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a b s t r a c t

We consider risk-averse formulations of multistage stochastic linear programs. For these formulations,
based on convex combinations of spectral risk measures, risk-averse dynamic programming equations
can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to
obtain approximations of the corresponding risk-averse recourse functions. This allows us to define a
risk-averse nonanticipative feasible policy for the stochastic linear program. Formulas for the cuts that
approximate the recourse functions are given. In particular, we show that some cut coefficients have
analytic formulas.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Multistage stochastic programs play a central role when devel-
oping optimization models under stochastic uncertainty in engi-
neering, transportation, finance, and energy. Furthermore, since
measuring, bounding, or minimizing the risk of decisions becomes
more andmore important in applications, risk-averse formulations
of such optimization models are needed and have to be solved.
Several risk-averse model variants allow for a reformulation as
a classical multistage model, as in [6,8] and the present paper.
From a mathematical point of view, multistage stochastic opti-
mizationmethods represent infinite-dimensionalmodels in spaces
of random vectors satisfying certain moment conditions and con-
tain high-dimensional integrals. Hence, their numerical solution is
a challenging task. Each solution approach consists at least of two
ingredients: (i) numerical integration methods for computing the
expectation functionals and (ii) algorithms for solving the resulting
finite-dimensional optimization models.

The favorite approach for (i) is to generate possible scenarios
(i.e., realizations) of the random vector involved and to use them
as ‘grid points’ for the numerical integration. Scenario generation
can be done by Monte Carlo, quasi-Monte Carlo, or optimal
quantization methods (see [5,18] for overviews and [3, Part III] for
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further information). Scenarios for multistage stochastic programs
have to be tree structured to model the increasing chain of σ -
fields. Existing stability and convergence results such as those
in [11,10,12,21] provide approaches and conditions implying the
convergence of such schemes, in particular, for the deterministic
first-stage solutions. Hence, they justify rolling horizon approaches
based on repeated solving of multistage models; see [9], for
instance.

The algorithms employed for (ii) depend on structural proper-
ties of the basic optimization model and on the inherent structure
induced by the scenario tree approximation (see the survey [19] on
decomposition methods).

Some algorithmic approaches incorporate the scenario gener-
ation method (i) as an algorithmic step of the solution method.
Such approaches are, for example, stochastic decompositionmeth-
ods for multistage models (see [20]), approximate dynamic pro-
gramming (see [17]), and Stochastic Dual Dynamic Programming
(SDDP), initiated in [13], revisited in [16,22], and also studied in
the present paper.

We consider risk-averse formulations of multistage stochastic
linear programs of the form

inf
x1,...,xT

d⊤1 x1 + θ1E


T

t=2

d⊤t xt


+

T
t=2

θtρφ


−

t
k=2

d⊤k xk


Ctxt = ξt − Dtxt−1,
xt ≥ 0, xt is Ft-measurable, t = 1, . . . , T ,

(1)
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where x0 is given, parameters dt , Ct ,Dt are deterministic, (ξt)Tt=1
is a stochastic process, Ft is the sigma-algebra Ft := σ(ξj, j ≤ t),
(θt)

T
t=1 are nonnegative weights summing to 1, and ρφ is a spectral

risk measure [1] or distortion risk measure [14,15] depending on
a risk spectrum φ ∈ L1([0, 1]). In the above formulation, we
have assumed that the (one-period) spectral risk measure takes as
argument a random income and that the trajectory of the process is
known until the first stage. We assume relatively complete recourse
for (1), which means that, for any feasible sequence of decisions
(x1, . . . , xt) to any t-stage scenario (ξ1, ξ2, . . . , ξt), there exists a
sequence of feasible decisions (xt+1, . . . , xT ) with probability 1. A
non-risk-averse model amounts to taking θ1 = 1 and θt = 0
for t = 2, . . . , T . A more general risk-averse formulation for
multistage stochastic programs is considered in [8]. For these
models, dynamic programming (DP) equations are written in [8]
and an SDDP algorithm is detailed to obtain approximations of the
corresponding recourse functions in the form of cuts. The main
contribution of this paper is to provide analytic formulas for some
cut coefficients, independent of the sampled scenarios, that can be
useful for implementation. We also specialize the SDDP algorithm
and especially the computation of the cuts for the particular risk-
averse model (1).

