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Abstract. We define a risk-averse nonanticipative feasible policy for multistage stochastic pro-
grams and propose a methodology to implement it. The approach is based on dynamic programming
equations written for a risk-averse formulation of the problem. This formulation relies on a new class
of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of
such risk functionals are given and used to derive conditions of coherence. In the one-period case,
conditions for convexity and consistency with second order stochastic dominance are also provided.
The risk-averse dynamic programming equations are specialized considering convex combinations of
one-period extended polyhedral risk measures such as spectral risk measures. To implement the pro-
posed policy, the approximation of the risk-averse recourse functions for stochastic linear programs
is discussed. In this context, we detail a stochastic dual dynamic programming algorithm which
converges to the optimal value of the risk-averse problem.
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1. Introduction. Let us consider a T -stage optimization problem of the form

(1)
inf E

[
T∑

t=1

ft(xt, ξt)

]

xt ∈ χt(xt−1, ξt) a.s., xt Ft-measurable, t = 1, . . . , T,

where (ξt)
T
t=1 is a stochastic process, Ft is the sigma-algebra Ft := σ(ξj , j ≤ t), and

χt : RNt−1,x × R
Mt ⇒ R

Nt,x are given multifunctions. In this setting, multistage
stochastic optimization problems set two challenging questions. The first question
refers to modeling: how does one deal with uncertainty in this context? Once a model
is chosen, the second question is, how does one design suitable solution methods?

For the first of these questions, we are interested in defining nonanticipative poli-
cies. This means that the decision we make at any time step should be a function
of the available history ξ[t] of the process at this time step. This is a necessary con-
dition for a policy to be implementable since a decision has to be made on the basis
of the available information. We will focus on models with recourse. More precisely,
introducing a recourse function Qt+1 for time step t and given xt−1, the decision xt

is found by solving the problem

(2)
inf
xt

ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)
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at time step t. In this problem, we have assumed that ξt is available at time step t
and thus ξ[t] gathers all the realizations of ξj up to time step t. The policy depends
crucially on the choice of the recourse function Qt+1 used in (2). Given x0 and the
information ξ[1], a non-risk-averse model uses the recourse functions defined by

(3) Qt(xt−1, ξ[t−1]) = Eξt|ξ[t−1]

(
inf
xt

ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)

)

for t = 1, . . . , T , with QT+1 ≡ 0. These dynamic programming (DP) equations are
associated to the non-risk-averse model

(4)
inf E

[
T∑

t=1

ft(xt(ξ[t]), ξt)

]

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

For the second of these questions, most of the efforts so far have been placed on
solution methods that approximate the recourse functions (3) in the case of multistage
stochastic linear programs. In this paper, we contribute to these two questions as
follows.

From the modeling point of view, we define risk-averse recourse functions. For this
purpose, a common approach (Ruszczyński and Shapiro [RS06a], [RS06b]) is based
on a risk-averse nested formulation of the problem using conditional (coherent) risk
measures. In this situation, it is in general difficult, even for simple risk measures
such as the conditional value-at-risk (CVaR) (Rockafellar and Uryasev [RU02]), to
determine a risk-averse problem (using a risk measure that has a physical interpreta-
tion) whose stagewise decomposition is given by these DP equations. However, such
an interpretation is important. This is why we define instead a risk-averse problem
for (1) that is then decomposed by stages to obtain DP equations. A similar idea
appears in the recent book by Shapiro, Dentcheva, and Ruszczyński [SDR09, Chap-
ter 6, p. 326], where a convex combination of the expectation and of the CVaR of
the final wealth is used for a portfolio selection problem. Instead, we control partial
costs (the sum of the costs up to the current time step) and use a new class of risk
measures that is suitable for decomposing the risk-averse problem by stages. This
class of multiperiod risk measures called extended polyhedral risk measures has three
appealing properties. First, the class is large: it contains the polyhedral risk measures
(Eichhorn and Römisch [ER05]); in the one-period case some special cases include the
optimized certainty equivalent (Ben-Tal and Teboulle [BTT07]), some spectral risk
measures (Acerbi [Ace02]), and the CVaR. More generally, conditions for such func-
tionals to be coherent or convex are provided. Second, as stated above, it allows us to
define DP equations for our risk-averse problem. Finally, these equations are suitable
for proposing convergent solution methods for a class of stochastic linear programs.

Regarding algorithmic issues, exact decomposition algorithms such as the nested
decomposition (ND) algorithm have shown their superiority to direct solution meth-
ods for obtaining approximations of the recourse functions. Each iteration of these
algorithms computes upper and lower bounds on the optimal mean cost. If an op-
timal solution to the problem exists, the algorithm finds an optimal solution after a
finite number of iterations. These exact algorithms build at each iteration and each
node of the scenario tree a cut for the recourse functions. These cuts form an outer
linearization of these recourse functions.
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There are two important variants of the ND algorithm: a variant that adds
quadratic proximal terms in the objective functions of the master problems and a
variant that uses multicuts (Ruszczyński [Rus86]).

The purpose of the first variant is to discourage the solution from moving too far
from the best solution found so far, and this can significantly accelerate the conver-
gence of the method even if the master problems are quadratic programs with this
approach. The proximal term penalties are positive and can be dynamically modified
in the course of the algorithm.

In the ND algorithm, for a given node in the scenario tree and a given input state
xt−1 at t, the subproblems associated to all the realizations in stage t+ 1 are solved
to obtain their optimal simplex multipliers. These multipliers are then aggregated
to obtain a single cut for each node in each iteration. In the multicut variant, there
are as many cuts as descendant realizations that are built at each iteration. More
information is thus passed from the children nodes to their immediate ancestor by
sending disaggregate cuts. The size of the master programs increases, but we expect
fewer iterations (see Birge and Louveaux [BL88]).

However, in some applications, the number of scenarios may become so large
that even these improved variants are difficult to apply since they entail prohibitive
computational efforts.

Monte Carlo sampling-based algorithms constitute an interesting alternative in
such situations. Higle and Sen [HS96] introduced a stochastic cutting plane method
for two-stage stochastic programs and showed its convergence with probability one.
Recently, Higle, Rayco, and Sen [HRS10] extended this idea to multistage models
by applying a stochastic cutting plane method to the dual problem resulting when
dualizing nonanticipativity constraints. Their method is, hence, based on scenario
decomposition. A different approach for two-stage problems based on Monte Carlo
(importance) sampling within the L-shaped method was introduced by Dantzig and
Glynn [DG90] and Infanger [Inf92]. For multistage stochastic linear programs whose
number of immediate descendant nodes is small but with many stages, Pereira and
Pinto [PP91] proposed sampling in the forward pass of the ND. This sampling-based
variant of the ND is the so-called stochastic dual dynamic programming algorithm
on which we focus our attention. More precisely, we detail a stochastic dual dynamic
programming (SDDP) algorithm (Pereira and Pinto [PP91]) to approximate our risk-
averse recourse functions, to be used in (2) in place of Qt+1. The computation of the
cuts in the backward pass of SDDP are detailed in this risk-averse setting.

Our developments can be easily extended to other sampling-based decomposition
methods such as AND and DOASA.

The abridged nested decomposition (AND) algorithm proposed by Birge and
Donohue [BD06] is a variant of SDDP that also involves sampling in the forward
pass. This algorithm determines in a different manner the sequence of states and sce-
narios in the forward pass. The numerical simulations in Birge and Donohue [BD06]
report lower computational time on average for the AND algorithm in comparison
with SDDP.

When the number of immediate descendant nodes is large (possibly infinite) and
when the problem has many stages, we also can (or even must) sample in the back-
ward pass. In this case, for a given node on a forward path k, not all the optimal
simplex multipliers associated to the descendant subproblems are computed. Only the
descendant subproblems associated with some realizations are solved. As explained
in the cut calculation algorithm (CCA) in Philpott and Guan [PG08], it is, however,
possible in this situation to replace the “missing” multipliers by some coefficients so
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that the cuts built still lie below the corresponding recourse functions. This gives rise
to dynamic outer approximation sampling algorithms (DOASA) described in Philpott
and Guan [PG08].

The paper is organized as follows. In the second section, we introduce the class of
multiperiod extended polyhedral risk measures and study their properties: dual repre-
sentations are derived and used to provide criteria for convexity and coherence and, in
the one-period case, for convexity and consistency with second order stochastic domi-
nance. In section 3, we derive DP equations for a risk-averse problem defined in terms
of extended polyhedral risk measures. We also provide conditions that guarantee the
convergence of SDDP in this risk-averse setting. Finally, in section 4, we propose to
use SDDP to approximate the risk-averse recourse functions from section 3 for some
stochastic linear programs. In particular, formulas for the cuts in the backward pass
are given.

We mention that after writing our paper we became aware of two recent and
closely related papers: Collado, Papp, and Ruszczyński [CPR], based on scenario
decomposition, and Shapiro [Sha11], which suggests using SDDP to approximate risk-
averse recourse functions defined from a nested risk-averse formulation of a multistage
stochastic program.

We start by setting down some notation:
• For x ∈ R

n, the vectors x+ and x− are defined by x+(i) = max(x(i), 0) and
x−(i) = max(−x(i), 0) for i = 1, . . . , n.

• For a nonempty set X ⊆ R
n, the polar cone X∗ is defined by X∗ = {x∗ :

〈x, x∗〉 ≤ 0 ∀x ∈ X}, where 〈·, ·〉 is the standard scalar product on R
n.

• e is a column vector of all ones.
• If A is an m1 × n matrix and B an m2 × n matrix, (A;B) denotes the
(m1 +m2)× n matrix ( A

B ).
• For vectors x1, . . . , xT ∈ R

n and 1 ≤ t1 ≤ t2 ≤ T, we denote (xt1 , . . . , xt2) ∈
R

n × · · · × R
n by xt1:t2 .

• For x, y ∈ R
n, the vector x ◦ y ∈ R

n is defined by (x ◦ y)(i) = x(i)y(i), i =
1, . . . , n.

• In is the n× n identity matrix, and 0m,n is an m× n matrix of zeros.
• δij is the Kronecker delta defined for i, j integers by δij = 1 if i = j and
0 otherwise.

• Qt+1 denotes a (generic) recourse function used at time step t = 1, . . . , T ,
i.e., QT+1 ≡ 0, and if t < T , then Qt+1(xt, ξ[t]) represents a cost over the
period t+ 1, . . . , T . Various recourse functions at t will be defined using the
same notation Qt+1. Which Qt+1 is relevant will be clear from the context.

As is usually done in the stochastic programming literature and to alleviate notation,
we use the same notation for a random variable and for a particular realization of this
random variable, the context allowing us to know which concept is being referred to.

2. Extended polyhedral risk measures. We consider multiperiod risk func-
tionals ρ whose arguments are sequences of random variables. We confine our-
selves to discrete-time processes with a finite time horizon as in Ruszczyński and
Shapiro [RS06a]. Such risk functionals have to assess the riskiness of a finite sequence
z1, . . . , zT of random variables for some integer T ≥ 2. To reflect the evolution of
information as time goes by, we assume that zt is measurable with respect to some
σ-field Ft, where F1, . . . ,FT form a filtration, i.e., F1 ⊆ F2 ⊆ · · · ⊆ FT = F , with
F1 = {∅,Ω}. In this setting, z1 is deterministic, and a multiperiod risk functional ρ
will be seen as a mapping ρ : ×T

t=1 Lp(Ω,Ft,P) → R̄ for some p ∈ [1,+∞).
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Remark 2.1. Throughout the paper, the arguments (z1, . . . , zT ) of the risk func-
tionals will be interpreted as accumulated revenues (for which higher values are pre-
ferred). More precisely, if z̃t is the revenue for time step t, we consider the accumulated
revenues zt =

∑t
τ=1 z̃τ , t = 1, . . . , T .

For future use, we recall the definition of multiperiod convex risk measures (from
Artzner et al. [ADE+], [ADE+07], Föllmer and Schied [FS04]) which are multiperiod
risk functionals of special interest when the random variables zt represent revenues
(accumulated or not).

Definition 2.2. A functional ρ on ×T
t=1 Lp(Ω,Ft,P) is called a multiperiod

convex risk measure if conditions (i)–(iii) below hold:
(i) Monotonicity: if zt ≤ z̃t a.s, t = 1, . . . , T , then ρ(z1, . . . , zT ) ≥ ρ(z̃1, . . . , z̃T ).
(ii) Translation invariance: for each r ∈ R we have ρ(z1 + r, . . . , zT + r) =

ρ(z1, . . . , zT )− r.
(iii) Convexity: for each λ ∈ [0, 1] and z, z̃ ∈ ×T

t=1 Lp(Ω,Ft,P) we have ρ(λz +
(1− λ)z̃) ≤ λρ(z) + (1− λ)ρ(z̃).

It is called a multiperiod coherent risk measure if in addition condition (iv) holds:
(iv) Positive homogeneity: for each λ ≥ 0 we have ρ(λz1, . . . , λzT ) = λρ(z1, . . . ,

zT ).
In the literature, there appear different requirements instead of the translation

invariance (ii) above, e.g., Fritelli and Scandalo [FS05] and Pflug and Römisch [PR07].
Convex duality can be used to obtain dual representations of multiperiod convex

risk measures. Next, we cite such a representation that uses the set DT of generalized
density functions where

DT :=

{
λ ∈ ×T

t=1 L1(Ω,Ft,P) : λt ≥ 0 a.s., t = 1, . . . , T,
T∑

t=1

E[λt] = 1

}
.

