 
that x, ~ E X and [I x - ~ [[ < ~5 implies I f (x)  - f ( .~ )  [ < e. Let x0 E M(po). Then 
there exists a neighbourhood U of P0 such that dH(M(p), M(po)) < ~5 for all p 
belonging to U. In particular, there exists a mapping x: U ~ X with the properties 
x(p) E M(p) and 

llxo-x(p)ll <6, forallpE U. 

Letp  E U and y E M(p) w i t h f ( y )  < f(x(p)). We obtain 

f (y )  < f(x(p)) <_ f(xo) + [f(x(p)) - f ( x 0 )  I < f(xo) + ~. 

Furthermore, there exists an 2EM(po) such that I lY-2 [ [  <~5. This 
implies f ( 2 )  _< f (y )  + e < f(xo) + 2e, i.e., y belongs to the bounded set B := 
{x E X: infvstc(p0)[[ x - v 1[ < 6} with c :=f(x0)  + 2e. 

Hence, {y E M(p):  f (y )  <_ f(x(p))} C_ B for all p E U. Since M(p) is 
weakly closed and f is weakly lower semicontinuous, the level set /f(x(p))(P) is 
weakly compact. Assertion (ii) now follows from Weierstrass' theorem. 

Although the proof of (i) and (iii) parallels those of classical stability results 
(e.g. theorem 4.2.2 in [2] and theorem 3.1 in [16]), we will outline the proofs for the 
reader's convenience. 

To prove (i), let e > 0 be chosen arbitrarily and let x 0 E ~b(p0). Again, we 
choose fi > 0 from the uniform continuity o f f  as at the beginning of the proof. 
Then there exists a neighbourhood V of P0 such that for each p E V there is an 
element ~(p) E M(p) with 11 x0 - ~(p)11 < 6. Hence, qa(p) - qo(p0) < f(~(p)) - 
f(xo) < e for all p E V. Analogously one shows qo(p0) - qo(p) < e for all p E V, 
and the proof of (i) is complete. 

Finally, let (Pn) be a sequence in P which converges to P0 and let xn E ~b(p,,) 
for all n E N. Since Xn belongs to B for large n, we may assume without loss 
of generality that (x~) converges weakly to some limit x0 E X. (c) implies 
that x0 E M(po). To show the optimality of x0, we choose x * E  ~b(p0) and a 
sequence (x*) with x~ E M(pn) for each n E N such that x~ ~ x * .  Then 
we obtain ~(P0) -< f(xo) < liminf,_..oo f ( x n ) =  liminfn_.oo f (x~, )=f(x*)= ~P(P0). 
This shows that x0 E ~b(p0) and completes the proof. []  

For our application to stochastic programming we are interested in the 
particular example of (2.1), where the constraint-set-mapping M is of the following 
form 

M ( p ) : = { x E C : A ( p ) x = b ( p ) }  ( p E P ) ,  (2.2) 

where C c_ X is closed convex, A is a continuous mapping from P to the normed 
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space L(X, Y ) of linear bounded operators from X to another linear normed space 
Y and b is a continuous mapping from P to Y. 

COROLLARY 2.2 

Let X be reflexive, f be convex and uniformly continuous on C. Consider 
(2.2) with general assumptions as above and assume that M(po) is nonempty and M 
is Hausdorff continuous at P0. Let the level set lc(po) be bounded for some 
c > ~o(p0). Then the assertions (i)-(iii) of proposition 2.1 hold, too. 

/'roof 

Sincefis convex and continuous on C, it is also weakly lower semicontinuous 
on C. An inspection of the proof of proposition 2.1 shows in addition that condition 
(b) is only needed to hold on C. By definition the values of M are closed and convex, 
and, hence, weakly closed subsets of X. In order to show that M is weakly closed at 
P0, let (Pn) be a sequence in P converging top0 and let Xn E M(pn), for each n E N, 
such that (x,) converges weakly to some x0 E X. Then x0 E C and b(p , )= 
A(p,)Xn ~ b(p0), since b is continuous. The general assumptions for A imply 
that the sequence (A(po)x,,) converges weakly to A(po)xo (in Y) and that 
lim.__.~ IIA(p.)x. - A(po)xnll = O. 