We start by setting down some notation.

• e will denote a column vector of all 1s;
• for x, y ∈ Rn, the vector x ◦ y ∈ Rn is defined by (x ◦ y)(i) =

x(i)y(i), i = 1, . . . , n;
• for x ∈ Rn, the vector x+ ∈ Rn is defined by x+(i) =

max(x(i), 0), i = 1, . . . , n;
• the available history of the process at stage t is denoted by

ξ[t] := (ξj, j ≤ t);
• for vectors x1, . . . , xn, the notation xn1:n2 stands for the

concatenation (xn1 , xn1+1, . . . , xn2 ) for 1 ≤ n1 ≤ n2 ≤ n;
• δij is the Kronecker delta defined for i, j integers by δij = 1 if

i = j and 0 otherwise.

2. Risk-averse dynamic programming

Let FZ (x) = P(Z ≤ x) be the cumulative distribution function of
an essentially bounded random variable Z , and let F←Z (p) = inf{x :
FZ (x) ≥ p} be the generalized inverse of FZ . Given a risk spectrum
φ ∈ L1([0, 1]), the spectral risk measure ρφ generated by φ is (see
[1]):

ρφ(Z) = −

 1

0
F←Z (p)φ(p)dp.

Spectral risk measures have been used in various applications
(portfolio selection by Acerbi and Simonetti [2]; insurance by
Cotter and Dowd [4]). The conditional value-at-risk (CVaR) of level
0 < ε < 1, denoted by CVaRε , is a particular spectral risk measure
obtained taking φ(u) = 1

ε
10≤u<ε (see Acerbi [1]).

In what follows, we consider more generally a piecewise
constant risk function φ(·) with J jumps at 0 < p1 < p2 < · · · <
pJ < 1. We set 1φk = φ(p+k )−φ(p−k ) = φ(pk)−φ(pk−1), for k =
1, . . . , J , with p0 = 0, and we assume that

(i) φ(·) is positive, (ii) 1φk < 0, k = 1, . . . , J,

(iii)
 1

0
φ(u)du = 1.

In this context, ρφ can be expressed as a linear combination
of conditional value-at-risk measures. With this choice of risk
functionφ, the spectral riskmeasure ρφ(Z) can be expressed as the
optimal value of a linear program; see Acerbi and Simonetti [2]:

ρφ(Z) = inf
w∈RJ

J
k=1

1φk[pkwk − E[wk − Z]+] − φ(1)E[Z]. (2)

Using this formulation for ρφ , dynamic programming equations
are given in [8] for risk-averse formulation (1). More precisely,
problem (1) can be expressed as

inf
x1, w2:T

d⊤1 x1 +
T

t=2

θtc⊤1 wt +Q2(x1, ξ[1], z1, w2, . . . , wT ),

C1x1 = ξ1 − D1x0, x1 ≥ 0, wt ∈ RJ , t = 2, . . . , T ,

(3)

with z1 = 0, vector c1 = 1φ ◦ p, and where, for t = 2, . . . , T ,

Qt(xt−1, ξ[t−1], zt−1, wt:T )

= Eξt |ξ[t−1]


inf
xt ,zt

ft(zt , wt)+Qt+1(xt , ξ[t], zt , wt+1:T )

zt = zt−1 − d⊤t xt , Ctxt = ξt − Dtxt−1, xt ≥ 0


, (4)

with

ft(zt , wt) = −(δtT θ1 + φ(1)θt)zt − θt 1φ⊤(wt − zte)+, (5)

and QT+1 ≡ 0. Function Qt+1 represents at stage t a cost-to-
go or recourse function which is risk averse. As shown in the
next section, it can be approximated by cutting planes by some
polyhedral function Qt+1. These approximate recourse functions
are useful for defining a feasible approximate policy obtained by
solving

inf
xt ,zt

ft(zt , wt)+Qt+1(xt , ξ[t], zt , wt+1:T )

Ctxt = ξt − Dtxt−1, xt ≥ 0, zt = zt−1 − d⊤t xt ,
(6)

at stage t = 2, . . . , T , knowing xt−1, zt−1, first-stage decision
variables wt:T , and ξt . First-stage decision variables x1 and w2:T are
the solution to (3) with Q2 replaced by the approximation Q2.