Theorem 2.3. Let ρ : ×T
t=1 Lp(Ω,Ft,P) → R̄ and assume that ρ is proper (i.e.,

ρ is finite on the nonempty set dom ρ = {z : ρ(z) < ∞}) and lower semicontinuous.
Then ρ is a multiperiod convex risk measure if and only if it admits the representation

(5) ρ(z) = sup

{
E

(
−

T∑
t=1

λtzt

)
− ρ∗(λ) : λ ∈ Pρ

}

for some convex closed subset Pρ ⊆ DT of the space ×T
t=1 Lq(Ω,Ft,P) ( 1p + 1

q = 1)
on which the conjugate ρ∗ of ρ is given too. The functional ρ is coherent if and only
if the conjugate ρ∗ in (5) is the indicator function of Pρ.

A proof of the above theorem can be found in, e.g., Ruszczyński and Shapiro
[RS06b]. We are now in a position to define the class of multiperiod extended poly-
hedral risk measures.

Definition 2.4. A risk measure ρ on ×T
t=1Lp(Ω,Ft,P) is called multiperiod

extended polyhedral if there exist matrices At, Bt,τ , vectors at, ct, and functions
ht(z) = (ht,1(z), . . . , ht,nt,2(z))

� for given functions ht,1, . . . , ht,nt,2 : Lp(Ω,Ft,P) →
Lp′(Ω,Ft,P) with 1 ≤ p′ ≤ p such that

(6) ρ(z1, . . . , zT ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf E[
∑T

t=1 c�t yt]

yt ∈ Lp(Ω,Ft,P;R
kt), t = 1, . . . , T,

Atyt ≤ at a.s ., t = 1, . . . , T,∑t−1
τ=0 Bt,τyt−τ = ht(zt) a.s ., t = 2, . . . , T.
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Another less general extension of polyhedral risk measures is due to Eichhorn
[Eic07]. Like a multiperiod polyhedral risk measure (Eichhorn and Römisch [ER05]),
a multiperiod extended polyhedral risk measure is given as the optimal value of a
T -stage linear stochastic program where the arguments of the risk measure appear on
the right-hand side of the dynamic constraints. Multiperiod polyhedral risk measures
constitute a particular case with at = 0, t = 2, . . . , T , Bt,τ row vectors, and ht(zt) =
ht,1(zt) = zt (i.e., nt,2 = 1).

We mention that multiperiod extended polyhedral risk measures satisfy two ad-
ditional properties that were recently discussed in the literature: information mono-
tonicity (see Kovacevic and Pflug [KP09]) and time consistency, suggested in Shapiro
[Sha09]. Information monotonicity means that the risk ρ(z1, . . . , zT ) gets smaller if
the available information expressed by the σ-fields Ft, t = 1, . . . , T , increases. Since
ρ(z1, . . . , zT ) is given by a risk-neutral multistage stochastic program, it is time con-
sistent as stated at the beginning of Shapiro [Sha09, section 3].

The need to consider the extended versions from Definition 2.4 is twofold:
(i) Modeling: Some (popular) risk measures are extended polyhedral but not

polyhedral in the sense of Eichhorn and Römisch [ER05] (see examples at the
end of this section).

(ii) Algorithmic issues : As announced in the introduction, DP equations can be
written for risk-averse versions of (1) defined in terms of extended polyhe-
dral risk measures. Moreover, the convergence of a class of decomposition
algorithms applied to the corresponding nested formulation of the risk-averse
problem will be proved in section 3 for a subclass of extended polyhedral risk
measures that contain some nonpolyhedral risk measures. For this subclass,
we have ht(zt) = ztbt + b̃t for some vectors bt, b̃t.

In view of (ii) above, extended polyhedral risk measures with ht(zt) = ztbt+ b̃t play a
particular role when algorithmic issues come into play. In the rest of this section, we
study properties of such risk functionals. In this context, the matrices At, Bt,τ and

the vectors at, bt, b̃t, and ct are fixed and deterministic. They have to be chosen such
that ρ exhibits desirable risk measure properties. In particular, conditions on these
parameters for the corresponding extended polyhedral risk measure to be coherent
are given in the Corollary 2.6 of Theorem 2.5, which follows. This theorem gives dual
representations for stochastic program (6) when ht(zt) = ztbt + b̃t for some vectors
bt, b̃t. In what follows, the dimensions of at and bt are, respectively, denoted by nt,1

and nt,2.
Theorem 2.5. Let ρ be a functional of the form (6) on ×T

t=1Lp(Ω,Ft,P) with

p ∈ [1,∞) and ht(zt) = ztbt + b̃t for some vectors bt, b̃t. Assume
(i) complete recourse: {y1 : A1y1 ≤ a1} �= ∅ and, for every t = 2, . . . , T , it holds

that {Bt,0yt : Atyt ≤ at} = R
nt,2 ;

(ii) dual feasibility: {(u, v) : u ∈ ×T
t=1R

nt,1 , v ∈ ×T
t=2R

nt,2 , ct+A�
t ut+

∑T
τ=max(2,t)

B�
τ,τ−tvτ−1 = 0, t = 1, . . . , T } �= ∅.

Then ρ is finite, convex, and continuous on ×T
t=1Lp(Ω,Ft,P) and with 1

p + 1
q = 1 the

following dual representation holds:
(7)

ρ(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup −E[
∑T

t=1 λ�
1,tat +

∑T
t=2 λ

�
2,t−1(ztbt + b̃t)]

λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2),

λ1,t ≥ 0 a.s ., t = 1, . . . , T,

ct +A�
t λ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s ., t = 1, . . . , T.
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We also have

(8) ρ(z) = sup

{
E

[
T∑

t=1

z∗t zt

]
− ρ∗(z∗) : z∗ ∈ ×T

t=1 Lq(Ω,Ft,P)

}
,

where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by
(9)

ρ∗(z∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf E[
∑T

t=1 λ�
1,tat +

∑T
t=2 λ

�
2,t−1b̃t]

λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2),

z∗t = −λ�
2,t−1bt a.s., t = 2, . . . , T, λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A�
t λ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T,

where

(10) dom(ρ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z∗ ∈ ×T
t=1 Lq(Ω,Ft,P) such that

∃ λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1),

λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2) satisfying

λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A�
t λ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s .,

t = 1, . . . , T, and

z∗1 = 0, z∗t = −λ�
2,t−1bt a.s., t = 2, . . . , T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. We use results on Lagrangian and conjugate duality. Consider the following
Banach spaces and their duals:

E := ×T
t=1Lp(Ω,Ft,P;R

kt), E∗ = ×T
t=1Lq(Ω,Ft,P;R

kt),

Z := ×T
t=1Lp(Ω,Ft,P), Z∗ = ×T

t=1Lq(Ω,Ft,P),

with bilinear forms

〈e, e∗〉E/E∗ =

T∑
t=1

E[e�
t e
∗
t ] and 〈z, z∗〉Z/Z∗ =

T∑
t=1

E[ztz
∗
t ].

Let us introduce the Lagrange multipliers λ1 ∈ ×T
t=1Lq(Ω,Ft,P;R

nt,1) (with λ1 ≥ 0
a.s.) and λ2 ∈ ×T

t=2Lq(Ω,Ft,P;R
nt,2) associated to the constraints of (6) and the

Lagrangian

L(y, λ1, λ2) := E

[
T∑

t=1

c�t yt + λ�
1,t(Atyt − at)

+

T∑
t=2

λ�
2,t−1

(
t−1∑
τ=0

Bt,τyt−τ − ztbt − b̃t

)]

= E

⎡
⎣ T∑

t=1

(ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tλ2,τ−1)�yt

⎤
⎦

+E

[
−

T∑
t=1

λ�
1,tat −

T∑
t=2

λ�
2,t−1(ztbt + b̃t)

]
.
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The dual functional is defined by

(11) θ(λ1, λ2) := inf
y∈E

L(y, λ1, λ2),

and the Lagrangian dual of (6) is the problem

sup
λ1,λ2

{
θ(λ1, λ2) : λ1 ∈ ×T

t=1Lq(Ω,Ft,P;R
nt,1),(12)

λ2 ∈ ×T
t=2Lq(Ω,Ft,P;R

nt,2), λ1 ≥ 0 a.s.
}
.

Due to Ruszczyński and Shapiro [RS03, Proposition 5, Chapter 1], the conditional
expectation operator E[·|Ft] and the operation of minimization can be interchanged
in (11), which gives for θ(λ1, λ2) the expression

− E

[
T∑

t=1

λ�
1,tat +

T∑
t=2

λ�
2,t−1(ztbt + b̃t)

]

+ E

⎡
⎣ T∑

t=1

inf
yt∈Rkt

(ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tE[λ2,τ−1|Ft])

�yt

⎤
⎦ .

Next, infyt∈Rkt (ct +A�
t λ1,t +

∑T
τ=max(2,t) B

�
τ,τ−tE[λ2,τ−1|Ft])

�yt is 0 if

ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tE[λ2,τ−1|Ft] = 0

and −∞ otherwise. The Lagrangian dual (12) can thus be expressed as

(13)

sup −E

[
T∑

t=1

λ�
1,tat +

T∑
t=2

λ�
2,t−1(ztbt + b̃t)

]

λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2), λ1 ≥ 0 a.s.,

ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T.

From weak duality and dual feasibility, we obtain ρ(z) > −∞, and due to the complete
recourse assumption ρ(z) < +∞. It follows that ρ(z) is finite. More precisely, dual
feasibility and complete recourse imply that there is no duality gap: the optimal value
of (6), i.e., ρ(z), is the optimal value of (13). This shows (7).

Next, we use conjugate duality. Let us introduce the vectors c = (c1, . . . , cT )
�,

a = (a1, . . . , aT )
�, and b̃ = (b̃2, . . . , b̃T )

� and the matrices

A =

⎛
⎜⎝

A1

. . .

AT

⎞
⎟⎠ , B =

⎛
⎜⎝

0 b2
...

. . .

0 bT

⎞
⎟⎠ ,

and

B =

⎛
⎜⎜⎜⎜⎝

B2,1 B2,0 0 . . . 0

B3,2 B3,1 B3,0
. . .

...
...

...
...

. . . 0
BT,T−1 BT,T−2 BT,T−3 . . . BT,0

⎞
⎟⎟⎟⎟⎠ .
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Let also Y = {y ∈ E : Ay(ω) ≤ a for a.e. ω ∈ Ω} and

ϕ : E × Z → R̄

(y, z) → ϕ(y, z) = 〈y, c〉E/E∗ + δY (y) + δ{0}(By − Bz − b̃),

where δ denotes the indicator function taking values 0 and +∞ only. Since Y is
closed and convex, ϕ is lower semicontinuous and convex. With this notation, we
can express ρ(z) as ρ(z) = infy∈E ϕ(y, z) and, due to Bonnans and Shapiro [BS00,
Proposition 2.143], ρ is convex. Since ρ is finite valued, [BS00, Proposition 2.152]
guarantees the continuity of ρ. Since ρ is proper, convex, and lower semicontinuous,
by the Fenchel–Moreau theorem we have that ρ∗∗ = ρ, where ρ∗∗ is the biconjugate
of ρ, i.e.,

(14) ρ(z) = ρ∗∗(z) = sup {〈z, z∗〉Z/Z∗ − ρ∗(z∗) : z∗ ∈ Z∗},
which is (8). Next, ρ∗(z∗) = ϕ∗(0, z∗), where the conjugate ϕ∗ of ϕ is given by

ϕ∗(y∗, z∗) = sup {〈y, y∗〉E/E∗ + 〈z, z∗〉Z/Z∗ − ϕ(y, z) : y ∈ E, z ∈ Z}
= sup {〈y, y∗ − c〉E/E∗ + 〈z, z∗〉Z/Z∗ : Ay ≤ a a.s., By = Bz + b̃ a.s.}.

It follows that

(15) ρ∗(z∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup E[
∑T

t=1 (ztz
∗
t − c�t yt)]

yt ∈ Lp(Ω,Ft,P;R
kt), zt ∈ Lq(Ω,Ft,P), t = 1, . . . , T,

Atyt ≤ at a.s., t = 1, . . . , T,∑t−1
τ=0 Bt,τyt−τ = ztbt + b̃t a.s., t = 2, . . . , T.

Due to (i) and (ii), complete recourse and dual feasibility also hold for (15) for every
z∗ ∈ dom(ρ∗), where dom(ρ∗) is given by (10). Using once again Lagrangian duality
for problem (15), we obtain for ρ∗(z∗) dual representation (9).

Theorems 2.3 and 2.5 allow us to provide a criterion for an extended polyhedral
risk measure to be multiperiod coherent.

Corollary 2.6. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (6) with

all at null and ht(zt) = ztbt for some vector bt. Let the conditions of Theorem 2.5 be
satisfied (complete recourse and dual feasibility) and let

Mρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ∈ ×T
t=1Lq(Ω,Ft,P) such that there exist

μ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), μ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2) satisfying

μ1,t ≥ 0 a.s ., t = 1, . . . , T,

ct +A�
t μ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[μ2,τ−1|Ft] = 0 a.s .,

t = 1, . . . , T, and

λ1 = 0, λt = μ�
2,t−1bt a.s ., t = 2, . . . , T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

be the (convex) set of dual multipliers. If Mρ ⊆ DT , then ρ is a multiperiod coherent
risk measure.

Proof. Using representation (7) of Theorem 2.5, we can write ρ(z) = supλ∈Mρ
−∑T

t=1 E[λtzt]. We conclude using Theorem 2.3 with Pρ = Mρ.
Using representation (8) of Theorem 2.5, the properties of ρ can also be charac-

terized by properties of dom(ρ∗), where dom(ρ∗) is given by (10).
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Corollary 2.7. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (6) with

ht(zt) = ztbt + b̃t for some vectors bt, b̃t, and let the conditions of Theorem 2.5 be
satisfied (complete recourse and dual feasibility). The following hold:

(i) ρ is monotone ⇐⇒ for all z∗ ∈ dom(ρ∗) we have z∗t ≤ 0 a.s. for t = 1, . . . , T .

