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Introduction

• Georg has much more than 100 publications in wide-ranging fields of interest

covering and connecting theory and practical applications.

• To review parts of his work I had to select some main topics without intending

to cover a high percentage of his research topics.

• My selection is

– Statistical inference of stochastic programs

– Risk measures

– Scenario trees for multistage stochastic programs

• Georg organized a number of International Conferences (including WC Bernoulli

Society1996, ICSP 2007 and OR 2015) and of Workshops.

• Georg’s talks at some (early) SP Conferences are passed in revue, too.

























We consider the stochastic program

min

{∫
Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

where f is a normal integrand on Rm × Rd, X a closed subset of Rm and P a

probability distribution on Rd.

The empirical approximation of the stochastic program is

min

{
1

n

n∑
i=1

f (x, ξi) + δX(x) : x ∈ Rm

}
(n ∈ N),

where δX denotes the indicator function of X and ξi, i ∈ N are i.i.d. random

variables in Rd with common distribution P .

Assume that the original SP has a unique solution x? ∈ X and let (ρn) be a

positive sequence and (Γn) be a sequence of regular m×m matrices converging

to zero. Consider the stochastic process

Zn(t) = ρn

n∑
i=1

[f (x? + Γnt, ξ
i)− f (x?, ξi)] + δX(x? + Γnt)) (t ∈ Rm).

Pflug 95 derives conditions under which the sequence (Zn) epi-converges in distri-

bution to some stochastic process Z which is explicitly characterized.













Let v(P ) and S(P ) denote the optimal value and solution set of the original

stochastic program. It holds

|v(P )− v(Q)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f (x, ξ)P (dξ)−
∫

Ξ

f (x, ξ)Q(dξ)

∣∣∣∣
∅ 6= S(Q) ⊆ S(P ) + Ψ−1

P

(
sup
x∈X

∣∣∣∣∫
Ξ

f (x, ξ)P (dξ)−
∫

Ξ

f (x, ξ)Q(dξ)

∣∣∣∣)B,
where X is assumed to be compact, B is the unit ball in Rm, Q is a probability

distribution approximating P and ΨP is the growth function of the objective near

the solution set, i.e.,

ΨP (t) := inf

{∫
Ξ

f (x, ξ)P (dξ)− v(P ) : x ∈ X, d(x, S(P )) ≤ t

}
.

Hence, the uniform distance dF with F := {f (x, ·) : x ∈ X} becomes important

dF(P,Q) := sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣
when studying approximations of the original stochastic program.



With Pn denoting the empirical measure to P , it is, hence, of interest whether

the function class F is a P -Glivenko-Cantelli class, i.e.,

lim
n→∞

dF(P, Pn) = 0 a.s.

Pflug-Ruszczyński-Schultz 1998 provide sufficient conditions such that integrands from

linear two-stage stochastic programming and its extensions are Glivenko-Cantelli-

classes using tools from the work by Talagrand 1987.

The empirical process {n1
2(Pn− P )f}f∈F is called uniformly bounded in proba-

bility with tail CF(·) if the function CF is decreasing on (0,∞) and the estimate

P(n
1
2dF(P, Pn) ≥ ε) ≤ CF(ε)

holds for all ε > 0 and n ∈ N. In his seminal work Talagrand 1994 proved that the

tail can be chosen as

CF(ε) = p(ε) exp (−2ε2) (ε > 0)

with a polynomial p if the class F is uniformly bounded and satisfies some met-

ric entropy condition. Pflug 1999 showed that integrands from linear two-stage

stochastic programming satisfy the metric entropy conditions.



Linear two-stage stochastic programs:

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where c ∈ Rm, Ξ and X are polyhedral subsets of Rd and Rm, respectively, P

is a probability measure on Ξ and the s×m-matrix T (·), the vectors q(·) ∈ Rm

and h(·) ∈ Rs are affine functions of ξ.

The function Φ denotes the parametric infimum function of the linear second-

stage program

Φ(u, t) = inf {〈u, y〉 : Wy = t, y ∈ Y },
which is finite and continuous on D×W (Y ), where D is the dual feasibility set

D =
{
u ∈ Rm :

{
z ∈ Rs : W>z − u ∈ Y ?

}
6= ∅
}
,

where W is the s ×m recourse matrix, W> the transposed of W and Y ? the

polar cone to the polyhedral cone Y in Rm.