3. Algorithmic issues

The DP equations (3)–(4) make possible the use of decompo-
sition algorithms such as SDDP to obtain approximations of the
corresponding recourse functions. When applied to DP equations
(3)–(4), the convergence of this algorithm is proved in [8] under
the following assumptions.
(A1) The supports of the distributions of ξ1, . . . , ξT are discrete

and finite.
(A2) Process (ξt) is interstage independent.
(A3) For t = 1, . . . , T , for any feasible xt−1, and for any realization

ξ̃t of ξt , the set

{xt : xt ≥ 0, Ctxt = ξ̃t − Dtxt−1}

is bounded and nonempty.

In what follows, we assume that Assumptions (A1)–(A3) hold. In
particular, we denote the realizations of ξt by ξ i

t , i = 1, . . . , qt <

+∞, and set p(t, i) = P(ξt = ξ i
t ).

Since the supports of the distributions of the random vectors
ξ2, . . . , ξT are discrete and finite, optimization problem (1) is finite
dimensional, and the evolution of the uncertain parameters over
the optimization period can be represented by a scenario tree
having a finite number of scenarios that can happen in the future
for ξ2, . . . , ξT . The root node of the scenario tree corresponds to the
first time step with ξ1 deterministic.

For a given stage t , to each node of the scenario tree there
corresponds an history ξ[t]. The children nodes of a node at stage
t ≥ 1 are the nodes that can happen at stage t + 1 if we are at
this node at t . A sampled scenario (ξ1, . . . , ξT ) corresponds to a
particular succession of nodes such that ξt is a possible value for
the process at t and ξt+1 is a child of ξt . A given node in the tree
at stage t is identified with a scenario (ξ1, . . . , ξt) going from the
root node to this node.

In this context, the SDDP algorithm builds polyhedral lower
bounding approximations Qt of Qt for t = 2, . . . , T + 1. Each
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iteration of this algorithm is made of a forward pass followed by
a backward pass. Approximation Qi

t for Qt available at the end of
iteration i can be expressed as a maximum of cuts (hyperplanes
lying below the recourse functions) built in the backward passes:

Qi
t(xt−1, zt−1, wt:T ) = max

j=0,1,...,iH


− E j

t−1xt−1 − Z j
t−1zt−1

+

T−t+1
τ=1

W j,τ
t−1wt+τ−1 + ejt−1


, (7)

knowing that the algorithm starts taking for Q0
t a known lower

bounding affine approximation ofQt whileQi
T+1 ≡ 0. In the above

expression,we have assumed thatH cuts are built at each iteration.
If the algorithm runs for K iterations, we end up with approximate
recourse functions Qt = QK

t , t = 2, . . . , T + 1.
At iteration i, cuts for Qt , t = 2, . . . , T , are built at some

points xkt−1, z
k
t−1, w

i
t:T , k = (i− 1)H + 1, . . . , iH , computed in the

forward pass replacing the recourse functions Qt+1 by Qi−1
t+1 (note

that, since variablesw2:T are first-stage decision variables, they just
depend on the iteration).

More precisely, the cuts are computed for time step T + 1
down to time step 2. For time step T + 1, since Qi

T+1 = QT+1

= 0, the cuts for QT+1 are obtained taking null vectors for Ek
T , Z

k
T ,

W k,τ
T , and ekT for k = (i− 1)H + 1, . . . , iH . For t = 2, . . . , T , using

the lower bounding approximation Qi
t+1 of Qt+1, we can bound

from below Qt(xt−1, zt−1, wt:T ) by Eξt [Q
i
t (xt−1, zt−1, wt:T , ξt)]

with Q i
t (xt−1, zt−1, wt:T , ξt) given as the optimal value of the fol-

lowing linear program:

inf
xt ,zt ,vt ,θ̃t

−(δtT θ1 + φ(1)θt)zt − θt1φ⊤vt + θ̃t

vt ≥ 0, vt ≥ wt − zte, xt ≥ 0,

zt + d⊤t xt = zt−1 (8a)

Ctxt = ξt − Dtxt−1 (8b)