(ii) ρ is translation invariant ⇐⇒ for all z∗ ∈ dom(ρ∗) we have
∑T

t=1 E[z∗t ] =
−1.

(iii) ρ is positively homogeneous ⇐⇒ for all z∗ ∈ dom(ρ∗) we have ρ∗(z∗) = 0.
When T = 2, since z1 is deterministic, Definition 2.4 corresponds to one-period

extended polyhedral risk measures that assess the riskiness of one random variable z
only. For later reference we recall the definition of such risk measures which extend
the class of one-period polyhedral risk measures.

Definition 2.8. Let (Ω,F ,P) be a probability space and let h(z) = (h1(z), . . . ,
hn2,2(z))

� for given functions h1, . . . , hn2,2 : Lp(Ω,F ,P) → Lp′(Ω,F ,P) with 1 ≤
p′ ≤ p. A risk measure ρ on Lp(Ω,F ,P) with p ∈ [1,∞) is called extended polyhedral
if there exist matrices A1, A2, B2,0, B2,1, and vectors a1, a2, c1, c2 such that for every
random variable z ∈ Lp(Ω,F ,P)

(16) ρ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf c�1 y1 + E[c�2 y2]

y1 ∈ R
k1 , y2 ∈ Lp(Ω,F ,P;Rk2),

A1y1 ≤ a1, A2y2 ≤ a2 a.s .,

B2,1y1 +B2,0y2 = h(z) a.s .

For one-period risk measures, dual representations from Theorem 2.5 specialize
as follows.

Corollary 2.9. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with some

p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Assume
(i) complete recourse: {y1 : A1y1 ≤ a1} �= ∅ and {B2,0y2 : A2y2 ≤ a2} = R

n2,2 ;
(ii) dual feasibility: {(u, v) : u ∈ R

n1,1×R
n2,1 , v ∈ R

n2,2 , ct + A�
t ut + B�

2,2−tv =
0, t = 1, 2} �= ∅.

Then ρ is finite, convex, continuous, and with 1
p +

1
q = 1, ρ admits the dual represen-

tation

ρ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup −λ�
1 a1 − E[λ�

2 a2 + λ�
3 (zb2 + b̃2)]

λ1 ∈ R
n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),

c1 +A�
1 λ1 +B�

2,1E[λ3] = 0,

c2 +A�
2 λ2 +B�

2,0λ3 = 0 a.s .,

λ1 ≥ 0, λ2 ≥ 0, a.s .

We also have

(17) ρ(z) = sup {E[z∗z]− ρ∗(z∗) : z∗ ∈ Lq(Ω,F ,P)} ,
where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by

(18) ρ∗(z∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

inf E[λ�
1 a1 + λ�

2 a2 + λ�
3 b̃2]

λ1 ∈ R
n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),

z∗ = −λ�
3 b2 a.s., λ1 ≥ 0, λ2 ≥ 0 a.s .,

c1 +A�
1 λ1 +B�

2,1E[λ3] = 0,

c2 +A�
2 λ2 +B�

2,0λ3 = 0 a.s .,
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where

(19) dom(ρ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z∗ ∈ Lq(Ω,F ,P) such that there exist

λ1 ∈ R
n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1),

λ3 ∈ Lq(Ω,F ,P;Rn2,2) satisfying

c1 +A�
1 λ1 +B�

2,1E[λ3] = 0, λ1 ≥ 0, λ2 ≥ 0 a.s .,

c2 +A�
2 λ2 +B�

2,0λ3 = 0 a.s ., and z∗ = −λ�
3 b2 a.s .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. It suffices to use Theorem 2.5 with T = 2.
Definition 2.2 specializes as follows to the one-period case.
Definition 2.10. A functional ρ : Lp(Ω,F ,P) → R̄ is called a convex risk

measure if it satisfies the following three conditions for all z, z̃ ∈ Lp(Ω,F ,P):
(i) Monotonicity: if z ≤ z̃ a.s., then ρ(z) ≥ ρ(z̃).
(ii) Translation invariance: for each r ∈ R we have ρ(z + r) = ρ(z)− r.
(iii) Convexity: for all μ ∈ [0, 1] we have ρ(μz + (1− μ)z̃) ≤ μρ(z) + (1− μ)ρ(z̃).

Such a functional ρ is said to be coherent if it is positively homogeneous, i.e., ρ(μz) =
μρ(z) for all μ ≥ 0 and z ∈ Lp(Ω,F ,P).

Using Theorems 2.3 and Corollary 2.9, a sufficient criterion can be provided for
a one-period extended polyhedral risk measure to be coherent.

Corollary 2.11. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with
a1, a2 null, p ∈ [1,∞), and h(z) = zb2 for some vector b2. Let the conditions of
Corollary 2.9 be satisfied (complete recourse and dual feasibility), and let Mρ be the
following (convex) set of dual multipliers:

(20)

Mρ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ ∈ Lq(Ω,F ,P) such that there exist

(μ1, μ2, μ3) ∈ R
n1,1 × Lq(Ω,F ,P;Rn2,1)× Lq(Ω,F ,P;Rn2,2) satisfying

c1 +A�
1 μ1 +B�

2,1E[μ3] = 0,

c2 +A�
2 μ2 +B�

2,0μ3 = 0 a.s., μ1 ≥ 0, μ2 ≥ 0 a.s . with λ = μ�
3 b2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If Mρ ⊆ D1, then ρ is a (one-period) coherent risk measure.
Proof. From Corollary 2.9, we obtain ρ(z) = supλ∈Mρ

−E[λz], and the result
follows taking Pρ = Mρ in Theorem 2.3.

A dual representation of the second-stage problem for (16) will prove useful for
obtaining further properties of one-period risk measures of the form (16).

Proposition 2.12. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with

some p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of
Corollary 2.9 be satisfied (complete recourse and dual feasibility). Assume the feasible
set D of the dual of the second-stage problem is nonempty where

(21) D = {λ = (λ1, λ2) ∈ R
n2,2 × R

n2,1 : λ2 ≤ 0, B�
2,0λ1 +A�

2 λ2 = c2}.
Then ρ is finite, convex, continuous and is given by

ρ(z) = inf
A1y1≤a1

{
c�1 y1 + E

[
sup
λ∈D

λ�
1 (zb2 + b̃2 −B2,1y1) + λ2a2

]}
.

Proof. Finiteness, convexity, and continuity follow from Corollary 2.9. Next, we
write ρ(z) as

(22) ρ(z) = inf
y1

{c�1 y1 + E[Q2(y1, z)] : A1y1 ≤ a1},
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where for each y1 such that A1y1 ≤ a1 and for each z ∈ R we have defined

Q2(y1, z) = inf
y2

{c�2 y2 : B2,0y2 = zb2 + b̃2 −B2,1y1, A2y2 ≤ a2}.

Finally, since D �= ∅, by duality, we can express Q2(y1, z) as

Q2(y1, z) = sup
(λ1,λ2)

{λ�
1 (zb2 + b̃2 −B2,1y1)(23)

+ λ�
2 a2 : λ2 ≤ 0, B�

2,0λ1 +A�
2 λ2 = c2}.

The following proposition provides a sufficient criterion for some extended poly-
hedral risk measures to be convex risk measures when

(24) Y1 = {y1 : A1y1 ≤ a1}
is not necessarily a cone (a1 need not be 0).

Proposition 2.13. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with

p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corol-
lary 2.9 be satisfied (complete recourse and dual feasibility), and let D be defined as
in Proposition 2.12. Assume

(i) D �= ∅ with D ⊆ {b2}∗×R
n2,1 ;

(ii) c1 �= 0 and b2 is of the form b2 = −Bi
2,1/c1(i) for at least one i ∈ I = {j :

c1(j) �= 0} with y1(i) unconstrained and where Bi
2,1 denotes the ith column of

B2,1.
Then ρ is a finite-valued convex risk measure.

Proof. Let Y1 be defined by (24). Finiteness and convexity of ρ follow from
Corollary 2.9. The monotonicity of ρ follows from (i). Indeed, if z, z̃ ∈ Lp(Ω,F ,P)
satisfy z ≤ z̃ a.s., then for every y1 ∈ Y1 and every (λ1, λ2) ∈ D we have

λ�
1 (zb2 + b̃2 −B2,1y1) + λ�

2 a2 ≥ λ�
1 (z̃b2 + b̃2 −B2,1y1) + λ�

2 a2.

With the notation of Proposition 2.12 and with ϕ(y1, z) = c�1 y1 + E[Q2(y1, z)], it
follows that for every y1 ∈ Y1, we have E[Q2(y1, z)] ≥ E[Q2(y1, z̃)], ϕ(y1, z) ≥ ϕ(y1, z̃),
and ρ(z) = infy1∈Y1 ϕ(y1, z) ≥ infy1∈Y1 ϕ(y1, z̃) = ρ(z̃). The translation invariance
condition follows from (ii). Indeed, eventually after reordering the components of
y1, c1, and the columns of B2,1, we can always assume that the index i satisfying (ii)
is the last k1th index, i.e., that c1, B2,1, and Y1 are of the form c1 = (ĉ1, c̄1)

� with

c̄1 ∈ R
∗, B2,1 = [B̂2,1,−c̄1b2], and Y1 = {y1 = (ŷ1, ȳ1) : Â1ŷ1 ≤ a1, ȳ1 ∈ R}. We

then have for each r ∈ R, for each z ∈ Lp(Ω,F ,P), and setting ỹ1 = ȳ1 +
r
c̄1

∈ R

ρ(z + r) = inf
Â1ŷ1≤a1, ȳ1∈R

{
ĉ�1 ŷ1 + c̄1ȳ1

+E

[
sup

(λ1,λ2)∈D
λ�
1 ((z + r)b2 + b̃2 − B̂2,1ŷ1 + ȳ1c̄1b2) + λ�

2 a2

]}

= inf
Â1ŷ1≤a1, ỹ1∈R

{
ĉ�1 ŷ1 + c̄1ỹ1

+E

[
sup

(λ1,λ2)∈D
λ�
1 (zb2 + b̃2 − B̂2,1ŷ1 + ỹ1c̄1b2) + λ�

2 a2

]}
− r

= ρ(z)− r.

Proposition 2.13 extends the corresponding result in Eichhorn and Römisch [ER05].
Proposition 2.14 below shows that condition (i) in Proposition 2.13 ensures in fact a
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stronger type of monotonicity than (i) in Definition 2.10. Such monotonicity is based
on stochastic dominance rules (see Müller and Stoyan [MS02]). For real-valued ran-
dom variables z, z̃ ∈ L1(Ω,F ,P), stochastic dominance rules are defined by classes of
measurable real-valued functions on R. The stochastic dominance rule with respect
to class F is defined by

z �F z̃ :⇐⇒ ∀ f ∈ F : [ if E[f(z)] and E[f(z̃)] exist, then E[f(z)] ≤ E[f(z̃)]]

for each z, z̃ ∈ L1(Ω,F ,P). Important special cases are the classes Fnd of nonde-
creasing functions and Fndc of nondecreasing concave functions which, respectively,
characterize first and second order stochastic dominance rules:

z �FSD z̃ :⇐⇒ z �Fnd
z̃ ⇐⇒ P(z ≤ t) ≥ P(z̃ ≤ t) ∀ t ∈ R,

z �SSD z̃ :⇐⇒ z �Fndc
z̃ ⇐⇒ E[min(z, t)] ≤ E[min(z̃, t)] ∀ t ∈ R.

In particular, it is said that a risk measure ρ is consistent with second order stochastic
dominance (see Ogryczak and Ruszczyński [OR02]) if z �SSD z̃ implies ρ(z) ≥ ρ(z̃).

Proposition 2.14. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with

p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corol-
lary 2.9 be satisfied (complete recourse and dual feasibility), and let D be defined as
in Proposition 2.12. Assume D �= ∅ with D ⊆ {b2}∗×R

n2,1 . Then ρ is consistent with
second order stochastic dominance.

Proof. With Y1 defined as in (24), let g be the function defined for every y1 ∈ Y1

and z ∈ R by

(25) g(y1, z) = c�1 y1 + sup
(λ1,λ2)∈D

{λ�
1 (zb2 + b̃2 −B2,1y1) + λ�

2 a2}.

For every y1 ∈ Y1, g(y1, ·) is convex and, since D ⊆ {b2}∗×R
n2,1 , it is also nonincreas-

ing. Let z �SSD z̃. For every y1 ∈ Y1, since −g(y1, ·) is concave and nondecreasing,
E[−g(y1, z)] ≤ E[−g(y1, z̃)] and ρ(z) = infy1∈Y1 E[g(y1, z)] ≥ infy1∈Y1 E[g(y1, z̃)] =
ρ(z̃).

For a one-period risk measure of the form (16) with h(z) = zb2 + b̃2 for some
vectors b2, b̃2, the first-stage solution set S(ρ(z)) ⊆ Y1 is given by

(26) S(ρ(z)) =

{
y1 ∈ Y1 : ρ(z) = c�1 y1+ sup

(λ1,λ2)∈D
{λ�

1 (zb2+ b̃2−B2,1y1)+λ�
2 a2}

}
.

For algorithmic issues considered in sections 3 and 4, it can be useful to have at hand
conditions that guarantee the boundedness of S(ρ(z)). This question is addressed in
the following proposition.