Thus, we conclude that (A(p,,)x.) converges weakly to A(po)xo, too, and 
obtain A(po)Xo = b(po). Hence, condition (c) is satisfied and it remains to appeal 
to corollary 4D in [24], which yields that Ic(Po) is bounded for every c E ]R if it is 
bounded for some c > ~o(p0). [] 

Remark 2.3 

If. in proposition 2.1 and corollary 2.2, the uniform continuity property f o r f  
is replaced by the Lipschitz continuity and if M is (even) Hausdorff Lipschitz 
continuous at P0, then the optimal value satisfies even the Lipschitz condition 
I qo(p) -~o(p0)l < L~od(p,po) for p belonging to some neighbourhood of P0 and 
for L~o being the product of the Lipschitz constants f o r f a n d  M. 

Corollary 2.2 becomes incorrect if the assumption that the level set lc(po) is 
bounded for some c > qo(p0) is replaced by the (weaker) condition that ~b(p0) is 
nonempty and bounded. This is illustrated by the next example, which is essentially 
due to Bernd Kummer. 

EXAMPLE 2.4 

2 Let X := {(Xn): Y]~=I x. < ~ }  be the classical Hilbert space 12 of real 
sequences with the norm [[(x,)[[ : =  (EnCX~=lX2)I/2. Consider the mapping 
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f((x ,))  := Y'~=l(1/n) lxn[, which is convex and Lipschitz continuous on 2". Let 
P := I~+, P0 := 0 and define the set-valued mapping M from P to X by M(p) := 
{ ( x , , ) E X : ~ = l ( 1 / n ) x , , = p }  ( p E P ) .  Then qo(p):=inf{f((x,,)):(x,,)E 
M(p)} = p, for every p E P, ¢(0) = {0} and dH(M(p),M(O)) = p. 

Furthermore, the sequences (xn (k)), 

0, n ¢ k  
x .  (k) := (k e N) 

pn, n = k 

belong to ¢(p).  Hence, the optimal sets ¢(p)  are not bounded for every p > 0 and, 
thus, do not satisfy property (iii) of proposition 2.1. 

The reflexivity of the Banach space X is indispensable even for the solvability 
of the original and perturbed programs (2.1). Consequently, we consider the stab- 
ility of multistage stochastic programs in Lp-spaces (with p E (1, + ~ ) )  of the under- 
lying random quantities. Studying multistage stochastic programs as programs in 
Lp-spaces was first proposed in [8] and [18]. This approach has also been used to 
derive necessary optimality conditions [4, 11, 14]. At first glance, a drawback of 
this functional approach might be that abstract constraint qualifications in 
Banach spaces (e.g. [16, 22, 36]) can hardly be fulfilled in Lp-spaces. To verify the 
Hausdorff-continuity of M, however, we do not rely on results in functional 
spaces (e.g. those in [22]), but work naturally in terms of each realization in finite 
dimensions. 

3. Stability of multistage stochastic programs 

With the notations of section 1, we define Xt := Lp,(ft, Z,t, lz;R"') for 
Pt E (1,-k-Cx3) and t = 1, . . . ,  T. As the space of decision processes we take 
X:=xrt=_lXt equipped with the norm llxll:=max,= ,_.,rllx tl, where 11"11, 
denotes the norm in Xr For the data we assume that ~t belongs to some normed 
space Pt of ~r'-valued random variables with the norm ll ' ll , ,t  and define 
Pa:=xrt=lPt to be the data space equipped with the norm 11 11,:= 
maxt=l ..... r I1 1[.,/. Later, we will specify conditions for the choice of et and for 
relations between I1" Ill and I1" I[,,/ (cf. (m3)). The constraint set M(~) for the 
decisions is defined as follows 

M(~) := {x E X:xt(w ) E Ct, Atxt(w ) = gt(xt-l(w),~t(w)),t= 1, . . . ,  T,/z-a.s.}, 

(3.1) 

where we use the notation x t-1 for (xl , . . .  ,Xt-l). M may be considered as a set- 
valued mapping from the data space Pa to the decision space X. By putting the 
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objective 
f (x )  :=E[fo(xl(w), . . . ,Xr(W))  ] (x E X),  (3.2) 

problem (1.1)-(1.2) leads to the following parametric program in the decision 
space X: 

min { f ( x ) :x  E M(~)}. (3.3) 

Throughout this section, we make the following assumptions for the data in (3.1)- 
(3.2) (and (1.1)-(1.2), respectively). 