−→
E i

txt +
−→
Z i

tzt + θ̃te ≥
T−t
τ=1

−→
W i,τ

t wt+τ +
−→e i

t , (8c)

where
−→
E i

t (respectively,
−→
Z i

t ,
−→
W i,τ

t , and −→e i
t ) is the matrix whose

(j + 1)th line is E j
t (respectively, Z j

t , W j,τ
t , and ejt ) for j =

0, . . . , iH . In the backward pass of iteration i, the above prob-
lem is solved with (xt−1, zt−1, wt:T , ξt) respectively replaced by
(xkt−1, z

k
t−1, w

i
t:T , ξ

j
t ) for k = (i − 1)H + 1, . . . , iH and j =

1, . . . , qt . Let σ
k,j
t , σ̃

k,j
t , µ

k,j
t , π

k,j
t , and ρ

k,j
t be the (row vectors) op-

timal Lagrange multipliers respectively for the constraints vt ≥

wi
t − zte, vt ≥ 0, (8a), (8b) and (8c) for the problem defining

Q i
t (x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) for k = (i − 1)H + 1, . . . , iH and j =

1, . . . , qt . The following proposition provides the cuts computed
for Qt , t = 2, . . . , T , at iteration i.

Proposition 3.1 (Optimality Cuts). Let Qt , t = 2, . . . , T + 1, be the
risk-averse recourse functions given by (4). In the backward pass of
iteration i of the SDDP algorithm, the following cuts are computed
for these recourse functions. For t = T + 1, Ek

t−1, Z
k
t−1, W

k,τ
t−1, and

ekt−1 are null for k = (i − 1)H + 1, . . . , iH. For t = 2, . . . , T and
k = (i− 1)H + 1, . . . , iH, Ek

t−1 is given by
qt

j=1 p(t, j)π k,j
t Dt , and

Zk
t−1 = −

qt
j=1

p(t, j)µk,j
t , W k,1

t−1 =

qt
j=1

p(t, j)σ k,j
t , (9)

W k,τ
t−1 =

qt
j=1

p(t, j)ρk,j
t
−→
W i,τ−1

t , τ = 2, . . . , T − t + 1. (10)

Further, ekt−1 is given by

qt
j=1

p(t, j)


Q i
t (x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t )− µ

k,j
t zkt−1

− σ
k,j
t wi

t −

T−t
τ=1

ρ
k,j
t
−→
W i,τ

t wi
t+τ + π

k,j
t Dtxkt−1


.

Proof. Since a dual solution of the problem defining Q i
t (x

k
t−1,

zkt−1, w
i
t:T , ξ

j
t ) is a subgradient of the value function for problem

(8), we obtain that Q i
t (xt−1, zt−1, wt:T , ξ

j
t ) is bounded from below

by

Q i
t (x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t )+ µ

k,j
t (zt−1 − zkt−1)+ σ

k,j
t (wt − wi

t)

+

T−t+1
τ=2

ρ
k,j
t
−→
W i,τ−1

t (wt+τ−1 − wi
t+τ−1)

−π
k,j
t Dt(xt−1 − xkt−1).

Using the above lower bound and the fact that Qt(xt−1, zt−1, wt:T )

is bounded from below by
qt

j=1 p(t, j)Q i
t (xt−1, zt−1, wt:T , ξ

j
t ), we

obtain the announced cuts. �

The stopping criterion is discussed in [22] for a non-risk-averse
model. The definition of a sound stopping criterion for the risk-
averse model from [22] (based on a nested formulation of the
problem defined in terms of conditional risk mappings) is a
more delicate issue, and is still open for discussion. However,
since problem (1) can be expressed as a non-risk-averse problem
with modified objective, variables, and constraints, in our risk-
averse context the stopping criterion is a simple adaptation of the
stopping criterion for the non-risk-averse case.

More specifically, in the backward pass of iteration i, for the
first time step, first-stage problem (3) is solved by replacing the
recourse function Q2 by Qi

2 ≤ Q2. As a result, the optimal value of
this problem gives a lower bound zinf on the optimal value of (1).