Proposition 2.15. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with
p ∈ [1,∞), a2 null, and h(z) = zb2 for some vector b2. Let the conditions of Corol-
lary 2.9 be satisfied (complete recourse and dual feasibility), and assume that S(ρ(0))
is nonempty and bounded. Then S(ρ(z)) is nonempty, convex, and compact for any
z ∈ Lp(Ω,F ,P).

Proof. The proof follows the proof of Proposition 2.9 in Eichhorn and Römisch
[ER05], with, in our case, g given by (25).

We provide examples of extended polyhedral risk measures. The above criteria
for coherence and consistency with second order stochastic dominance are applied.

Example 2.16 (spectral risk measures and CVaR). Let Fz(x) = P(z ≤ x) be the
distribution function of random variable z, and let F←z (p) = inf{x : Fz(x) ≥ p}



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITION METHODS FOR STOCHASTIC PROGRAMS 299

be the usual generalized inverse of Fz. Given a risk spectrum φ ∈ L1([0, 1]) the
spectral risk measure ρφ generated by φ is given by Acerbi [Ace02]:

ρφ(z) = −
∫ 1

0

F←z (p)φ(p)dp.

Spectral risk measures have been used in a number of applications (portfolio selection
in Acerbi and Simonetti [AS], and insurance in Cotter and Kevin [CD06]). The
conditional value-at-risk (CVaR) of level 0 < ε < 1, also called average value-at-
risk (AVaR) in Föllmer and Schied [FS04], is a particular spectral risk measure with
a piecewise constant risk function φ having a jump at ε: φ(u) = 1

ε10≤u≤ε (Acerbi
[Ace02]). Let us consider more generally a piecewise constant risk function φ(·) with
J jumps at 0 < p1 < p2 < · · · < pJ < 1. Setting Δφk = φ(p+k ) − φ(p−k ) = φ(pk) −
φ(pk−1) for k = 1, . . . , J , with p0 = 0, we assume

(i) φ(·) is positive, (ii) Δφk < 0, k = 1, . . . , J, (iii)

∫ 1

0

φ(u)du = 1.

With this choice of φ, we can express ρφ(z) as the optimal value of a linear program-
ming problem (see Acerbi and Simonetti [AS]):

(27) ρφ(z) = inf
x∈RJ

J∑
k=1

Δφk[pkxk − E [xk − z]+]− φ(1)E[z].

When J = 1, Δφ1 = −1/ε, p1 = ε, and φ(1) = 0, the above formula reduces to the
formula for the CVaR given by Rockafellar and Uryasev [RU02]:

(28) CV aRε[z] = inf
x∈R

[
x+

1

ε
E[z + x]−

]
.

A spectral risk measure with a piecewise constant risk function satisfying (i), (ii),
and (iii) above is a coherent extended polyhedral risk measure. Indeed, with respect
to (16), we have c1 = Δφ ◦ p with Δφ = (Δφ1, . . . ,ΔφJ )

�, c2 = (−Δφ; 0J,1;−φ(1)),
B2,1 = (IJ ; 01,J), B2,0 = (−IJ , IJ , 0J,1; 01,2J , 1), A2 = (−I2J , 02J,1), and h(z) = ze.
The matrix A1 and the vectors a1 and a2 are null, b2 is a (J + 1)-vector of ones,
and b̃2 = 0. Notice that when J > 1 it is not polyhedral in the sense of Eichhorn
and Römisch [ER05]. The complete recourse and dual feasibility assumptions from
Corollary 2.9 are easily checked. This theorem provides for ρφ the dual representation

(29) ρφ(z) =

⎧⎪⎨
⎪⎩

sup −E[λz]

λ = μ�e+ φ(1), μ ∈ Lq(Ω,F ,P;RJ),

E[μ] = −Δφ ◦ p, 0 ≤ μ ≤ −Δφ a.s.

Let Mρφ
be the set of dual multipliers from Corollary 2.11 for ρφ. For every λ ∈ Mρφ

,
we have λ ≥ 0 a.s. and

E[λ] = E[φ(1) + μ�e] = φ(1)−
J∑

i=1

Δφipi = φ(1)−
J∑

i=1

(φ(pi)− φ(pi−1))pi

= φ(0)p1 +

J−1∑
i=1

φ(pi)(pi+1 − pi) + (1 − pJ)φ(1) =

∫ 1

0

φ(u)du = 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

300 VINCENT GUIGUES AND WERNER RÖMISCH

It follows that Mρφ
⊆ D1 and using Corollary 2.11, ρφ is a coherent one-period risk

measure. Next, the set D in Proposition 2.14 is given by D = {(λ1, λ2) ∈ R
J+1×R

2J :
λ2 ≤ 0, λ1,J+1 = −φ(1), λ1,1:J = λ2,J+1:2J , λ1,1:J = −λ2,1:J + Δφ}. For every
(λ1, λ2) ∈ D, we have λ�

1 b2 = λ�
1 e ≤ 0. It follows that D ⊆ {b2}∗×R

n2,1 and due to
Corollary 2.14, ρφ is consistent with second order stochastic dominance. When J = 1,
Δφ1 = −1/ε, p1 = ε, and φ(1) = 0, ρφ = CV aRε and we recover results given in
Eichhorn and Römisch [ER05]: the CVaR is consistent with second order stochastic
dominance and is an extended polyhedral risk measure of the form (16) with c1 = 1,
c2 = (1ε ; 0), B2,1 = −1, B2,0 = (−1, 1), A2 = −I2, h(z) = z, and A1, a1, a2 null. The
dual representation (29) becomes

CV aRε(z) = sup

{
−E[λz] : λ ∈ Lq(Ω,F ,P), 0 ≤ λ ≤ 1

ε
a.s., E[λ] = 1

}
.

Example 2.17 (optimized certainty equivalent (OCE) and expected utility). Given
a concave nondecreasing utility function u, the optimized certainty equivalent Su(z)
of the random variable z is defined in Ben-Tal and Teboulle [BTT07] by Su(z) =
supy1∈R y1 + E[u(z − y1)]. Considering for u a piecewise affine concave function,
we can express the convex function −u as follows (see Rockafellar and Wets [RW98,
Example 3.54]:

(30) −u(x) = inf{c�y : y ∈ R
k, y ≥ 0, e�y = 1, b�y = x}

for some vectors b, c ∈ R
k. It follows that if u is a piecewise affine concave function,

ρ(z) = −Su(z) is given by

(31) ρ(z) =

{
inf −y1 + E[c�y2]
y1 ∈ R, y2 ∈ R

k, y2 ≥ 0, e�y2 = 1, b�y2 = z − y1.

In this case, the opposite of the OCE is an extended one-period polyhedral risk mea-
sure with h affine: c1 = −1, c2 = c, A2 = [−Ik; e

�;−e�], a2 = [0k,1; 1;−1], B2,1 = 1,

B2,0 = b�, b2 = 1, and A1, a1, and b̃2 null. Notice that it is not polyhedral in the sense
of Eichhorn and Römisch [ER05] and that complete recourse does not hold. However,
properties of the OCE, given in Ben-Tal and Teboulle [BTT07], are easily checked:
monotonicity follows from the definition of −Su and the fact that u is nondecreasing;
translation invariance follows from the change of variable ȳ1 = y1 − r in (31) (for
ρ(z + r)) or in the definition of −Su(z + r); convexity can be checked directly from
the definition of Su (or using representation (31) and [BS00, Proposition 2.143], as in
the proof of Theorem 2.5).

Let us consider as a special case a piecewise linear utility function of the form

(32) u(x) = γ1(x)
+ − γ2(−x)+, where 0 ≤ γ1 < 1 < γ2

(note that u(x) < x for x �= 0). The corresponding risk measure ρ(z) = −Su(z) is an
extended polyhedral risk measure with c1 = −1, c2 = (−γ1; γ2), B2,1 = 1, B2,0 = [1−
1], A2 = −I2, h(z) = z, and A1, a2, a2 null. Since complete (and even simple) recourse
and dual feasibility hold, Corollary 2.9 provides the following dual representation:

ρ(z) = −Su(z) = sup{−E[λz] : λ ∈ Lq(Ω,F ,P), E[λ] = 1, γ1 ≤ λ ≤ γ2 a.s.}.
Using Corollary 2.11, we deduce that when u is of the form (32), ρ(z) = −Su(z) is a
coherent risk measure. More generally, it is shown in Ben-Tal and Teboulle [BTT07]
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that if u is a strongly risk-averse function (see Ben-Tal and Teboulle [BTT07]), ρ(z) =
−Su(z) is coherent if and only if u is of the form (32). For 0 < ε < 1, CVaRε

constitutes a particular case with γ1 = 0 and γ2 = 1
ε . The set D in Proposition 2.14

is given by D = {(λ1, λ2) : −γ2 ≤ λ1 ≤ −γ1, λ2 ≤ 0}. Since for every (λ1, λ2) ∈ D we
have λ�

1 b2 = λ�
1 e ≤ 0, using Proposition 2.14 we conclude that −Su(z) is consistent

with second order stochastic dominance.
For any concave utility function u, the risk measure ρ(z) = −E(u(z)) is an ex-

tended polyhedral risk measure with h = u, B2,0 = c2 = 1, while the other parameters
are null. In the particular case when u is a piecewise affine concave function, rep-
resentation (30) shows that −E(u(z)) can be written as an extended polyhedral risk
measure with h(z) = z and that complete recourse does not hold. However, a dual
representation of ρ can be derived from the dual representation

(33) −u(x) = sup{−λ1x− λ2 : λ ∈ R
2, λ1b + λ2e ≤ −c}

of −u. Applying the expectation operator to both sides of the above equation and
using Rockafellar and Wets [RW98, Theorem 14.60] (for switching the inf and expec-
tation operators), we obtain for ρ the dual representation

ρ(z) = sup{−E[λ1z + λ2] : λ ∈ Lq(Ω,F ,P;R2), λ1b+ λ2e ≤ −c a.s.}.
Since −u is nonincreasing, for every (λ1, λ2) in the feasible set of (33) we have λ1 ≥ 0
(otherwise, there would be positive subgradients of −u at large enough points). It
follows that in the above representation of ρ, λ1 ≥ 0 a.s., which implies that ρ
is monotone, convex, and consistent with second order stochastic dominance. The
expected regret or expected loss ρ(z) = E(z − β)− for some target β is a special case
(already considered in Eichhorn and Römisch [ER05]) with utility function u(z) =
−(z − β)−. Finally, notice that ρ(z) = E[(z − E[z])k] for some 1 ≤ k ≤ p − 1 is an
extended polyhedral risk measure with h(z) = (z − E[z])k.

Example 2.18 (multiperiod extended polyhedral risk measures). We consider
functionals ρ on ×T

t=1Lp(Ω,Ft,P) (p ∈ [1,∞)) of the form ρ(z) = ρφ(Φ(z)), where ρφ
is a spectral risk measure of form (27) with φ(·) satisfying (i), (ii), (iii) in Example 2.16,
and the function Φ is defined on R

T and maps to the extended real numbers.
Then ρ is a finite-valued coherent multiperiod risk measure if the function Φ

(i) is concave, (ii) is monotone with respect to the (canonical) partial ordering in
R

T , (iii) is positively homogeneous, (iv) satisfies the property Φ(ζ1 + r, . . . , ζT + r) =
Φ(ζ1, . . . , ζT ) + r for all r ∈ R and ζ ∈ R

T , and (v) has linear growth; i.e., for some

constant L > 0 it holds |Φ(ζ)| ≤ L
∑T

t=1 |ζt| for every ζ ∈ R
T .

There are three important special cases of the function Φ:
(a) Φ(ζ) =

∑T
t=1 γtζt with γt ≥ 0, t = 1, . . . , T , such that

∑T
t=1 γt = 1. Using

(27), we have

ρ(z) = ρφ

(
T∑

t=1

γtzt

)

= inf
x∈RJ

(Δφ ◦ p)�x+ E

⎛
⎝−

J∑
k=1

Δφk

[
xk −

T∑
t=1

γtzt

]+
− φ(1)

T∑
t=1

γtzt

⎞
⎠

=

⎧⎪⎨
⎪⎩

inf (Δφ ◦ p)�x+ E

(
−∑J

k=1 Δφkwk − φ(1)vT

)
x ∈ R

J , vt = vt−1 + γtzt, vt ∈ Lp(Ω,Ft,P), t = 1, . . . , T, v0 = 0,
wk ≥ 0, wk ≥ xk − vT , wk ∈ Lp(Ω,FT ,P), k = 1, . . . , J.
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The stochastic program above can be rewritten in the form (6), and ρ is a multiperiod
extended polyhedral coherent risk measure. In the case when ρφ = CV aRε, according
to the dual representation of CV aRε, we obtain

ρ(z) = sup

{
−

T∑
t=1

E(λtzt) : λt ∈ Lq(Ω,Ft,P), E(λt) = γt, 0 ≤ λt ≤ γt
ε
, t = 1, . . . , T,

γtE(λt+1|Ft) = γt+1λt a.s., t = 1, . . . , T − 1

}
,

where λt = γtE(λ|Ft), t = 1, . . . , T , and 1
p+

1
q = 1. Hence, ρ is a multiperiod extended

polyhedral coherent risk measure according to Theorems 2.3 and 2.5.
(b) Φ(ζ) = minγ∈S〈γ, ζ〉 = minγ∈S

∑T
t=1 γtζt, where S denotes the standard

simplex S = {γ ∈ R
T : γt ≥ 0, t = 1, . . . , T,

∑T
t=1 γt = 1}, may be used instead of the

function Φ in (a). This function satisfies conditions (i)–(v), but avoids specifying the
weights γt, t = 1, . . . , T .