(A1) 

(h2) 
(A3) 

For each t E { 1 , . . . , T } ,  the set Ctc_IR n' is nonempty, convex and 
polyhedral. 

The function f0: xtr=lR"' ~ ]R is convex and Lipschitz continuous on xtr=l Cr 
: t--l~nix For each t E {1, . . . ,  T }, the functiongt: Lxi=lK ) × R r' --~ ~s' is affme linear 

in x t-1 E ×~S-~R ni and Ct E R r', respectively, and satisfies the estimates 

_< Kt(1 + i=l,...,t-lmax IIx;ll )(1 + I1¢,11., ,), 

[Igt(xt-l('),~t('))-gt(yt-l('),¢t('))ll(t) < gt(1 +l[¢tl[,,/) max [[xi-Yi[li, 
i=1,..., t - I  

[Igt(xt-l('),~t('))--gt(xt-l('),Tlt('))ll(t) < gt(1 q- max Ilx;ll )ll ,- /ll., 
i=  1,..., t - I  t~ 

with some constant K t > 0, for all x, y E X, ~, 77 E I'd. Here 11. [[(t/denotes the 
norm in Yt := Ll(f~, E,#;IIV'). 

(A4) Let P be the subset of those ~EPa satisfying the property 
gt(vl,...,vt-l,~t(w)) E At(Ct), /z-a.s., for all vi E Ci, i =  1 , . . . , t -  1, and 
t = 1 , . . . ,  T. Let P be nonempty and consider P to be equipped with the 
metric induced by I1" I I,- 
We mention here that (A3) describes growth and continuity conditions for 

the constraint functions gt with respect to appropriate norms and that (A4) charac- 
terizes all admissible data processes. A discussion of both assumptions is given in 
remark 3.2. 

We denote the optimal value and the set of optimal solutions to (3.3) by ~o(~) 
and ~b(~), respectively. The following theorem presents our main stability result. 

THEOREM 3.1 

Suppose (A1)-(A4), ~°E P and let the level set lc(~ °) := (x E M(~°): 
f (x)  < c} be bounded in X for some constant c > ~o(C). Then there exists a 



86 O. Fiedler, W. Rbmisch/Stability in multistage stochastic programming 

neighbourhood U of ~0 in P and a constant L~ > 0 such that 

(i) f o r a l l ~ E  U, 

(ii) ~b(~) ~ 0 for all ~ E U, 

(iii) ~b is weakly upper semicontinuous at ~0 (in the sense of 2. l(iii)). 

Proof 

To prove the result we apply corollary 2.2 (together with remark 2.3). 
The space X is reflexive and (A1) implies that the subset C := {x E X: xt(w) E Ct 
#-a.s., t = 1, . . . ,  T } of X is closed convex. Because of (A2), the objective funct ionf  
is well-defined on C and inherits the convexity and Lipschitz property (on C) from 
f0- Since each function gt (t = 1 , . . . ,  T )  is affine linear, the constraint set M(~) is 
of the following form M(~) = {x E C: Atxt(w ) -k- ~']~I-~ A t i (~ t ( t o ) ) x i (w)  = bt(~t(w)) 
#-a.s, t = 1, . . . ,  T}, where Ati(. ) (i = 1, . . . ,  t - 1) and bt(. ) depend affine linearly 
on ~t (t = 1 , . . . ,  T ) .  Hence, M(~) has the form (2.2) and, by putting Y := ×tr=i Yt 
the general assumptions of (2.2) are implied by (A3). 

It remains to show that M((°)  is nonempty and that M (from P to X) is 
Hausdorff-Lipschitzian at ~0. To this end, we introduce the following notation 
for every t E {1, . . . ,  T}: 

Bt(Yt) := "[vt E Ct:Atv t = Yt} (Yt E ]~s,). 

By Hoffman's Theorem [22, p. 760] there exists a constant L t > 0 such that the 
polyhedral set-valued mapping B t f rom R s' into R "' has the Hausdorff-Lipschitz 
property 

dH, t(Bt(Yt),Bt(fJt)) ~_ Lt ly t  -.~tls, (3.4) 

whenever Yt, .~t E ~s, and Bt(Yt) • 0, Bt(f2t) 7 ~ 0. Here dlg, t denotes the Hausdorff 
distance on nonempty subsets of •n, and [. Is, the Euclidean norm on k s'. 