In the forward pass of iteration i, we can compute the total cost
Ck on each scenario k = (i− 1)H + 1, . . . , iH:

Ck = d⊤1 x
k
1 +

T
t=2

θtc⊤1 wi
t +

T
t=2

ft(zkt , w
i
t). (11)

If these H scenarios were representing all possible evolutions of
(ξ1, . . . , ξT ), then

C̄ =
1
H

iH
k=(i−1)H+1

Ck

would be an upper bound on the optimal value of (1) (recall that
the approximate policy is feasible and that the objective function of
(1) can be written as an expectation). Since we only have a sample
of all the possible scenarios, C̄ is an estimation of an upper bound
on this optimal value. Introducing the empirical standard deviation
σ̄ of the sample (C1, . . . , CH),

σ̄ =

 1
H − 1

iH
k=(i−1)H+1

(C̄ − Ck)2,

we can compute the (1− α)-confidence upper bound

C̄ + t1−α,H−1
σ̄
√
H

(12)

on the approximate policy mean value, where t1−α,H−1 is the (1−
α)-quantile of the Student t-distribution with H − 1 degrees of
freedom. Since the optimal value of (1) is less than or equal to the
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Fig. 1. SDDP algorithm with relatively complete recourse for the risk-averse interstage independent stochastic linear program (1).

approximate policy mean value, (12) gives an upper bound for the
optimal value of (1) with confidence at least 1− α. Consequently,
we can stop the algorithm when C̄ + t1−α,H−1

σ̄
√
H
− zinf ≤ ε for

some ε > 0.
Using the previous developments, the SDDP algorithm for

solving (1) can be formulated as in Fig. 1.
We now give, for some particular choices of the first-stage

variables w1
2:T , the exact expressions (independent of the sampled

scenarios) of Zk
t−1 and W k,τ

t−1 for every t = 2, . . . , T , k = 1, . . . ,H ,
and τ = 1, . . . , T − t + 1. Though the first-stage feasible set for
(3) is not bounded, it can be easily shown that the optimal values

of w2:T are bounded (see [8], for instance). As a result, well-chosen
box constraints onwt , t = 2, . . . , T can be added (at the first stage,
and that do not modify the optimal value of (3)) without changing
the cut calculations (since these latter are performed for stages
t = 2, . . . , T , where wt are state variables).

Let us define, for t = 1, . . . , T , xt = (x1, . . . , xt), ξ t
=

(ξ1, . . . , ξt), and let us introduce the set χ t of admissible decisions
up to time step t:

χ t
= {xt : ∃ ξ̃ t realization of ξ t

: xτ ≥ 0

and Cτ xτ = ξ̃τ − Dτ xτ−1, τ = 1, . . . , t}.
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Since (A3) holds, the sets χ t are compact, and, since g t(xt) =t
τ=2 d

⊤
τ xτ is continuous,we can introduce the pairs (Cu

t , C
ℓ
t ) ∈ R2

defined by

Cu
t =


max g t(xt)
xt ∈ χ t ,

Cℓ
t =


min g t(xt)
xt ∈ χ t .

The objective of the forward pass is to build states where cuts
are computed in the backward pass. At the first iteration, instead
of building these states using the approximate recourse functions
Q0

t , we can choose arbitrary feasible states xkt−1, z
k
t−1, w

1
t , t =

2, . . . , T (which is a simple task, since relatively complete recourse
holds). With this variant of the first iteration, we have iH cuts for
Qi

t at the end of iteration i. If we choose first-stage variables w1
2:T

such that (i) w1
t > −Cℓ

t e for t = 2, . . . , T (respectively, such that
(ii) w1

t < −Cu
t e for t = 2, . . . , T ), then Zk

t−1 and W k,τ
t−1, for k =

1, . . . ,H , can be computed using Proposition 3.2(i) (respectively,
Proposition 3.2(ii)), which follows. For instance, if the costs are
positive, then item (i) is fulfilled with w1

t = 0 and item (ii) by
taking for each component of w1

t the opposite of a strict upper
bound on the worst cost.

Proposition 3.2 (Cuts Calculation at the First Iteration). Let us
consider the risk-averse recourse functions Qt given by (4). Valid
cuts for Qt are given by Proposition 3.1. Moreover, in the following
two cases, we have closed-form expressions for Zk

t−1 and W k,τ
t−1

(independent of the sampled scenarios).

(i) If, for t = 2, . . . , T , w1
t > −Cℓ

t e, then, for t = 2, . . . , T , P (t)
holds, where

P (t) :


∀k = 1, . . . ,H, Zk

t−1 = θ1 + φ(0)
T

ℓ=t

θℓ,

∀k = 1, . . . ,H, W k,τ
t−1 = −θt+τ−11φ⊤,

τ = 1, . . . , T − t + 1.