(c) Φ(ζ) = mint=1,...,T ζt for ζ ∈ R
T . Using representation (27), we obtain

ρ(z) = ρφ

(
min

t=1,...,T
zt

)

= inf
x∈RJ

(Δφ ◦ p)�x+ E

(
−

J∑
k=1

Δφk

[
xk − min

t=1,...,T
zt

]+
− φ(1) min

t=1,...,T
zt

)

= inf
x∈RJ

(Δφ ◦ p)�x+ E

(
−

J∑
k=1

Δφk max
t=1...,T

(0, xk − zt) + φ(1) max
t=1,...,T

−zt

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf (Δφ ◦ p)�x+ E

(
−∑J

k=1 ΔφkvkT + φ(1)vT

)
x ∈ R

J , v1 ≥ −z1, vt ≥ vt−1, vt ≥ −zt, t = 2, . . . , T,

vkt ≥ vkt−1, vkt ≥ xk − zt, vt, vk,t ∈ Lp(Ω,Ft,P),

k = 1, . . . , J, t = 1, . . . , T, vk0 = 0.

The latter linear stochastic program may be rewritten in the form (6), and ρ is
a multiperiod extended polyhedral coherent risk measure. In the case when ρφ =
CV aRε, we obtain

ρ(z) = inf

{
x+

1

ε
E(vT ) :vt ∈ Lp(Ω,Ft,P),−x− zt ≤ vt, vt−1 ≤ vt,(34)

t = 1, . . . , T, v0 = 0, x ∈ R

}
.

Example (34) was first studied by Eichhorn in [Eic07].

3. Risk-averse dynamic programming.

3.1. General setting. When using a multiperiod extended polyhedral risk mea-
sure to deal with uncertainty in the multistage stochastic programming framework (4),
we consider accumulated revenues zt = −∑t

τ=1 fτ (xτ , ξτ ) and the sigma-algebras
Ft = σ(ξj , j ≤ t) for t = 1, . . . , T . Recall that x0 and χ1(x0, ξ1) are deterministic and
that for any time step t = 1, . . . , T , we denote by ξ[t] the available realizations of the
process up to this time step, i.e., ξ[t] = (ξj , j ≤ t).
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We also denote by Zt the space of Ft-measurable functions (these sets are em-
bedded: Z1 ⊂ · · · ⊂ ZT ). Next, for t = 1, . . . , T, we assume the following:

(H1) the functions ft : R
Nt,x ×R

Mt → R are continuous and χt : R
Nt−1,x ×R

Mt ⇒
R

Nt,x are measurable, bounded, and closed-valued multifunctions.
We are now in a position to define a risk-averse problem for (1) via a multiperiod risk
measure. Let ρ : Z1 × . . .ZT → R be a multiperiod risk measure and let us introduce
the risk-averse problem

(35)
inf ρ

(
−f1(x1, ξ1),−

2∑
τ=1

fτ (xτ (ξ[τ ]), ξτ ), . . . ,−
T∑

τ=1

fτ (xτ (ξ[τ ]), ξτ )

)

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

In the above problem, the optimization is performed over Ft-measurable functions
xt, t = 1, . . . , T , satisfying the constraints and such that ft(xt(·), ·) ∈ Zt. The
sequence of measurable mappings xt(·), t = 1, . . . , T , is called a policy. The Ft-
measurability of xt(·) implies the nonanticipativity of the policy, i.e., implies that xt

is a function of ξ[t]. The policy obtained from (35) will be said to be risk-averse. A pol-
icy is said to be feasible if the constraints xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T,
are satisfied with probability one.

In this section, our objective is to provide a class of form (1) problems and a class
of multiperiod risk measures ρ having the following two properties:

(P1) DP equations can be written for (35).
(P2) The SDDP algorithm applied to problem (35) decomposed by stages converges

to an optimal solution of (35).
We intend to enforce (P2) obtaining DP equations that satisfy conditions given in
Philpott and Guan [PG08]. These conditions imply the following:

(P3) The recourse functions are given as the optimal value of a non-risk-averse
stochastic program (the objective function is an expectation) where the ran-
domness appears on the right-hand side of the constraints only.

Property (P3) leads us naturally to use the class of extended polyhedral risk measures
introduced in the previous section.

3.2. Extended polyhedral risk measures. Taking for ρ a multiperiod ex-
tended polyhedral risk measure of the form (6), problem (35) can be written as

(36)

inf E

[
T∑

t=1

c�t yt

]

Atyt ≤ at a.s., t = 1, . . . , T,

t−1∑
τ=0

Bt,τyt−τ = ht

(
−

t∑
τ=1

fτ (xτ , ξτ )

)
a.s., t = 2, . . . , T,

xt ∈ χt(xt−1, ξt) a.s., t = 1, . . . , T.

Remark 3.1. In (36), the dependence of xt and yt with respect to ξ[t] was sup-
pressed to alleviate notation. This will in general be done in what follows.

We first check that (P1) and (P3) hold for problem (36) above. Since we want to
write DP equations, we start with the following simple remark.

Remark 3.2. Let us consider the following T-stage optimization problem:

P

{
inf f(x1, . . . , xT )
xt ∈ X(x0, . . . , xt−1), t = 1, . . . , T.
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We decompose f as f(x) =
∑T

k=1 fk(x1:k), where fk is the sum of all the functions in
the sum of functions defining f which depend on xk but not on xk+1:T (for a given k,
fk is 0 if no such functions exist). DP equations for P can be written as follows:

Qt(x0:t−1) =

{
inf
xt

ft(x1:t) +Qt+1(x0:t)

xt ∈ X(x0:t−1)

for t = 1, . . . , T , with QT+1 ≡ 0.
The application of Remark 3.2 to (36) yields the following DP equations: for

t = 1, . . . , T , Qt(x0:t−1, ξ[t−1], y1:t−1) is given by

Qt(x0:t−1, ξ[t−1], y1:t−1)
(37)

= Eξt|ξ[t−1]

⎛
⎜⎜⎜⎝

infxt,yt c�t yt +Qt+1(x0:t, ξ[t], y1:t)
Atyt ≤ at,

(1− δt1)
(∑t−1

τ=0 Bt,τyt−τ − ht

(
−∑t

τ=1 fτ (xτ , ξτ )
))

= 0,

xt ∈ χt(xt−1, ξt)

⎞
⎟⎟⎟⎠ ,

where here, and in what follows, QT+1 ≡ 0. Since these DP equations correspond
to the stagewise decomposition of risk-averse problem (36), the recourse functions
Qt in (37) are said to be risk-averse. Compared to the DP equations of the original
stochastic program, a new state variable yt and new constraints for it appear in (37) at
time t. They serve for computing the multiperiod extended polyhedral risk measure.

Let us now take as a special case for ρ the multiperiod risk measure defined by

(38) ρ(z1, . . . , zT ) = −θ1E[zT ] +
T∑

t=2

θtρ
t(zt)

for some nonnegative weights θt, t = 1, . . . , T , summing to one (
∑T

t=1 θt = 1) and
for some one-period coherent extended polyhedral risk measures ρt : Zt → R, t =
2, . . . , T .

Remark 3.3. We easily check that ρ in (38) is a multiperiod (coherent) extended
polyhedral risk measure.

Observe that since ρt is coherent and z1 deterministic, we have ρt(zt − z1) =
ρt(zt) + z1, and ρ(z1, . . . , zT ) in (38) can be expressed as ρ(z1, . . . , zT ) = −z1 −
θ1E[zT − z1] +

∑T
t=2 θtρ

t(zt − z1). This expression reveals that the corresponding
objective function in (35) is the sum of the first-stage (deterministic) cost and of a
convex combination of the mean future cost and of risk measures of future partial
costs. With this choice of ρ, problem (35) becomes

(39)
inf f1(x1, ξ1) + θ1E

[
T∑

t=2

ft(xt, ξt)

]
+

T∑
t=2

θtρ
t

(
−

t∑
k=2

fk(xk, ξk)

)

xt ∈ χt(xt−1, ξt), t = 1, . . . , T.
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Plugging the expression (16) of the risk measure ρt (taking the same for all time steps)
into (39), the latter can be written as

inf
xt,wt,yt

f1(x1, ξ1) +

T∑
t=2

θtc
�
1wt + E

[
θ1

T∑
t=2

ft(xt, ξt) +

T∑
t=2

θtc
�
2 yt

]

B2,1wt +B2,0yt = h

(
−

t∑
k=2

fk(xk, ξk)

)
, t = 2, . . . , T,

A1wt ≤ a1, A2yt ≤ a2, t = 2, . . . , T,

xt ∈ χt(xt−1, ξt), t = 1, . . . , T.

In turn, the above optimization problem can be expressed as

(40)
inf

x1,w2:T

f1(x1, ξ1) +

T∑
t=2

θtc
�
1wt +Q2(x1, ξ[1], w2, . . . , wT )

A1wt ≤ a1, t = 2, . . . , T, x1 ∈ χ1(x0, ξ1),

where
(41)

Q2(x1, ξ[1], w2:T ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
xt,yt

E

[
θ1
∑T

t=2 ft(xt, ξt) +
∑T

t=2 θtc
�
2 yt

]
B2,1wt +B2,0yt = h

(
−∑t

k=2 fk(xk, ξk)
)
, t = 2, . . . , T,

A2yt ≤ a2, t = 2, . . . , T,

xt ∈ χt(xt−1, ξt), t = 2, . . . , T.

The application of Remark 3.2 to optimization problem (41) yields the following DP
equations: for t = 2, . . . , T , Qt(x1:t−1, ξ[t−1], wt:T ) is given by

(42)

Eξt|ξ[t−1]

(
inf
xt,yt

θ1ft(xt, ξt) + θtc
�
2 yt +Qt+1(x1:t, ξ[t], wt+1:T )

B2,1wt +B2,0yt = h(−∑t
k=2 fk(xk, ξk)), A2yt ≤ a2, xt ∈ χt(xt−1, ξt)

)
.

In DP equations (37) and (42) obtained for, respectively, risk-averse problems (36)
and (39), the state variables memorize the relevant history of the process and of the
decisions. For (37) (resp., (42)), we can reduce the size of the state vector replacing
the history of the decisions x1:t−1 by xt−1 and zt−1 (resp., xt−1 and z̃t−1 with z̃t−1 =
zt−1 − z1). Variable z̃t−1 represents the total revenue (opposite of the cost) from
time step 2 until time step t − 1 (i.e., the total income until time step t − 1 for the
time steps where the data are random). Variables z̃t satisfy z̃t = z̃t−1 − ft(xt, ξt)
for t = 2, . . . , T , with z̃1 set equal to 0. With this notation, DP equations (37) for
problem (36) become

Qt(xt−1, ξ[t−1], zt−1, y1:t−1)(43)

= Eξt|ξ[t−1]

⎛
⎜⎜⎝

inf
xt,yt,zt

c�t yt +Qt+1(xt, ξ[t], zt, y1:t)

(1 − δt1)
(∑t−1

τ=0 Bt,τyt−τ − ht(zt)
)
= 0, Atyt ≤ at,

zt = zt−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

⎞
⎟⎟⎠
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for t = 1, . . . , T , with z0 = 0. As for the DP equations (40) and (42), they simplify
as follows: in (40), Q2(x1, ξ[1], w2, . . . , wT ) needs to be replaced by Q2(x1, ξ[1], z̃1,
w2, . . . , wT ) and for t = 2, . . . , T we have

Qt(xt−1, ξ[t−1], z̃t−1, wt:T )(44)

= Eξt|ξ[t−1]

⎛
⎜⎝

inf
xt,z̃t,yt

− δtT θ1z̃t + θtc
�
2 yt +Qt+1(xt, ξ[t], z̃t, wt+1:T )

B2,1wt +B2,0yt = h(z̃t), A2yt ≤ a2,
z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

⎞
⎟⎠ .

Remark 3.4. Comparing the non-risk-averse DP equations (3) with the risk-
averse ones (43) or (40) and (44), we see that additional decision and state variables
are introduced in the latter cases. More precisely, at the first time step, in the non-
risk-averse case the decision x1 is taken, while in risk-averse case (43) (resp., (40) and
(44)), additional decision variables y1 and z1 (resp., (w2, . . . , wT )) are needed. This
first-stage problem is deterministic for all models.

For time step t = 2, . . . , T , in risk-averse case (43) (resp., (40) and (44)), the
state vector is augmented with partial cost zt−1 and with the variables (y1, . . . , yt−1)
(resp., partial cost z̃t−1 and the variables (wt, . . . , wT )). For both risk-averse models,
additional decisions zt (or z̃t) and yt are needed for stages t = 2, . . . , T . This is
summarized in Table 1.

Table 1

Decision and state variables for the non-risk-averse (NRA) DP equations (3) as well as for the
risk-averse ones (43) (RA1), and (40) and (44) (RA2).

First stage Stages t = 2, . . . , T

Decision variables
NRA x1 xt

RA1 (x1, z1, y1) (xt, zt, yt)
RA2 (x1, w2, . . . , wT ) (xt, z̃t, yt)

State variables
NRA (x0, ξ[0]) (xt−1, ξ[t−1])
RA1 (x0, ξ[0]) (xt−1, ξ[t−1], zt−1, y1, . . . , yt−1)
RA2 (x0, ξ[0]) (xt−1, ξ[t−1], z̃t−1, wt, . . . , wT )

Remark 3.5. Other special cases for the multiperiod risk measure ρ in (35) for
which DP equations can be written are the risk measures from Example 2.18.

