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ABSTRACT. The economic dispatch of electric power with uncertain demand is modelled
as a stochastic program with simple recourse. The unknown distribution functions of the
demand are approximated by smooth nonparametric estimates, We discuss the numerical
treatment of the model and report on computational.results.

1. The stochastic power dispatch model

We consider the optimal scheduling of power generation to the units of an energy production
system, aiming at minimizing the total generation costs while the power demand is met and
certain operational constraints of the system are satisfied. This process is often divided into
a three-stage procedure: (1) unit commitment for the base-load-plants, (2) power dispatch
for the operating cycle and (3) short-term load dispatch for the base-load-plants (optional).
The peculiarities of the energy production system and of the power dispatch model we shall
consider are the following:

(a) The system consists of thermal power stations (ps), pumped hydro storage plants
(psp) and an energy contract with connected systems,

(b) tps and psp serve as base-and peak-load plants, respectively,

(c) the model is designed for a daily operating cycle and assumes that a unit commit-
ment stage has been carried out before,

(d) the cost functions of the ips are taken to be strictly convex and quadratic,

(e) the transmission losses are modelled by means of adjusted portions of the demand,

(f) the model takes explicit account of the uncertainty of the electric power demand.

The mathematical formulation of the optimal power dispatch model reads

min{g(z): z € C, Az = z}. (1.1)

Here, the components of £ are the outputs (inputs) of the tps and psp at each interval of
a discretization of the time-horizon and the levels of electric power which correspond to
the energy contract at each time interval. The total generation cost function g is convex
quadratic, the portion which cortesponds to the contract is a linear function. The set Cisa
nonempty bounded convex polyhedron formed by the operational constraints of the system,
e.g. bounds for the power output of the plants, balances between generation and pumping
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Figures 1 and 2. Estimates for the density and distribution function

in the psp, balances for the psp over the whole time-horizon, fuel quotas for the tps etc.
At this instant the equation Az = z in (1.1) means that the total generated output [Az],
meets the electricity demand z.,r = 1,..., N, at each time interval. A detailed description
of the model can be found in [2} and [6)].

Now, we consider the demand z as a random vector and denote by F, the probability
distribution function of z,» = 1,...,N. Asin [1], [2] we introduce penalty costs for the
deviation of the scheduled output from the actual demand for under- and overdispatching,
respectively. Adding the expected penalty (or recourse) costs to the deterministic objective
function g we obtain the following stochastic power dispatch model:
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min{g() + 3 / Qu(t - xo)dFs(t) iz € C, Az = x} (1.2)
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and g7,q; denoting the recourse costs for under- and overdispatching at the r-th time
interval, respectively. For a discussion of the interpretation and choice of the recourse costs
we refer to [1]. More information on various aspects of power dispatch can be found in [8).
It is well-known that (1.2) is a particular stochastic program with simple recourse (cf. [3]).
Under weak assumptions, (1.2) is a (large scale) convex nonlinear program having linear
constraints and C'- data (if all distribution functions F. have densities). For our application
of the model to the electricity sector of East Germany the dimension of the vector z is 840.
For the uncertain demand, a set of empirical data is given. In [1] it is suggested that the
distribution functions F, can be chosen as (trimmed) normal. However, our tests with
the available empirical data have not justified this hypothesis. The Figs. 1 and 2 show
estimates for the density and distribution function of the centered demand during 1 p.m.-2
p.m. of a day of normal category. The estimates are obtained by a nonparametric kernel
estimator according to (2.1).

2. Numerical treatment, results and conclusions

For the numerical solution of the stochastic power dispatch model (1.2) we first replace
the distribution functions F, by the following smooth nonparametric estimates F, (r =
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1,...,N). Let zi...,%nry... be an independent sample from the distribution F, (r =
1,...,N), k: R — R a nonnegative function having the property [y k(t)dt =1 (“kernel"),
and (by,) a sequence of positive numbers tending to zero (“ smoothing parameters”). Then
we consider kernel estimates of . (r=1,...,N)

Fo(t):= ﬁ; iz:;/:‘wk (f%:'—'-) dz (te€R;neN). (2.1)

For more information and background on kernel-type estimators, especially on possible
choices of k and (b,), and on asymptotic results for n — oo, we refer to [7],[9]. These
asymptotic arguments together with stability results for stochastic programs yield a theo-
retical foundation of our approach (see [2]). The use of the estimates F; for the distribution
functions of the electricity demand leads to the following convex program having a contin-
uously differentiable objective and linear constraints:

min{g(z) + Q(x) : = € C, Az = x} (2.2)

Explicit formulas for Q and its gradient can be derived easily (see Sect. 5 in [2]). They show
the dependence of Q on the recourse costs, the samples and smoothing parameters, and on
the real functions K;(t) := [°_ k(u)du, Ka(t) := [L ., uk(u)du. Since, for most kernels k,
K1 and K3 can be calculated explicitly, no numerical integration has to be performed when
evaluating @ and its gradient.

The second step in our treatment of (1.2) is the solution of (2.2) by standard NLP-
techniques, A program system STOCHOPT following this approach has been developed by
using the NLP-code MINOS (sce [5]). The system is written in FORTRAN 77 (algorithm)
and TURBO-PASCAL (user-interface). The first version of STOCHOPT was implemented on
an IBM PC 386 and first tested for a stochastic aircraft allocation problem (see [2]). Re-
cently, a series of test runs for the stochastic power dispatch model (of East Germany) were
performed. During all experiments the running time on a PC 386 did not exceed 5 min-
utes and had the same order of magnitude as for the corresponding deterministic model.
The reason for this surprising effect is the low number of iterations of the nonlinear pro-
gramming algorithm, which is (probably) due to the strong convexity of the recourse cost
function Q. Another surprising result is illustrated in Fig.3, showing the quotient QUO of
the optimal costs of the stochastic model over that for the deterministic one as a function of
the prescribed reserve level RL (%) for the demand, and elucidating the fact that the opti-
mal solution of the stochastic model is superior to that of the (corresponding) deterministic
one even if a reserve level of only 3% of the demand is adjusted.
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Figure 3.
A more detailed comparison of (stochastic and deterministic) output schedules of all gen-
eration units shows that, for the “stochastic solution”, high-cost (low-cost) units operate
(as long as possible) at the lower (upper) output level. Fig.4 shows the daily output sched-
ule for a high-cost unit (Boxberg2). An additional observation is that the total number of
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Figure 4. Comparison of a stochastic and deterministic output schedule

regulations of all units (during the whole time period) is smaller in case of the “stochastic
solution”.
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