Next, we show that M(~) is nonempty for every ~ E P. Let ~ E P. By 
induction we show that there exists an xt E Xt for each t = 1, . . . ,  T such that 
(xl , . . .  ,XT) E M(~). First let t = 1. (A4) implies that/~l( ' )  := Bl(gl(~t( '))) is a 
set-valued mapping from 9t to ]i~ n1 having closed and #-a.s. nonempty values. By 
standard arguments (cf. e.g. theorem 2J in [26]),/~l is El-measurable and, hence, 
there exists a El-measurable mapping Xl: f~ ~ R "' such that Xl(0) ) E Bl(w) #-a.s. 
Then (3.4) implies for some vl E Cl, 

IXl(W) - Vl In1 ~ L1 [gl((l(w)) - Al'Ol Is I #-a.s. ,  and 

Ilxl II1 _< IVl I., + t l  IAlVlls, + Zl IIg1( 1('))11/1) 

_< R1(1 + II  111.,1). 
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Here/(1 > 0 is some constant that exists according to (A3). Now, suppose that 
we have already determined xiEXi ,  i =  l , . . . , t - 1 ,  such that xi(w)E 
Bi(gi(xi-!(w),~i(w))), #-a.s., i =  1 , . . . , t - 1 .  The set-valued mapping Bt ( ' ) :=  
Bt(gt(  x t- l  ( ' ) , ( t ( ' ) ) )  from ~ tO ]~n, has again closed and/z-a.s, nonempty values. 
By analogous arguments there exists a Et-measurable mapping xt: f~ ~ R n' such 
that xt(w) E/~t(w) #-a.s. and the following estimate holds according to (3.4) and 
(A3), 

[Ixtllt <--I~t( l +i=l...,t-lmax t l x ~ l l i ) ( l + l l ~ , l l . , , )  (3.5) 

with some positive constant/~t. Hence, we have (xl , . . .  ,xr) E M(~). 
We finally show that M is Hausdorff-Lipschitz continuous at ~0. In fact, we 

even show that M is Hausdorff-Lipschitzian at each ( belonging to P. Because of 
symmetric arguments we only have to consider the one-sided Hausdorff distance 

A(M(rl),M(~)):= sup inf I I x - y l l  (~ , r /~P) .  
x E M07 ) Y E M(~) 

Let ~, r/C P and x E M(r/). Since M(~) is nonempty, closed and convex in the 
reflexive Banach space X, there exists a z E M(~) such that I I x - z l l - -  
infy ~ Miel Ilx -YlI .  For later use we introduce the following subsets of Xt depend- 
ing on z H := (Zl,...,zt_l) (t = 1 , . . . , T ) :  

Mt(zt-l,(t) := (Yt E Xt: yt(w) E Bt(gt(zt-l(w),~t(w))),#-a.s.}. 

By definition we have zt E Mt(z  t-1 , ~t) and, moreover, 

I I x , - z ,  ll, = inf I l x , - y ,  ll,. 
Yt E Mt(gt-l,~t ) 

By appealing to theorem 2.2 in [13] and to (3.4) we obtain 

II x, - z, Ill' = inf I I xt(w) - yt(w)1~; #(dw) 
y, E n,(z'-l,~t) 

n 

= J inf 
v, e s, Cg, Cz,-, (~), ~,(~,))) 

f~ 

I x,(w) - v, I~. ', u ( d ~ )  

< Lff' I I gt(x'-l(w)'  rh(w)) - gt(zt-l(w)'~t(w))lP~ u(dw) 
f~ 

: L~= II g, (x  '-~ ('), ~t(')) - g , ( z  '-1 ('), ~,('))II <P;/ 
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and, hence, by (A3) 

I Ix , -  ztl l ,  ~ t t [ l l g t ( x t - l ( ' ) , rh ( ' ) )  - gt(z t - l ( ' ) ,rh( ' ) ) l l ( t )  

+ II g,( z'-I ('), 7,(')) - gt( gt-1 ('), ~,(')) I1(,)1 

<_ LtKt [(1 + 11 ~7, I1..,) i=~max,-I II x~ - z~ lfg 

+(l+~=l,...,/_lmax l lz i l l i ) l lrh-(t lI . , t] .  