Properties (P1) and (P3) thus hold for (36) and hold for (39) when using extended
one-period polyhedral risk measures for ρt. We now concentrate on (P2). So far, all
the developments of this section were valid for a problem of the form (1). To ensure
that (P2) holds, we consider the special case when (1) is a stochastic linear program
(SLP). Indeed, the convergence of the SDDP algorithm and of related sampling-based
algorithms is proved in Philpott and Guan [PG08] for SLP. We observe that if (1) is
an SLP, then risk-averse problem (36) (resp., (39)) is an SLP if and only if

ht(z) = zbt + b̃t for some bt, b̃t ∈ R
nt,2(45)

(resp., h(z) = zb2 + b̃2 for some b2, b̃2 ∈ R
n2,2).

Of interest for applications, we now specialize the above DP equations (44) taking
extended polyhedral risk measures with h(·) of the kind (45) above. As seen in the
previous section, spectral risk measures with piecewise constant spectra are of this
kind. We provide the DP equations obtained in this case using directly (27).
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3.3. Spectral risk measures. Let φ be a piecewise constant risk spectrum
satisfying (i), (ii), and (iii) given in Example 2.16 and let Δφk = φ(pk)−φ(pk−1), k =
1, . . . , J . If we take for ρt a spectral risk measure ρφ (the same for all time steps),
using (27) we can decompose (39) by stages and express it under the form

(46)
inf f1(x1, ξ1) +

T∑
t=2

θtc
�
1wt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ R
J , t = 2, . . . , T,

with z̃1 = 0, c1 = Δφ ◦ p, and where for t = 2, . . . , T,

Qt(xt−1, ξ[t−1], z̃t−1, wt:T )(47)

= Eξt|ξ[t−1]

(
inf
xt,z̃t

f̃t(z̃t, wt) +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

)

with

f̃t(z̃t, wt) = −(δtT θ1 + φ(1)θt)z̃t − θt Δφ�(wt − z̃te)
+.

When the risk spectrum φ has one jump, we obtain the CVaR.

3.4. Conditional value-at-risk. When taking ρt = CVaRεt and using (28),
we can express (39) under the form

(48)
inf

x1,w2:T

f1(x1, ξ1)−
T∑

t=2

θtwt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ R, t = 2, . . . , T,

with z̃1 = 0, and where for t = 2, . . . , T ,

Qt(xt−1, ξ[t−1], z̃t−1, wt:T )(49)

= Eξt|ξ[t−1]

⎛
⎝ inf

xt,z̃t
− δtT θ1z̃t +

θt
εt
(wt − z̃t)

+ +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

⎞
⎠ .

3.5. Convergence of SDDP in a risk-averse setting. The convergence of
the SDDP algorithm and of related sampling-based algorithms is proved in Philpott
and Guan [PG08] for SLP with the following properties:

(A1) Random data only appear on the right-hand side of the constraints.
(A2) The supports of the distributions of the underlying random vectors are dis-

crete and finite.
(A3) Random vectors are interstage independent or satisfy a certain type of inter-

stage dependence (see Philpott and Guan [PG08]).
(A4) The feasible set of the linear program is nonempty and bounded in each stage.

In what follows, we consider multistage SLPs of the form (1) where

(50) ft(xt, ξt) = d�
t xt and χt(xt−1, ξt) = {xt : xt ≥ 0, Ctxt = ξt −Dtxt−1}.

For these programs, assumption (A1) holds, and it can be noted that if (A1) holds
for (1), then (A1) holds for risk-averse problems (36) and (39). In the remainder of
the paper, we assume (A2) and (A3). We also assume that (A4) holds for (1), which,
in our context, can be expressed as follows:
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(A4) For t = 1, . . . , T , for any feasible state xt−1, and for any realization ξit of ξt,
the set

χt(xt−1, ξit) = {xt | xt ≥ 0, Ctxt = ξit −Dtxt−1}

is bounded and nonempty.
To apply the convergence results from Philpott and Guan [PG08] in our risk-averse
setting, (A4) should also hold for risk-averse problems (36) or (39). For (36), (A4)
takes the following form:

(A5) {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for any feasible
states x1, y1, . . . , xt−1, yt−1, and for any sequence of realizations ξi1, . . . , ξ

i
t

of ξ1, . . . , ξt, the set {yt : Atyt ≤ at, Bt,0yt = ht(−
∑t

τ=1 fτ (xτ , ξ
i
τ )) −∑t−1

τ=1Bt,τyt−τ for some xt ∈ χt(xt−1, ξit)} is bounded and nonempty.
For (39), remembering Proposition 2.15, a condition implying (A4) is the following:

(A6) For t = 2, . . . , T , the sets S(ρt(0)) are nonempty and bounded, where S(ρt(0))
is defined in (26). {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for
any feasible x1, y1, . . . , xt−1, yt−1, w2:T , and for any sequence of realizations
ξi1, . . . , ξ

i
t of ξ1, . . . , ξt, the set {yt : Atyt ≤ at, ∃ xt ∈ χt(xt−1, ξit), B2,0yt =

h(−∑t
τ=2 fτ (xτ , ξ

i
τ ))−B2,1wt} is bounded and nonempty.

Indeed, with respect to the non-risk-averse setting, recall that the additional decision
variables for (39) are z̃t (bounded, due to (A4)), yt, and wt. Variables wt, t = 2, . . . , T ,
are first-stage decision variables and, due to Proposition 2.15, if S(ρt(0)) is nonempty
and bounded, then optimal wt are bounded. Next, condition (A6) guarantees the
boundedness of optimal yt.

However, even if the feasible set at each stage for (36) or (39) is not bounded, we
may be able to show, in some cases, that these feasible sets can be replaced by bounded
feasible sets without changing the problems, i.e., that the solutions are bounded. Such
is the case for problems (46) and (48). Indeed, for these problems, the only additional
variables with respect to the non-risk-averse case are z̃t (bounded, due to (A4)) and
first-stage variables w2, . . . , wT . For the spectral risk measure ρt = ρφ, t = 2, . . . , T ,
considered in (46), the sets S(ρt(0)) = S(ρφ(0)) = {0}, t = 2, . . . , T , are nonempty
and bounded. Using Proposition 2.15, optimal values of wt in (46) are bounded. This
result can also be easily proved directly.

Lemma 3.6. Let assumption (A4) hold, and let φ be a piecewise risk spectrum
satisfying (i), (ii), and (iii) given in Example 2.16. Let w∗2 , . . . , w

∗
T be optimal values

of w2, . . . , wT for (46). Then w∗t (k) is finite for every t = 2, . . . , T , and k = 1, . . . , J .
Proof. Since χt, t = 1, . . . , T , are bounded and Δφ < 0, we can bound from

below the objective function of (46) by L1(w) = K1 +
∑T

t=2 θt(Δφ ◦ p)�wt and

L2(w) = K2 +
∑T

t=2 θt(Δφ ◦ (p − e))�wt for some constants K1 and K2. Since
Δφ◦p < 0, if one component wt(k) = −∞, then L1(w) = +∞, the objective function
is therefore +∞, and such wt(k) cannot be an optimal value of wt(k). Similarly, since
Δφ ◦ (p − e) > 0, if one wt(k) = +∞, then L2(w) = +∞, the objective function is
+∞, and such wt(k) cannot be an optimal value of wt(k).

The following corollary is an immediate consequence of this lemma.
Corollary 3.7. Let assumption (A4) hold. Let w∗2 , . . . , w

∗
T be optimal values of

w2, . . . , wT for (48). Then w∗t is finite for every t = 2, . . . , T .
It follows that we can add (sufficiently large) box constraints on wt in (46) and (48)

without changing the optimal solutions of (46) and (48). Gathering our observations,
we come to the following proposition.
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Proposition 3.8 (convergence of SDDP in a risk-averse setting). Consider
multistage SLPs of the form (1) with ft and χt given by (50). Assume that for such
multistage programs, assumptions (A1), (A2), (A3), and (A4) hold. Consider the
risk-averse formulations (46), (47) and (48), (49). Then an SDDP algorithm applied
on these DP equations will converge if the sampling procedures satisfy the FPSP and
BPSP assumptions (see Philpott and Guan [PG08]).

The same convergence result holds for the following two risk-averse formulations:
(1) assuming (A5), for risk-averse program (36) decomposed by stages as (43)

with ht(·) given by (45);
(2) assuming (A6), for risk-averse program (39) decomposed by stages as (40),

(44) with h(·) given by (45).
In the next section, we detail the SDDP algorithm for interstage independent risk-

averse problems of form (35). The developments can be easily adapted to the case
when the process affinely depends on previous values. Our notation follows closely
that of Birge and Donohue [BD06].

4. Decomposition algorithms for a class of risk-averse stochastic pro-
grams. We consider the risk-averse recourse functions (43) from section 3 in the case
when ft and χt are given by (50) and ht(·) is given by (45). Recall that risk-averse DP
equations (43) satisfy (P3) (like the non-risk-averse DP equations (3) but with addi-
tional state and control variables). We assume interstage independence and relatively
complete recourse for (1). We also assume that the hypotheses of Proposition 3.8
hold. In this context, relatively complete recourse also holds for risk-averse problems
(43). As a result, the SDDP algorithm [PP91], [Sha11] can be applied to obtain ap-
proximations of the corresponding risk-averse recourse functions. At each iteration,
this algorithm consists of a forward pass followed by a backward pass. The backward
pass builds cuts for the recourse functions (hyperplanes lying below these functions)
at some points computed in the forward pass. If H cuts are built for each recourse
function at each iteration, iteration i ends with a lower bounding approximation of
form

Qi
t(xt−1, zt−1, y1:t−1) = max

j=0,1,...,iH

[
−Ej

t−1xt−1 − Zj
t−1zt−1 −

t−1∑
τ=1

Y j,τ
t−1yτ + ejt−1

](51)

for Qt, knowing that the algorithm starts taking for Q0
t a known lower bounding affine

approximation of Qt while Qi
T+1 ≡ 0. In the above expression, Zj

t−1 ∈ R, while Ej
t−1

and Y j,τ
t−1 are row vectors of appropriate dimensions.

The forward pass of iteration i samples H scenarios (ξk2 , . . . , ξ
k
T ), k = (i− 1)H +

1, . . . , iH , from the distribution of (ξ2, . . . , ξT ). On scenario (ξk2 , . . . , ξ
k
T ), the decisions

(xk
1 , . . . , x

k
T , y

k
1 , . . . , y

k
T ) as well as the partial costs (z

k
1 , . . . , z

k
T ) are computed replacing

recourse functions Qt by Qi−1
t for t = 2, . . . , T +1. The stopping criterion is discussed

in [Sha11].
The cuts are computed from time step T + 1 down to time step 2. For time step

T + 1, since Qi
T+1 = QT+1 = 0, cuts for QT+1 are obtained taking null values for

Ek
T , Z

k
T , Y

k,τ
T , and ekT for k = (i − 1)H + 1, . . . , iH . At t = 2, . . . , T , cuts for Qt are

computed at (xk
t−1, zkt−1, yk1:t−1), k = (i − 1)H + 1, . . . , iH . More precisely, having

at hand the lower bounding approximation Qi
t+1 of Qt+1, we can bound from below

Qt(xt−1, zt−1, y1:t−1) by Eξt [Q
i
t(xt−1, zt−1, y1:t−1, ξt)] with Qi

t(xt−1, zt−1, y1:t−1, ξt)
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given as the optimal value of the following linear program:

(52)

inf
xt,yt,zt,θ̃t

c�t yt + θ̃t

Atyt ≤ at, xt ≥ 0,

t−1∑
τ=0

Bt,τyt−τ − ztbt = b̃t, (a)

zt + d�
t xt = zt−1, (b)

Ctxt = ξt −Dtxt−1, (c)

−→
E i

txt +
−→
Z i

tzt + eθ̃t ≥ −
t∑

τ=1

−→
Y i,τ

t yτ +
−→e i

t, (d)

where
−→
Z i

t = (Z0
t , Z

1
t , . . . , Z

iH
t )� and

−→
Y i,τ

t is the matrix whose (j+1)th line is Y j,τ
t for

j = 0, . . . , iH . We denote by ξjt , j = 1, . . . , qt < +∞, the possible realizations of ξt
with p(t, j) = P(ξt = ξjt ). We also denote by σk,j

t , μk,j
t , πk,j

t , and ρk,jt the (row vectors)
optimal Lagrange multipliers associated to constraints (52)-(a), (52)-(b), (52)-(c), and
(52)-(d) for the problem defining Qi

t(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ). With this notation, the

following theorem provides the cuts computed for Qt at iteration i.
Theorem 4.1. Let Qt, t = 2, . . . , T + 1, be the risk-averse recourse functions

given by (43) with ht(·) given by (45). In the backward pass of iteration i of the SDDP
algorithm, the following cuts are computed for these recourse functions. For t = T+1,
we set Ek

t−1, Z
k
t−1, Y

k,τ
t−1 and ekt−1 to 0 for k = (i− 1)H + 1, . . . , iH and τ = 1, . . . , T .

For t = 2, . . . , T and k = (i − 1)H + 1, . . . , iH, Ek
t−1 =

∑qt
j=1 p(t, j)πk,j

t Dt and

Zk
t−1 = −

qt∑
j=1

p(t, j)μk,j
t ,Y k,τ

t−1 =

qt∑
j=1

p(t, j)(σk,j
t Bt,t−τ + ρk,jt

−→
Y i,τ

t ), τ = 1, . . . , t− 1.

Next, ekt−1 is given by

qt∑
j=1

p(t, j)

[
Qi

t(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )− μk,j

t zkt−1

+
t−1∑
τ=1

(σk,j
t Bt,t−τ + ρk,jt

−→
Y i,τ

t )ykτ + πk,j
t Dtx

k
t−1

]
.