(ii) If, for t = 2, . . . , T , w1
t < −Cu

t e, then, for t = 2, . . . , T , P̃ (t)
holds, where

P̃ (t) :


∀k = 1, . . . ,H, Zk

t−1 = θ1 + φ(1)
T

ℓ=t

θℓ,

∀k = 1, . . . ,H, W k,τ
t−1 = 0.

∀τ = 1, . . . , T − t + 1,

Proof. Let us fix t ∈ {2, . . . , T }, k ∈ {1, . . . ,H}, and j ∈ {1, . . . ,
qt}. We denote by xt , zt , vt , θ̃t an optimal solution to the problem
defining Q 1

t (xkt−1, z
k
t−1, w

1
t:T , ξ

j
t ), i.e., problem (8) written for i = 1,

and with (xt−1, zt−1, wt:T , ξt) replaced by (xkt−1, z
k
t−1, w

i
t:T , ξ

j
t ) (the

dependence of the solution with respect to k, j is suppressed, to
alleviate notation).

The Karush–Kuhn–Tucker (KKT) conditions for this problem
imply that

−δtT θ1 − φ(1)θt − µ
k,j
t − σ

k,j
t e− ρ

k,j
t
−→
Z 1

t = 0, (13)

−θt1φ⊤ − σ̃
k,j
t − σ

k,j
t = 0, (14)

σ
k,j
t ◦ (−zte+ w1

t − vt)
⊤
= 0, (15)

σ̃
k,j
t ◦ v⊤t = 0, (16)

where, for t = T , we have set ρ
k,j
t = 0. Next, since zt can be

written as zt = −g t(xt) for some xt ∈ χ t , in case (i), we have
zte ≤ −Cℓ

t e < w1
t . Further, vt = max(0, w1

t −zte) = w1
t −zte > 0.

Using (14) and (16), we then get

σ̃
k,j
t = 0 and σ

k,j
t = −θt1φ⊤. (17)

Let us now first show (i) by backward induction on t . Plugging the
value of σ k,j

T given in (17) into (13), we obtain

µ
k,j
T = −θ1 − φ(1)θT + θT e⊤1φ

= −θ1 + θT


−φ(1)+

J
ℓ=1

[φ(pℓ)− φ(pℓ−1)]


= −θ1 − θTφ(0).

Using the above relation and (9) yields Zk
T−1 = −

qT
j=1 p(T , j)µk,j

T
= θTφ(0)+ θ1. Further, using once again (9), we obtain

W k,1
T−1 =

qT
j=1

p(T , j)σ k,j
T

= −

qT
j=1

p(T , j)θT1φ⊤ = −θT1φ⊤. (18)

This shows P (T ). Let us now assume that P (t+1) holds for some
t ∈ {2, . . . , T − 1}, and let us show that P (t) holds. First, notice
that (18) still holdswith T substitutedwith t , i.e.,W k,1

t−1 = −θt1φ⊤.
Further, for τ = 2, . . . , T − t + 1,

W k,τ
t−1 =

qt
j=1

p(t, j)ρk,j
t
−→
W 1,τ−1

t , from (10),

= −

qt
j=1

p(t, j)ρk,j
t θt+τ−1e1φ⊤, using P (t + 1),

= −

qt
j=1

p(t, j)θt+τ−11φ⊤ since ρ
k,j
t e = 1,

= −θt+τ−11φ⊤.

Also,

Zk
t−1 = −

qt
j=1

p(t, j)µk,j
t , from (9),

= −

qt
j=1

p(t, j)(−φ(1)θt + θt1φ⊤e− ρ
k,j
t
−→
Z 1

t ),

using (13) and (17),

= −

qt
j=1

p(t, j)(−φ(0)θt − ρ
k,j
t
−→
Z 1

t ),

using the definition of 1φ,

= φ(0)θt +
qt
j=1

p(t, j)ρk,j
t


θ1 + φ(0)

T
ℓ=t+1

θℓ


e,

using P (t + 1),

= θ1 + φ(0)
T

ℓ=t

θℓ since ρ
k,j
t e = 1.