Since z E M(~), we obtain analogously to that part of the proof leading to (3.5) that 
max/=1 ..... r It ztllt is bounded by an expression consisting of positive constants and 
II ~ I1,. If we now restrict r / to vary only in a bounded neighbourhood U of ~, we 
can continue our estimate to 

L[ q 
IIx,-z, lll  m a x  IIx -z ll,+ll ,- ,ll, I 

/ i =  1,..., t - 1  t J 

with some positive constant Kt. A successive application of the last estimate now 
leads to 

I I x - z l l =  max [ Ix , - z ,  ll, < L max 11~7,-~,II , , ,=LII~-~II 
t=l,...,T - -  t = l , . . . , 7  

with some constant/2, which is independent of x. By taking the supremum over 
x E M(r/) on the left-hand side of the last inequality, we obtain the desired 
Lipschitz estimate 

A(M(r/),M(~)) < LIIn-~ll, for all r/E U, 

and the proof is complete. [] 

Remark 3.2 

Assumption (A3) provides some flexibility for the choice of the spaces 
Xt = Lp, (f~, Et, #; N ' ) ,  Pt and of the corresponding norm II- I1,, t at each stage t. 
To give an idea how this flexibility can be exploited, consider the function 
gt(xt-l,~t ) =-~,~-~Ati(~t)xi't-bt(~t ) in its general form, where the matrices 
Ati('), i = 1, . . . ,  t -  1, and bt(. ) depend affine linearly on (t. Then estimates of 
the form required in (A3) can always be attained if the spaces and the corresponding 
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norms allow estimates of the following type: 

J ~/~ti(1 + II ,ll.,,)llx;lle, i =  1 , . . . , t -  1, 
f~ 

ls lbt(~t(o.,))ls, lz(dw) <_ L/(1 + II ~tll,,,). 

For instance, let Pt : =  Lq,(~, St, IA; R t') with qt E (1, +c~]. If all matrices Aa are 
non-random, then Pt := qt is the natural choice. If, vice versa, all matrices are 
random, the following conditions have to be fulfilled: (1/pi)+ (1/qt)_< 1, for 
i =  1 , . . . , t .  

Assumption (A4) means that all data processes belonging to P fulfil the 
property that at each stage t E {1 , . . . ,T} ,  we have "relatively complete 
recourse". Of course, (A4) is satisfied with P := Pd (i.e. without restrictions on 
the perturbations), if we have At(Ct) = ~s, ("complete recourse") for all stages t. 

Now, we consider the important case of linear multistage models where the 
first-stage decisions are deterministic, i.e., E1 := {0,f~}, X1 = ]R nl, P1 = ]~rl and 
fo(X) : =  ~--~ T=I qtxt, with q, ~ R n', t = 1 , . . . ,  T. We put A1 := 0 and g1(~1) := 0. 

M i n i m i z e  qlx1 -b E ~_~ qtxt(o.)) (3.6) 
t=2 

sub j ec t  to  Atx,(oJ) ~-- gt(xl,x2(o.J),... ,Xt_l(OJ),~t(o3)) ) 

X 1 E Cl,Xt(td) E Ci i#-a's" t = 2 , . . . ,  T. 

X t E Zp,(~~,~at, lA;R nt) 

(3.7) 

Together with problem (3.6)-(3.7), we consider the associated stochastic program- 
ming model with recourse: 

Minimize qlxl + Q(xl,~) subject to xl ~ C1, (3.8) 
where 

Q(Xl,() := E inf ~q,x,(w):A,x,(~o) = g,(xl,x2(a~),...,x,_l(a~),(t(a~)), 
t=2 

xt(td) ECt,  lA-a.s. ,xtELpt(~,~t, lz;~n') , t  : 1,...,T}]. 

Then (3.3) reads as follows: 
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In our next result we conclude stability for the model (3.6)-(3.7) from theorem 3.1 
by relating the boundedness condition for some level set (in theorem 3.1) to the 
boundedness of the optimal solution set of (3.8). 