Proof. Since relatively complete recourse and assumptions (A4) and (A5) hold,
the linear program defining Qi

t(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ) has a nonempty feasible set and

its optimal value is finite. As a result, both this primal problem and its dual have the
same optimal value. Since a dual solution is a subgradient of the value function for
problem (52), we obtain for Qi

t(xt−1, zt−1, y1:t−1, ξ
j
t ) the lower bound

Qi
t(x

k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )−

t−1∑
τ=1

σk,j
t Bt,τ (yt−τ − ykt−τ )−

t−1∑
τ=1

ρk,jt

−→
Y i,τ

t (yτ − ykτ )

+ μk,j
t (zt−1 − zkt−1)− πk,j

t Dt(xt−1 − xk
t−1).

Plugging this bound into the relation Qt(xt−1, zt−1, y1:t−1) ≥ ∑qt
j=1 p(t, j)Qi

t(xt−1,
zt−1, y1:t−1, ξ

j
t ), rearranging the terms, and identifying with (51) gives the announced

cuts.
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The above cuts can be easily specialized to DP equations (46)–(47) (based on
spectral risk measures) or to (44) with h(·) as in (45).

5. Conclusion. The class of extended polyhedral risk measures was introduced
in this paper. Dual representations of these risk measures were obtained and used
to provide conditions for coherence, convexity, and consistency with second order
stochastic dominance.

This class allowed us to write risk-averse dynamic programming equations for
some risk-averse problems with risk measures taken from this class. We then detailed a
stochastic dual dynamic programming algorithm for approximating the corresponding
risk-averse recourse functions for some stochastic linear programs. In particular, con-
ditions were given to guarantee convergence. The methodology can be easily adapted
if the recourse functions are approximated using other sampling-based decomposition
algorithms such as AND (Birge and Donohue [BD06]) and DOASA (Philpott and
Guan [PG08]).

A forthcoming work will assess the proposed approach on a midterm multistage
production management problem Guigues [Gui].
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[Rus86] A. Ruszczyński, A multicut regularized decomposition method for minimizing a sum of
polyhedral functions, Math. Programming, 35 (1986), pp. 309–333.

[RW98] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin,
1998.

[SDR09] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming:
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MULTISTAGE STOCHASTIC PROGRAMS BASED ON EXTENDED
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Abstract. We define a risk-averse nonanticipative feasible policy for multistage stochastic pro-
grams and propose a methodology to implement it. The approach is based on dynamic programming
equations written for a risk-averse formulation of the problem. This formulation relies on a new class
of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of
such risk functionals are given and used to derive conditions of coherence. In the one-period case,
conditions for convexity and consistency with second order stochastic dominance are also provided.
The risk-averse dynamic programming equations are specialized considering convex combinations of
one-period extended polyhedral risk measures such as spectral risk measures. To implement the pro-
posed policy, the approximation of the risk-averse recourse functions for stochastic linear programs
is discussed. In this context, we detail a stochastic dual dynamic programming algorithm which
converges to the optimal value of the risk-averse problem.
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optimization, decomposition algorithms, Monte-Carlo sampling, spectral risk measure, CVaR
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1. Introduction. Let us consider a T -stage optimization problem of the form

(1)
inf E

[
T∑

t=1

ft(xt, ξt)

]

xt ∈ χt(xt−1, ξt) a.s., xt Ft-measurable, t = 1, . . . , T,

where (ξt)
T
t=1 is a stochastic process, Ft is the sigma-algebra Ft := σ(ξj , j ≤ t), and

χt : RNt−1,x × R
Mt ⇒ R

Nt,x are given multifunctions. In this setting, multistage
stochastic optimization problems set two challenging questions. The first question
refers to modeling: how does one deal with uncertainty in this context? Once a model
is chosen, the second question is, how does one design suitable solution methods?

For the first of these questions, we are interested in defining nonanticipative poli-
cies. This means that the decision we make at any time step should be a function
of the available history ξ[t] of the process at this time step. This is a necessary con-
dition for a policy to be implementable since a decision has to be made on the basis
of the available information. We will focus on models with recourse. More precisely,
introducing a recourse function Qt+1 for time step t and given xt−1, the decision xt

is found by solving the problem

(2)
inf
xt

ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)
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at time step t. In this problem, we have assumed that ξt is available at time step t
and thus ξ[t] gathers all the realizations of ξj up to time step t. The policy depends
crucially on the choice of the recourse function Qt+1 used in (2). Given x0 and the
information ξ[1], a non-risk-averse model uses the recourse functions defined by

(3) Qt(xt−1, ξ[t−1]) = Eξt|ξ[t−1]

(
inf
xt

ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)

)

for t = 1, . . . , T , with QT+1 ≡ 0. These dynamic programming (DP) equations are
associated to the non-risk-averse model

(4)
inf E

[
T∑

t=1

ft(xt(ξ[t]), ξt)

]

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

For the second of these questions, most of the efforts so far have been placed on
solution methods that approximate the recourse functions (3) in the case of multistage
stochastic linear programs. In this paper, we contribute to these two questions as
follows.

From the modeling point of view, we define risk-averse recourse functions. For this
purpose, a common approach (Ruszczyński and Shapiro [RS06a], [RS06b]) is based
on a risk-averse nested formulation of the problem using conditional (coherent) risk
measures. In this situation, it is in general difficult, even for simple risk measures
such as the conditional value-at-risk (CVaR) (Rockafellar and Uryasev [RU02]), to
determine a risk-averse problem (using a risk measure that has a physical interpreta-
tion) whose stagewise decomposition is given by these DP equations. However, such
an interpretation is important. This is why we define instead a risk-averse problem
for (1) that is then decomposed by stages to obtain DP equations. A similar idea
appears in the recent book by Shapiro, Dentcheva, and Ruszczyński [SDR09, Chap-
ter 6, p. 326], where a convex combination of the expectation and of the CVaR of
the final wealth is used for a portfolio selection problem. Instead, we control partial
costs (the sum of the costs up to the current time step) and use a new class of risk
measures that is suitable for decomposing the risk-averse problem by stages. This
class of multiperiod risk measures called extended polyhedral risk measures has three
appealing properties. First, the class is large: it contains the polyhedral risk measures
(Eichhorn and Römisch [ER05]); in the one-period case some special cases include the
optimized certainty equivalent (Ben-Tal and Teboulle [BTT07]), some spectral risk
measures (Acerbi [Ace02]), and the CVaR. More generally, conditions for such func-
tionals to be coherent or convex are provided. Second, as stated above, it allows us to
define DP equations for our risk-averse problem. Finally, these equations are suitable
for proposing convergent solution methods for a class of stochastic linear programs.

Regarding algorithmic issues, exact decomposition algorithms such as the nested
decomposition (ND) algorithm have shown their superiority to direct solution meth-
ods for obtaining approximations of the recourse functions. Each iteration of these
algorithms computes upper and lower bounds on the optimal mean cost. If an op-
timal solution to the problem exists, the algorithm finds an optimal solution after a
finite number of iterations. These exact algorithms build at each iteration and each
node of the scenario tree a cut for the recourse functions. These cuts form an outer
linearization of these recourse functions.
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There are two important variants of the ND algorithm: a variant that adds
quadratic proximal terms in the objective functions of the master problems and a
variant that uses multicuts (Ruszczyński [Rus86]).

The purpose of the first variant is to discourage the solution from moving too far
from the best solution found so far, and this can significantly accelerate the conver-
gence of the method even if the master problems are quadratic programs with this
approach. The proximal term penalties are positive and can be dynamically modified
in the course of the algorithm.

In the ND algorithm, for a given node in the scenario tree and a given input state
xt−1 at t, the subproblems associated to all the realizations in stage t+ 1 are solved
to obtain their optimal simplex multipliers. These multipliers are then aggregated
to obtain a single cut for each node in each iteration. In the multicut variant, there
are as many cuts as descendant realizations that are built at each iteration. More
information is thus passed from the children nodes to their immediate ancestor by
sending disaggregate cuts. The size of the master programs increases, but we expect
fewer iterations (see Birge and Louveaux [BL88]).

However, in some applications, the number of scenarios may become so large
that even these improved variants are difficult to apply since they entail prohibitive
computational efforts.

Monte Carlo sampling-based algorithms constitute an interesting alternative in
such situations. Higle and Sen [HS96] introduced a stochastic cutting plane method
for two-stage stochastic programs and showed its convergence with probability one.
Recently, Higle, Rayco, and Sen [HRS10] extended this idea to multistage models
by applying a stochastic cutting plane method to the dual problem resulting when
dualizing nonanticipativity constraints. Their method is, hence, based on scenario
decomposition. A different approach for two-stage problems based on Monte Carlo
(importance) sampling within the L-shaped method was introduced by Dantzig and
Glynn [DG90] and Infanger [Inf92]. For multistage stochastic linear programs whose
number of immediate descendant nodes is small but with many stages, Pereira and
Pinto [PP91] proposed sampling in the forward pass of the ND. This sampling-based
variant of the ND is the so-called stochastic dual dynamic programming algorithm
on which we focus our attention. More precisely, we detail a stochastic dual dynamic
programming (SDDP) algorithm (Pereira and Pinto [PP91]) to approximate our risk-
averse recourse functions, to be used in (2) in place of Qt+1. The computation of the
cuts in the backward pass of SDDP are detailed in this risk-averse setting.

Our developments can be easily extended to other sampling-based decomposition
methods such as AND and DOASA.

The abridged nested decomposition (AND) algorithm proposed by Birge and
Donohue [BD06] is a variant of SDDP that also involves sampling in the forward
pass. This algorithm determines in a different manner the sequence of states and sce-
narios in the forward pass. The numerical simulations in Birge and Donohue [BD06]
report lower computational time on average for the AND algorithm in comparison
with SDDP.

When the number of immediate descendant nodes is large (possibly infinite) and
when the problem has many stages, we also can (or even must) sample in the back-
ward pass. In this case, for a given node on a forward path k, not all the optimal
simplex multipliers associated to the descendant subproblems are computed. Only the
descendant subproblems associated with some realizations are solved. As explained
in the cut calculation algorithm (CCA) in Philpott and Guan [PG08], it is, however,
possible in this situation to replace the “missing” multipliers by some coefficients so
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that the cuts built still lie below the corresponding recourse functions. This gives rise
to dynamic outer approximation sampling algorithms (DOASA) described in Philpott
and Guan [PG08].

The paper is organized as follows. In the second section, we introduce the class of
multiperiod extended polyhedral risk measures and study their properties: dual repre-
sentations are derived and used to provide criteria for convexity and coherence and, in
the one-period case, for convexity and consistency with second order stochastic domi-
nance. In section 3, we derive DP equations for a risk-averse problem defined in terms
of extended polyhedral risk measures. We also provide conditions that guarantee the
convergence of SDDP in this risk-averse setting. Finally, in section 4, we propose to
use SDDP to approximate the risk-averse recourse functions from section 3 for some
stochastic linear programs. In particular, formulas for the cuts in the backward pass
are given.

We mention that after writing our paper we became aware of two recent and
closely related papers: Collado, Papp, and Ruszczyński [CPR], based on scenario
decomposition, and Shapiro [Sha11], which suggests using SDDP to approximate risk-
averse recourse functions defined from a nested risk-averse formulation of a multistage
stochastic program.

We start by setting down some notation:
• For x ∈ R

n, the vectors x+ and x− are defined by x+(i) = max(x(i), 0) and
x−(i) = max(−x(i), 0) for i = 1, . . . , n.

• For a nonempty set X ⊆ R
n, the polar cone X∗ is defined by X∗ = {x∗ :

〈x, x∗〉 ≤ 0 ∀x ∈ X}, where 〈·, ·〉 is the standard scalar product on R
n.

• e is a column vector of all ones.
• If A is an m1 × n matrix and B an m2 × n matrix, (A;B) denotes the
(m1 +m2)× n matrix ( A

B ).
• For vectors x1, . . . , xT ∈ R

n and 1 ≤ t1 ≤ t2 ≤ T, we denote (xt1 , . . . , xt2) ∈
R

n × · · · × R
n by xt1:t2 .

• For x, y ∈ R
n, the vector x ◦ y ∈ R

n is defined by (x ◦ y)(i) = x(i)y(i), i =
1, . . . , n.

• In is the n× n identity matrix, and 0m,n is an m× n matrix of zeros.
• δij is the Kronecker delta defined for i, j integers by δij = 1 if i = j and
0 otherwise.

• Qt+1 denotes a (generic) recourse function used at time step t = 1, . . . , T ,
i.e., QT+1 ≡ 0, and if t < T , then Qt+1(xt, ξ[t]) represents a cost over the
period t+ 1, . . . , T . Various recourse functions at t will be defined using the
same notation Qt+1. Which Qt+1 is relevant will be clear from the context.

As is usually done in the stochastic programming literature and to alleviate notation,
we use the same notation for a random variable and for a particular realization of this
random variable, the context allowing us to know which concept is being referred to.

2. Extended polyhedral risk measures. We consider multiperiod risk func-
tionals ρ whose arguments are sequences of random variables. We confine our-
selves to discrete-time processes with a finite time horizon as in Ruszczyński and
Shapiro [RS06a]. Such risk functionals have to assess the riskiness of a finite sequence
z1, . . . , zT of random variables for some integer T ≥ 2. To reflect the evolution of
information as time goes by, we assume that zt is measurable with respect to some
σ-field Ft, where F1, . . . ,FT form a filtration, i.e., F1 ⊆ F2 ⊆ · · · ⊆ FT = F , with
F1 = {∅,Ω}. In this setting, z1 is deterministic, and a multiperiod risk functional ρ
will be seen as a mapping ρ : ×T

t=1 Lp(Ω,Ft,P) → R̄ for some p ∈ [1,+∞).
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Remark 2.1. Throughout the paper, the arguments (z1, . . . , zT ) of the risk func-
tionals will be interpreted as accumulated revenues (for which higher values are pre-
ferred). More precisely, if z̃t is the revenue for time step t, we consider the accumulated
revenues zt =

∑t
τ=1 z̃τ , t = 1, . . . , T .

