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Abstract - -  Zusammenfassuug 

Some Applications of Mathematical Programming Techniques in Optimal Power Dispatch. Some models 
for the economic dispatch of electric power are introduced and treated by mathematical programming 
techniques. In particular, our presentation includes (i) a short-term model for the optimal dispatch of 
thermal units, which is solved by a specific path following method, (ii) a daily model for a generation 
system consisting of thermal units, pumped storage plants and an energy contract, which can be solved 
by standard convex quadratic programming algorithms, and (iii) two stochastic programming models 
for the optimal daily dispatch, which depend on the (unknown) probability distribution of the electric 
power demand. One of the latter models can be solved efficiently by combining nonparametric estimation 
procedures and convex programming methods. 

AMS Subject Classifications: 90C15, 90C25 

Key words: Nonlinear programming, stochastic programming, power dispatch. 

Einige Anwendungen der mathematischen Optimierung bei der optimalen Lastverteilung. In der Arbeit 
werden einige Modelle zur optimalen Lastverteilung yon Elektroenergie diskutiert und mit Hilfe yon 
Optimierungsmethoden behandelt. Insbesondere gehen wit ein auf (i) ein Modell der Momentan- 
Optimierung der Lastverteilung yon W/irmerkraftwerden, das mit einer speziellen parametrischen 
Optimierungsmethode gel~Sst wird, (ii) ein Tagesmodell fiir ein Erzeugersystem bestehend aus W/irme- 
kraftwerken, Pumpspeicherwerken und einem Energievertrag, welches mit Standardmethoden der 
quadratischen konvexen Optimierung behandelt wird, und (iii) zwei stochastische Optimierungsmodelle 
fiir die Optimierung im Tagesbereich, welche yon der (unbekannten) Wahrscheinlichkeitsverteilung 
des Elektroenergiebedarfs abhiingen. Eines dieser Modelle kann durch die Kombination nichtpara- 
metrischer Sch~itzmethoden mit Verfahren der konvexen Optimierung efftzient numerisch behandelt 
werden. 

1. Introduction 

The models described in this paper  have been developed for the energy s i tuat ion in 
East G e r m a n y  and  coordinated  with engineers of an  electricity-supply enterprise. 
Our  highly esteemed colleague H a n s j t r g  Wacker  ini t iated and  pursued this 
appl icat ion of opt imiza t ion  techniques. The long and  fruitful coopera t ion  with him 
and  his group (in par t icular  in the field of path following methods  in  parametr ic  
opt imizat ion,  which is of impor tance  in this paper, too) has in t roduced us to their 
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work on energy optimization (see e.g. [1], [15]) and has allowed us to benefit from 
the experience gathered in Austria. 

Our models follow some hierarchy and are designed to support decisions of a 
dispatcher when running a power generation system comprising thermal units, 
pumped storage plants and import/export contracts. It is assumed that a proper 
identification of generating units (unit commitment) is carried out before. Transmis- 
sion losses in the electric network are modelled by an adjusted portion of demand. 
Our presentation includes a short-term model and three models with a time horizon 
of up to a few days: one model where the data are considered to be deterministic, 
and two further models where the electric power demand enters as a random 
quantity. 

2. Short-Term Dispatch of Thermal Units 

The task is to allocate amounts of electric power to thermal units of generation such 
that the total generation costs are minimal, while an electric power demand is met 
and restrictions for the power output of each unit are satisfied. It is quite usual [2] 
to model the fuel costs of each unit as a strictly convex quadratic function of the 
power. Of course, generation costs of different units do not influence each other, 
and we end up with minimizing some function 

subject to 

yrHy + hry (2.1) 

K 
y ~ = t  and a ~_<y/_<d ~ ( i =  1 . . . . .  K). (2.2) 

i=i 

Here, K denotes the number of generating units and the unknown levels of produc- 
tion are yl . . . .  , yK. The cost coefficients are given by the entries in h e NK and in 
the positive definite diagonal K x K-matrix H. 

Accordingly, a and d e R E contain the bounds for the power output. The electric 
power demand is denoted by t e R. 