C O R O L L A R Y  3 .3  

Let C1 be a nonempty convex polyhedron and suppose for t = 2 , . . . ,  T, 
Ct := {xt E ~ ' :  xt > 0}, At(Ct) = Rs, ("complete recourse") and {ut E ks': 
Atut <_ qt} ~: 0 ("dual feasibility"). Let ~0 E Pa and assume that the optimal set 
~bl (~0) of (3.8) is nonempty and bounded. Moreover, suppose (A3). Then the asser- 
tions (i)-(iii) of theorem 3.1 hold with P := Pa for (3.6)-(3.7), too. 

Proof 

Since the conditions (A1)-(A4) are fulfilled with P = Pd, it remains to verify 
that the level set lc(C) = (x E M(~°):qlxl + E[•L2qtx,(w)] < c} is bounded for 

0 - 0  • • ~ - ~ - -  " 0 • some c > qo(~ ). Here, M~,~ ) is given by the constraints (3.7) for ~ := ~ . By defini- 
tion of Q, the level set lc(~ U) is contained in {x E M(C) :  qtxi + Q(xl, ~0) < c}. Our 
assumptions imply by standard arguments (see e.g. [32]) that Q(., ~0) is convex on 
~n'. Since ~b L (~0) is nonempty and bounded, it follows from corollary 8.7.1 in [25] 
that the level set {xI E Cl:qlX 1 + Q(xt,~ 0) < C }  is bounded, too. Furthermore, 
by repeating the argument in the proof of theorem 3.1 leading to (3.5), we obtain 
for each (Xl,X2('),...,XT('))E m(~ °) an estimate for {Ix, lit ( t =  2 , . . . , T )  in 
terms of { xl { n, and {I ~ {I.. This estimate, together with the boundedness of the 
level set for x I above, implies that {x E M(C) :  qlXl + Q(xI, ~o) < c) and, hence, 
lc(C) are bounded in X. [] 

Remark 3.4 

Theorem 3.1 and corollary 3.3 apply immediately to linear stochastic two- 
stage problems, i.e., to (3.6)-(3.7) with T := 2: 

min {qlxl + E[qzxE(w)]:xl E C~,AEX2(W)= b(~(w))- A21(~(03))x1, 

X2(Od  ) E C 2 , # - a . s , x  2 E tp(n,~,Iz;]~n2)}. 
(3.9) 

As distinct from the stability results for (3.9), which can be derived from the general 
theory in [15, 23, 29], our results are formulated in terms of perturbations of ~0 in 
some space Lq = Lq(~, ~], iz; ~r) of random variables rather than in terms of spaces 
of probability distributions (endowed with a suitable topology or metric). Our 
results yield an upper semicontinuity property for the first-stage optimal set ~bl in 
R n' and, simultaneously, weak upper semicontinuity for the second-stage optimal 
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solutions in Lp. The additional price that has to be paid is the assumption 4 ° ~ Zq 
for q > 1 (cf. remark 3.2). 

The following interpretation of our results is closer to the theory developed in 
[29, 30]. Let us consider the following distance on the set of all probability measures 
(defined on Rr): 

Wq(P, Q) := inf  { II 4 -  711L,: O(4)  = = Q},  

where the infimum is taken over all random variables 4, r/E Lq having the probabil- 
ity distribution P and Q, respectively. Wq is the so-called Lq-Wasserstein distance 
and is a minimal metric [21, 35]. Since the optimal value ~P(4) and the solution set 
~bl (4) of (3.9) only depend on the probability distribution D(4) of the random vari- 
able 4, our results imply the local Lipschitz continuity of ~o and the upper semicon- 
tinuity of ~bl with respect to perturbations of D(4 °) in terms of the metric Wq. 

Remark 3.5 

The results in the present paper apply, in particular, to perturbations of (1.1)- 
(1.2) arising from discrete approximations of the original data process 40 . For this 
case, our stability results are close to those obtained in [17] (for linear two-stage 
problems with random right-hand sides) and in [19] (for linear multistage 
problems). Without going into detail, we just mention that our results also apply 
to the case of random technology matrices and work without restrictive assump- 
tions on the distributions of 4 ° and its perturbations. A barycentric approximation 
scheme for multistage stochastic models including error bounds was developed in 
[12]. Our results are also relevant for studying the convergence of this scheme if 
the cells become arbitrarily small. 
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