We have thus shown P (t) which achieves the proof of (i).
Let us now assume that w1

t < −Cu
t e for t = 2, . . . , T , and

let us show (ii). Let us fix t ∈ {2, . . . , T }, k ∈ {1, . . . ,H}, and
j ∈ {1, . . . , qt}. As before, we denote by xt , zt , vt , θ̃t an optimal
solution to the problem defining Q 1

t (xkt−1, z
k
t−1, w

1
t:T , ξ

j
t ). In this

case, zte ≥ −Cu
t e > w1

t and vt = max(0, w1
t − zte) = 0. Using
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(14) and (15), we see that

σ̃
k,j
t = −θt1φ⊤ and σ

k,j
t = 0. (19)

Using (9), we get W k,1
t−1 = 0. We show (ii) by backward induction.

For t = T , plugging the value of σ
k,j
T into (13) gives µ

k,j
T = −θ1 −

φ(1)θT , which, together with (9), gives Zk
T−1 = θ1 + φ(1)θT . We

have already proved that W k,1
T−1 = 0, and thus P̃ (T ) holds. Let us

now assume that P (t + 1) holds for some t ∈ {2, . . . , T − 1},
and let us show that P (t) holds. Since

−→
W 1,τ−1

t = 0, we obtain
W k,τ

t−1 =
qt

j=1 p(t, j)ρk,j
t
−→
W 1,τ−1

t = 0 for τ = 2, . . . , T − t + 1.
Plugging σ

k,j
t = 0 into (13) and using (9) gives

Zk
t−1 =

qt
j=1

p(t, j)(φ(1)θt + ρ
k,j
t
−→
Z 1

t ),

=

qt
j=1

p(t, j)


θ1 + φ(1)

T
ℓ=t

θℓ


,

using P̃ (t + 1) and ρ
k,j
t e = 1,

= θ1 + φ(1)
T

ℓ=t

θℓ.

This shows P̃ (t) and achieves the proof of (ii). �

Proposition 3.2 can be used as a debugging tool to check
the implementation of the SDDP algorithm for risk-averse
problem (1). More precisely, we can check that, in cases (i)
and (ii), implementing the formulas for Zk

t−1 and W k,τ
t−1 given in

Proposition 3.1 will give the same results as implementing the
formulas from Proposition 3.2.

At stage t , if instead of ρφ in (1) we use CVaRεt , problem (1)
becomes

inf
x1,...,xT

d⊤1 x1 + θ1E


T

t=2

d⊤t xt


+

T
t=2

θtCVaRεt


−

t
k=2

d⊤k xk


Ctxt = ξt − Dtxt−1,

xt ≥ 0, xt is Ft-measurable, t = 1, . . . , T .

(20)

For this model, we obtain a result analogous to Proposition 3.2.

Proposition 3.3. Let us consider the risk-averse recourse functions
Qt for model (20) and their approximations Qi

t of form (7), obtained
by applying the SDDP algorithm to the corresponding DP equations.
In the following two cases, we obtain closed-form expressions for Zk

t−1

and W k,τ
t−1 (independent of the sampled scenarios).

(i) If, for t = 2, . . . , T , w1
t > −Cℓ

t , then, for t = 2, . . . , T , P (t)
holds, where

P (t) :


∀k = 1, . . . ,H, Zk

t−1 = θ1 +

T
ℓ=t

θℓ

εℓ

,

∀k = 1, . . . ,H, W k,τ
t−1 =

θt+τ−1

εt+τ−1
.

∀τ = 1, . . . , T − t + 1,

(ii) If, for t = 2, . . . , T , w1
t < −Cu

t , then, for t = 2, . . . , T , P̃ (t)
holds, where

P̃ (t) :
∀k = 1, . . . ,H, Zk

t−1 = θ1, and
∀τ = 1, . . . , T − t + 1, W k,τ

t−1 = 0.

Proof. The proof is similar to the proof of Proposition 3.2. �

Remark 3.4. In the particular case when the CVaR levels εt =
ε ∈ (0, 1) are the same at each time step, Proposition 3.3 is a
particular case of Proposition 3.2 with φ(1) = 0, φ(0) = 1

ε
, and

1φ = −1/ε ∈ R.

Numerical simulations for a real-life application modeled as (20)
are reported in [7].

When Assumption (A1) does not hold, as stated in [22],
a feasible nonanticipative policy can still be proposed using
approximate recourse functions Qt obtained applying the SDDP
algorithm on a sample average approximation (SAA) of the original
problem (1).
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