The specific feature of (2.1), (2.2) is that the power demand t is considered as a real 
parameter varying between 

K K 
amin : :  Z a-i and amax :~" Z ai,  

i=1 i=l 

i.e. between the minimum and maximum of the total output of the K units. In this 
way one arrives at a one-parametric convex quadratic minimization problem. The 
latter is solved by a very specific path following method (continuation method), 
whose details are developed in [i0].  Since results for more general parametric 
programs imply that the optimal solutions y(t) of (2.1), (2.2) (for amin -< t _< am~) 
form a continuous, piecewise affine trajectory, it remains to compute those points in 
[amin, am~] where kinks occur and to find the optimal solutions at these points. Anal- 
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yzing the Kuhn-Tucker necessary (and here also sufficient) optimality conditions 
this can be done quite easily and, in contrast to more general path following methods 
(cf. [5], [8]), one ends up with an explicit representation of y(t) for t �9 [ami,, am,x]. 
Hence, in the specific setting adopted here, power dispatch reduces to simply 
inserting the actual demand into the representation of y(t), which, in turn, embodies 
a very efficient procedure for following a demand curve with a fixed configuration 
of thermal units. Of  course, the method also performs well for an optimal allocation 
of power for one fixed demand. However, for the latter case there is also a more 
efficient procedure which is described in [2], [3]. 

3. Optimal Daily Dispatch with Deterministic Data 

We extend the model from Section 2 to a generation system consisting of thermal 
units, pumped storage plants and an energy contract. The generation process is 
considered for a time horizon up to one day (or one week) with a discretization into 
hourly or half-hourly intervals. 

Let K and M denote the number of thermal units and pumped storage plants. Let 
N be the number of subintervals in the time discretization. The unknown levels of 
production in the thermal units and the pumped storage plants are y[ (i = 1 . . . . .  K; 
r = 1, . . . ,  N) and s/(j  = 1 . . . . .  M; r = 1 . . . . .  N; generation mode), w] (j  = 1 . . . . .  M; 
r = 1 . . . . .  N; pumping mode). By z, (r = 1 . . . . .  N) we denote the unknown amounts 
of energy purchased or sold according to the contract. 

The total generation costs comprise the fuel costs of the thermal units (which are 
given as in Section 2) and the costs (resp. takings) according to the energy contract 
(which are a linear function of the power). For  the pumped storage plants we assume 
that there occur no generation costs, and hence we have to minimize 

yrHy + hry + grz  (3.1) 

where y e N rN, z e N N, H is a positve definite diagonal KN x KN-matrix, h �9 N KN, 
g � 9  n. 

In the constraints we have again an equilibrium between total generation and 
demand 

K M 

E Y~ + E ( s / -  w~) + zr = dr for all r = 1 , . . . ,  N,  (3.2) 
i = 1  j = l  

and, furthermore, we have conditions characterizing the operation of the different 
plants 

_al < y < d l ,  O < s < d 2 ,  0 < w < g 3 ,  a 4 ~ z ~ a 4 ,  (3.3) 

S ~ 1 7 6  ~ ~ ( s / - t / j w / ) < S  ~176  j = I , . . . , M ,  z = l , . . . , N ,  (3.4) 
r = l  

N N 

2 ( s / -  tljW, ~) = btj, j = 1 , . . . ,  M,  ~ z, = b2. (3.5) 
r = l  r = l  
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While (3.3) models restrictions for the power output, the inequalities (3.4) reflect the 
balance between generation and pumping (measured in energy) in the pumped 
storage plants. S ~176 and S ~ denote, the initial and maximal stocks in energy 
respectively, in the upper dam. For  each pumped storage plant, we assume that the 
maximal stock in water of the upper dam equals that of the lower dam and that no 
additional inflow or outflow occurs. Then we put the pumping efficiency, denoted 
by ~/j, as the quotient of the energy gained when letting the full content of the upper 
dam go down and the energy needed when pumping the full content of the lower dam 
upward. The equations (3.5) are balances over the whole time period for the pumped 
storage plants and the energy contract, respectively. Further linear constraints can 
be appended, for instance to model fuel quotas for the thermal units or intermediate 
water levels in the dams of the pumped storage plants. Including pumped storage 
plants, of course, turns the model from a time-separable one into one with 
constraints linking different time periods. Also, pumped storage plants do not 
contribute to an optimal solution if the demand curve is traceable by the thermal 
units alone. However, for the electricity company mentioned at the beginning it was 
the typical situation that the thermal units alone did not suffice to follow the demand 
curve. Pumped storage plants were used to manage peaks (and valleys) of the 
demand. Altogether we have the following convex quadratic program 

min{g(x): x ~ C, A x  = d}, (3.6) 

where x = (y ,s ,w,z)  e lt~", m := N ( K  + 2 M  + 1), g(x) is defined by (3.1), C c Em is 
the bounded convex polyhedron given by (3.3)-(3.5) and the equation A x  = d 
describes (3.2). 