The function Φ is concave-convex polyhedral and finite and locally Lipschitz

continuous with linearly growing local Lipschitz moduli on D ×W (Y ).

























Consider a probability space (Ω,F ,P), a filtration F0 ⊆ F1 ⊆ · · · ⊆ FT of

σ-fields and let F = (F1, . . . ,FT ) represent the observable relevant information.

Let ρ(·,F) denote a multi-period risk functional defined on some normed space

Y = ×Tt=1Yt of random vectors Y , where Yt is Ft-measurable, with values in

the extended reals R = R∪ {+∞}, i.e., ρ(·,F) is convex on Y and satisfies the

monotonicity property ρ(Y,F) ≤ ρ(X,F) if Xt ≤ Yt, P-a.s., t = 1, . . . , T .

The multi-period risk functional ρ(·, ·) is called information monotone if

ρ(Y,F′) ≤ ρ(Y,F) holds for all Y ∈ Y if Ft ⊆ F ′t, t = 1, . . . , T ,

where F = (F1, . . . ,FT ) and F′ = (F ′1, . . . ,F ′T ).

Now, consider a sequence of (risk) mappings ρ(t)( · ,F(t)) from ×Ti=t+1Yi to Yt
for t = 0, . . . , T − 1, where F(t) = (Ft, . . . ,FT ) and Y (t) = (Yt, . . . , YT ).

Such a sequence is called time consistent if

ρ(t)(X(t+1),F(t)) ≤ ρ(t)(Y (t+1),F(t)) and Xt ≥ Yt implies

ρ(t−1)(X(t),F(t−1)) ≤ ρ(t−1)(Y (t),F(t−1))

for all X, Y ∈ Y and t = 1, . . . , T − 1 (Kovacevic-Pflug 14).



Multi-period risk functionals ρ(·,F) are typically constructed by composing (risk)

mappings in a suitable way.

Examples:

(a) SEC risk functionals: ρ(Y,F) =
∑T−1

t=0 E[ρt(Yt+1|Ft)],
where the ρt(·|Ft) : Yt+1 → Yt are conditional risk mappings. Such func-

tionals are composed by a sequence of time consistent risk mappings and is

information monotone if each ρt(·|Ft) is information monotone.

(b) Additive conditional risk functional compositions:

ρ(t)(Y (t+1),F (t)) = ρt(·|Ft) ◦ · · · ◦ ρT−1

( T∑
i=t+1

Yi

∣∣∣FT−1

)
(t = 0, . . . , T − 1)

ρ(Y,F) = ρ(0)(Y (1),F(0)).

Additive risk functional compositions are time consistent, but lead to infor-

mation monotone multi-period risk measures only in a few cases.

(c) Dynamic programming recursions are time consistent and may be used to

obtain information monotone multi-period risk measures.
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Abstract. Multiperiod financial optimization is usually based on a stochastic model for the possible market
situations. There is a rich literature about modeling and estimation of continuous-state financial processes,
but little attention has been paid how to approximate such a process by a discrete-state scenario process and
how to measure the pertaining approximation error.

In this paper we show how a scenario tree may be constructed in an optimal manner on the basis
of a simulation model of the underlying financial process by using a stochastic approximation technique.
Consistency relations for the tree may also be taken into account.

1. Introduction – the approximation problem

A (continuous-state) multistage financial optimization problem with decision periods
1, 2, . . . T is based on

• a stochastic model of the future development of the economic environment (prices,
interests, cash-flows, etc.). This scenario process is expressed as a (possibly vector-
valued) stochastic process ξ1, ξ2, . . . , ξT ;

• a decision model for the actions to be taken. The decisions at time stage t, which
may depend on the past observations ξ1, . . . , ξt−1 are x1, x2(ξ1), x2(ξ1, ξ2),

. . . xT (ξ1, . . . , ξT−1);
• the objective function, which expresses the long-term goals of the decision maker.

Except for extremely simple and unrealistic cases, continuous-state multiperiod
financial optimization problems can only be formulated, but not solved.

The reason for practical unsolvability is the fact that the decisions are functions,
making the problem a functional optimization problem, which cannot be numerically
solved as it is.

The usual way of reducing the problem to a solvable one is to restrict to discrete-state
multiperiod financial optimization problems, i.e. these cases in which the random vector
ξ1, . . . , ξT takes only finitely many values. In this case, the decision functions reduce to
large decision vectors.
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Thank you Georg for many years of successful cooperation, inspiring
discussions and friendship!