(3.6) is solved by standard packages. It has the interesting feature that it circumvents 
Boolean variables to avoid simultaneous generation and pumping in the pumped 
storage plants. Of course, it is possible to find points satisfying (3.2)-(3.5) for which 
both sr jg and w, ~g are non-zero for somejo ~ {1 . . . . .  M} and some r o E {i . . . . .  N}. But 
such points cannot be optimal, since, due to the strict monotonicity of (3.1) with 
respect to each y[ (i = 1 . . . .  ,K;  r = 1 . . . . .  N), we obtain a point with a lower 
objective value when replacing s j0 by s j~ - - .  w J~ and w j~ by zero (in case ro ro  ' l J o  r o r o  

1 
sJ~ - ,t~o" WJ~ - > 0) or s ~oro by zero and w jo~o by - - - s  j~ + wJ~ (in case s j~ - -,ion w Joro < 0) 

r/io 
and leaving the remaining components fixed. Therefore, the infeasibility of the 
problem can be detected by the package either when it finds that there is no vector 
(y, s, w, z) fulfilling (3.2)-(3.5) or when it presents an "optimal solution" that has 
s i~ > 0 and w i~ > 0 for some Jo and r o. The latter indicates that the demand 

F o ro 

compared to the minimal output of the thermal units is slightly too low. Hence the 
units must be re-committed. 

4. Optimal Daily Dispatch with Stochastic Data 

When running the model (3.1)-(3.5) in practice, there is the problem that we want 
to find some optimal generation policy for a prospective time period without exact 
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knowledge of the demand vector d, which is typically random. Therefore, a load 
forecasting procedure is usually carried out before entering the power dispatch 
model. The exact probability distribution of the demand d is hardly available. A 
naive approach, however, consists in taking the expectation, and then the model 
from Section 3 works. For the dispatcher this may be unsatisfactory since it does 
not exclude infeasibilities in the course of the generation period. He might have 
some emergency programs (which cause further costs) or at least he wants to be 
sure that the proposed generation policy is feasible "with a high probability". The 
main objective of the models presented next is to support the dispatcher in solving 
a "here-and-now" decision problem, namely planning the prospective generation 
(with only stochastic information on the demand) in such a way that emergency 
programmes, "in the mean", have to be used rarely or cause minimal costs. The 
models do not yield emergency decisions. These have to be found almost on-line 
after realization of the random data (for instance, with the help of the short-term 
model from Section 2). Taking these wishes into account and trying to exploit from 
the random data more than only their expectations leads to stochastic programming 
([9], [16]; see also [11]). The idea of "feasibility with high probability" leads to 
probabilistic (or chance) constraints. So let # be some probability measure on EN 
reflecting the distribution of the demand vector d ~ EN (cf. (3.2)). Claiming that a 
generation policy (y, s, w, z) fulfils the demand with probability p E (0, 1) then means 
that 

# ( {  d~l~N:~y~+~(s~-w~)+z'>dr'r=li=l j=l . . . . .  N } ) > p .  (4.1) 

If we replace in (3.1)-(3.5) the constraints (3.2) by the inequality (4.1), we loose 
polyhedrality, since the left-hand side in (4.1) is a non-linear function of (y, s, w, z) 
in general. A further problem arises since we often have only incomplete information 
on the measure # in practice and, hence, (4.1) should at least be stable in some sense. 
A corresponding stability theory is developed in [12]. For the optimization problem 
given by (3.1), (4.1), (3.3)-(3.5) it yields that optimal generation policies and optimal 
costs behave stable with respect to perturbations of # under some quite natural 
assumptions. 

Picking up the idea of emergency programs after the realization of the random data 
one arrives at stochastic programs with recourse, which we will discuss next. As in 
[4] and [6] we introduce a penalty cost for the deviation of the scheduled output 
from the actual demand, for under- and overdispatching, respectively. Adding the 
expected penalty (or recourse) costs to the (deterministic) cost function g in (3.6) we 
obtain the following stochastic power dispatch model: 

min g(x) + Qr(t - )~r)dFr(t): x ~ C, Ax = )~ , (4.2) 
r ~ l  co 

q+t, t >__ 0 
where Q,(t) ( - q ~ t ,  t < o' q+~ and q~- denote the recourse cost coefficients for 

under- and overdispatching at the r-th time interval, respectively, and Fr denotes 
the probability distribution function of dr (r = 1 . . . . .  N). 
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It is well-known that (4.2) is a particular stochastic program with simple recourse 
(cf. [9]). Under the basic assumption that 

q~- _> 0 and f ~  ItldF~(t) < +o9 (r = 1 . . . . .  N), qff + 

(4.2) is a convex (nonlinear) program having linear constraints. The objective 
function of (4.2) is (twice) continuously differentiable if all distribution functions F, 
(r = 1 . . . . .  N) have (continuous) densities (cf. [9]). In [4] it is suggested to choose 
F, (r = 1 . . . . .  n) as a (trimmed) normal distribution. However, our tests with the 
available empirical data have not justified this hypothesis. We finally preferred to 
use the following smooth nonparametric estimates for F,: 

i ~ f [  k ( ~ ) d x  ( t ~ ; n ~ N ) ,  (4.3) if)re(t) := ~ i=x 

where r . . . ,  ~,~ is an independent sample taken from the distribution F, 
(r = 1 . . . .  , N), k: ~ -~ ~ a nonnegative function having the property j'-~o~ k(x) dx = 1 
("kernel") and (b,) a sequence of positive numbers tending to zero ("smoothing 
parameters"). For more information on such kernel-type estimators, in particular 
on possible choices of k and (b,,) together with asymptotic results as the sample size 
n tends to infinity, we refer to [6] and the literature cited therein. These asymptotic 
arguments together with stability results for stochastic programs ([13]) yield a 
theoretical foundation of the approach to replace F~ in (4.2) by its kernel estimate 
if)') (r = 1 . . . . .  N). One result in this direction will be described next. Let ~ denote 
the set of solutions to (4.2) and r the corresponding solution set if F~ is replaced 
by P~(")(r = 1 . . . .  , N). 

Proposition: Let q~ + q~ > 0 for all r = 1, . . . ,  N. Assume, in addition, that the 
functions F,, r = 1, . . . ,  N, are twice differentiable such that F" is bounded on ~, and 
that there exist an open neighbourhood U of A~ and a constant ~ > 0 such that 

PC 

[7[ F~(tr) >- ~, for all (tD.. .  , tn) ~ U. 
r= l  

Furthermore, let all distributions Fr (r = 1,. . . ,  N) have compact support and let k be 
a class 2 kernel, i.e. ~_~ xk(x)dx = 0 and S~_o~ x2k(x)dx < +o9. Then we have the 
following rate of mean converoence of optimal sets 

E[dn(~ 9, r = O(n-1/4), 

whenever (b,) is chosen such that lim sup,_,o~ b~n 1/2 < +o9. Here dH denotes the 
Hausdorff distance on bounded subsets of ~". 

This result is proved in [6] (combine Theorem 3.5 and Proposition 4:2). Its proof 
relies essentially on a general quantitative stability result for stochastic programs 
with complete recourse (Theorem 2.7 in [13]). More recent investigations [14] even 
lead to the improved (and best possible) rate of convergence 

e[dH(O, r = 0(n-1/2). 
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Justified by the above theory, our numerical treatment of the model (4.2) begins 
with replacing/7, by ff~") taken from (4.3) (r = 1,. . . ,  N). This leads to the following 
convex program having smooth data and polyhedral constraints: 

min{g(x) + Q(z): x ~ C, Ax  = Z}. (4.4) 

Explicit formulas for Q and its gradient in terms of the recourse cost coefficients, 
the samples, the smoothing parameters and of the functions gf~l(t):= ~t_| k(x)dx, 
J~ffz(t) := ~t-oo xk(x)dx  (t ~ ~) can be derived immediately (Section 5 of [6]). Since, 
for most kernels k, the real functions ~)ffl and ~ff2 can be calculated explicitly, no 
numerical integration has to be performed when evaluating Q and its gradient. The 
second step in the treatment of (4.2) is the solution of (4.4) by standard convex 
programming algorithms. A program system STOCHOPT according to this 
approach has been implemented on a PC 386 by Mrs. N. Gr6we. Numerical results 
and conclusions of a series of test runs for a stochastic power dispatch model of 
East Germany (K := 24, M := 5, N := 24 and, hence, rn = 840) are reported in [7]. 
Two observations deserve special attention: (1) The running times on a PC 386 did 
not exceed 5 minutes and had the same order of magnitude as for the corresponding 
deterministic model (3.6). (2) The optimal costs of the stochastic model are lower 
than those for the deterministic one even if a reserve level of (only) 3~o of the demand 
is adjusted (in (3.6)). 
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