For future use, we recall the definition of multiperiod convex risk measures (from
Artzner et al. [ADE+], [ADE+07], Föllmer and Schied [FS04]) which are multiperiod
risk functionals of special interest when the random variables zt represent revenues
(accumulated or not).

Definition 2.2. A functional ρ on ×T
t=1 Lp(Ω,Ft,P) is called a multiperiod

convex risk measure if conditions (i)–(iii) below hold:
(i) Monotonicity: if zt ≤ z̃t a.s, t = 1, . . . , T , then ρ(z1, . . . , zT ) ≥ ρ(z̃1, . . . , z̃T ).
(ii) Translation invariance: for each r ∈ R we have ρ(z1 + r, . . . , zT + r) =

ρ(z1, . . . , zT )− r.
(iii) Convexity: for each λ ∈ [0, 1] and z, z̃ ∈ ×T

t=1 Lp(Ω,Ft,P) we have ρ(λz +
(1− λ)z̃) ≤ λρ(z) + (1− λ)ρ(z̃).

It is called a multiperiod coherent risk measure if in addition condition (iv) holds:
(iv) Positive homogeneity: for each λ ≥ 0 we have ρ(λz1, . . . , λzT ) = λρ(z1, . . . ,

zT ).
In the literature, there appear different requirements instead of the translation

invariance (ii) above, e.g., Fritelli and Scandalo [FS05] and Pflug and Römisch [PR07].
Convex duality can be used to obtain dual representations of multiperiod convex

risk measures. Next, we cite such a representation that uses the set DT of generalized
density functions where

DT :=

{
λ ∈ ×T

t=1 L1(Ω,Ft,P) : λt ≥ 0 a.s., t = 1, . . . , T,
T∑

t=1

E[λt] = 1

}
.

Theorem 2.3. Let ρ : ×T
t=1 Lp(Ω,Ft,P) → R̄ and assume that ρ is proper (i.e.,

ρ is finite on the nonempty set dom ρ = {z : ρ(z) < ∞}) and lower semicontinuous.
Then ρ is a multiperiod convex risk measure if and only if it admits the representation

(5) ρ(z) = sup

{
E

(
−

T∑
t=1

λtzt

)
− ρ∗(λ) : λ ∈ Pρ

}

for some convex closed subset Pρ ⊆ DT of the space ×T
t=1 Lq(Ω,Ft,P) ( 1p + 1

q = 1)
on which the conjugate ρ∗ of ρ is given too. The functional ρ is coherent if and only
if the conjugate ρ∗ in (5) is the indicator function of Pρ.

A proof of the above theorem can be found in, e.g., Ruszczyński and Shapiro
[RS06b]. We are now in a position to define the class of multiperiod extended poly-
hedral risk measures.

Definition 2.4. A risk measure ρ on ×T
t=1Lp(Ω,Ft,P) is called multiperiod

extended polyhedral if there exist matrices At, Bt,τ , vectors at, ct, and functions
ht(z) = (ht,1(z), . . . , ht,nt,2(z))

� for given functions ht,1, . . . , ht,nt,2 : Lp(Ω,Ft,P) →
Lp′(Ω,Ft,P) with 1 ≤ p′ ≤ p such that

(6) ρ(z1, . . . , zT ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf E[
∑T

t=1 c�t yt]

yt ∈ Lp(Ω,Ft,P;R
kt), t = 1, . . . , T,

Atyt ≤ at a.s ., t = 1, . . . , T,∑t−1
τ=0 Bt,τyt−τ = ht(zt) a.s ., t = 2, . . . , T.
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Another less general extension of polyhedral risk measures is due to Eichhorn
[Eic07]. Like a multiperiod polyhedral risk measure (Eichhorn and Römisch [ER05]),
a multiperiod extended polyhedral risk measure is given as the optimal value of a
T -stage linear stochastic program where the arguments of the risk measure appear on
the right-hand side of the dynamic constraints. Multiperiod polyhedral risk measures
constitute a particular case with at = 0, t = 2, . . . , T , Bt,τ row vectors, and ht(zt) =
ht,1(zt) = zt (i.e., nt,2 = 1).

We mention that multiperiod extended polyhedral risk measures satisfy two ad-
ditional properties that were recently discussed in the literature: information mono-
tonicity (see Kovacevic and Pflug [KP09]) and time consistency, suggested in Shapiro
[Sha09]. Information monotonicity means that the risk ρ(z1, . . . , zT ) gets smaller if
the available information expressed by the σ-fields Ft, t = 1, . . . , T , increases. Since
ρ(z1, . . . , zT ) is given by a risk-neutral multistage stochastic program, it is time con-
sistent as stated at the beginning of Shapiro [Sha09, section 3].

The need to consider the extended versions from Definition 2.4 is twofold:
(i) Modeling: Some (popular) risk measures are extended polyhedral but not

polyhedral in the sense of Eichhorn and Römisch [ER05] (see examples at the
end of this section).

(ii) Algorithmic issues : As announced in the introduction, DP equations can be
written for risk-averse versions of (1) defined in terms of extended polyhe-
dral risk measures. Moreover, the convergence of a class of decomposition
algorithms applied to the corresponding nested formulation of the risk-averse
problem will be proved in section 3 for a subclass of extended polyhedral risk
measures that contain some nonpolyhedral risk measures. For this subclass,
we have ht(zt) = ztbt + b̃t for some vectors bt, b̃t.

In view of (ii) above, extended polyhedral risk measures with ht(zt) = ztbt+ b̃t play a
particular role when algorithmic issues come into play. In the rest of this section, we
study properties of such risk functionals. In this context, the matrices At, Bt,τ and

the vectors at, bt, b̃t, and ct are fixed and deterministic. They have to be chosen such
that ρ exhibits desirable risk measure properties. In particular, conditions on these
parameters for the corresponding extended polyhedral risk measure to be coherent
are given in the Corollary 2.6 of Theorem 2.5, which follows. This theorem gives dual
representations for stochastic program (6) when ht(zt) = ztbt + b̃t for some vectors
bt, b̃t. In what follows, the dimensions of at and bt are, respectively, denoted by nt,1

and nt,2.
Theorem 2.5. Let ρ be a functional of the form (6) on ×T

t=1Lp(Ω,Ft,P) with

p ∈ [1,∞) and ht(zt) = ztbt + b̃t for some vectors bt, b̃t. Assume
(i) complete recourse: {y1 : A1y1 ≤ a1} �= ∅ and, for every t = 2, . . . , T , it holds

that {Bt,0yt : Atyt ≤ at} = R
nt,2 ;

(ii) dual feasibility: {(u, v) : u ∈ ×T
t=1R

nt,1 , v ∈ ×T
t=2R

nt,2 , ct+A�
t ut+

∑T
τ=max(2,t)

B�
τ,τ−tvτ−1 = 0, t = 1, . . . , T } �= ∅.

Then ρ is finite, convex, and continuous on ×T
t=1Lp(Ω,Ft,P) and with 1

p + 1
q = 1 the

following dual representation holds:
(7)

ρ(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup −E[
∑T

t=1 λ�
1,tat +

∑T
t=2 λ

�
2,t−1(ztbt + b̃t)]

λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2),

λ1,t ≥ 0 a.s ., t = 1, . . . , T,

ct +A�
t λ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s ., t = 1, . . . , T.
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We also have

(8) ρ(z) = sup

{
E

[
T∑

t=1

z∗t zt

]
− ρ∗(z∗) : z∗ ∈ ×T

t=1 Lq(Ω,Ft,P)

}
,

where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by
(9)

ρ∗(z∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf E[
∑T

t=1 λ�
1,tat +

∑T
t=2 λ

�
2,t−1b̃t]

λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2),

z∗t = −λ�
2,t−1bt a.s., t = 2, . . . , T, λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A�
t λ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T,

where

(10) dom(ρ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z∗ ∈ ×T
t=1 Lq(Ω,Ft,P) such that

∃ λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1),

λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2) satisfying

λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A�
t λ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s .,

t = 1, . . . , T, and

z∗1 = 0, z∗t = −λ�
2,t−1bt a.s., t = 2, . . . , T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. We use results on Lagrangian and conjugate duality. Consider the following
Banach spaces and their duals:

E := ×T
t=1Lp(Ω,Ft,P;R

kt), E∗ = ×T
t=1Lq(Ω,Ft,P;R

kt),

Z := ×T
t=1Lp(Ω,Ft,P), Z∗ = ×T

t=1Lq(Ω,Ft,P),

with bilinear forms

〈e, e∗〉E/E∗ =

T∑
t=1

E[e�
t e
∗
t ] and 〈z, z∗〉Z/Z∗ =

T∑
t=1

E[ztz
∗
t ].

Let us introduce the Lagrange multipliers λ1 ∈ ×T
t=1Lq(Ω,Ft,P;R

nt,1) (with λ1 ≥ 0
a.s.) and λ2 ∈ ×T

t=2Lq(Ω,Ft,P;R
nt,2) associated to the constraints of (6) and the

Lagrangian

L(y, λ1, λ2) := E

[
T∑

t=1

c�t yt + λ�
1,t(Atyt − at)

+

T∑
t=2

λ�
2,t−1

(
t−1∑
τ=0

Bt,τyt−τ − ztbt − b̃t

)]

= E

⎡
⎣ T∑

t=1

(ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tλ2,τ−1)�yt

⎤
⎦

+E

[
−

T∑
t=1

λ�
1,tat −

T∑
t=2

λ�
2,t−1(ztbt + b̃t)

]
.
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The dual functional is defined by

(11) θ(λ1, λ2) := inf
y∈E

L(y, λ1, λ2),

and the Lagrangian dual of (6) is the problem

sup
λ1,λ2

{
θ(λ1, λ2) : λ1 ∈ ×T

t=1Lq(Ω,Ft,P;R
nt,1),(12)

λ2 ∈ ×T
t=2Lq(Ω,Ft,P;R

nt,2), λ1 ≥ 0 a.s.
}
.

Due to Ruszczyński and Shapiro [RS03, Proposition 5, Chapter 1], the conditional
expectation operator E[·|Ft] and the operation of minimization can be interchanged
in (11), which gives for θ(λ1, λ2) the expression

− E

[
T∑

t=1

λ�
1,tat +

T∑
t=2

λ�
2,t−1(ztbt + b̃t)

]

+ E

⎡
⎣ T∑

t=1

inf
yt∈Rkt

(ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tE[λ2,τ−1|Ft])

�yt

⎤
⎦ .

Next, infyt∈Rkt (ct +A�
t λ1,t +

∑T
τ=max(2,t) B

�
τ,τ−tE[λ2,τ−1|Ft])

�yt is 0 if

ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tE[λ2,τ−1|Ft] = 0

and −∞ otherwise. The Lagrangian dual (12) can thus be expressed as

(13)

sup −E

[
T∑

t=1

λ�
1,tat +

T∑
t=2

λ�
2,t−1(ztbt + b̃t)

]

λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2), λ1 ≥ 0 a.s.,

ct +A�
t λ1,t +

T∑
τ=max(2,t)

B�
τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T.

From weak duality and dual feasibility, we obtain ρ(z) > −∞, and due to the complete
recourse assumption ρ(z) < +∞. It follows that ρ(z) is finite. More precisely, dual
feasibility and complete recourse imply that there is no duality gap: the optimal value
of (6), i.e., ρ(z), is the optimal value of (13). This shows (7).

Next, we use conjugate duality. Let us introduce the vectors c = (c1, . . . , cT )
�,

a = (a1, . . . , aT )
�, and b̃ = (b̃2, . . . , b̃T )

� and the matrices

A =

⎛
⎜⎝

A1

. . .

AT

⎞
⎟⎠ , B =

⎛
⎜⎝

0 b2
...

. . .

0 bT

⎞
⎟⎠ ,

and

B =

⎛
⎜⎜⎜⎜⎝

B2,1 B2,0 0 . . . 0

B3,2 B3,1 B3,0
. . .

...
...

...
...

. . . 0
BT,T−1 BT,T−2 BT,T−3 . . . BT,0

⎞
⎟⎟⎟⎟⎠ .
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Let also Y = {y ∈ E : Ay(ω) ≤ a for a.e. ω ∈ Ω} and

ϕ : E × Z → R̄

(y, z) → ϕ(y, z) = 〈y, c〉E/E∗ + δY (y) + δ{0}(By − Bz − b̃),

where δ denotes the indicator function taking values 0 and +∞ only. Since Y is
closed and convex, ϕ is lower semicontinuous and convex. With this notation, we
can express ρ(z) as ρ(z) = infy∈E ϕ(y, z) and, due to Bonnans and Shapiro [BS00,
Proposition 2.143], ρ is convex. Since ρ is finite valued, [BS00, Proposition 2.152]
guarantees the continuity of ρ. Since ρ is proper, convex, and lower semicontinuous,
by the Fenchel–Moreau theorem we have that ρ∗∗ = ρ, where ρ∗∗ is the biconjugate
of ρ, i.e.,

(14) ρ(z) = ρ∗∗(z) = sup {〈z, z∗〉Z/Z∗ − ρ∗(z∗) : z∗ ∈ Z∗},
which is (8). Next, ρ∗(z∗) = ϕ∗(0, z∗), where the conjugate ϕ∗ of ϕ is given by

ϕ∗(y∗, z∗) = sup {〈y, y∗〉E/E∗ + 〈z, z∗〉Z/Z∗ − ϕ(y, z) : y ∈ E, z ∈ Z}
= sup {〈y, y∗ − c〉E/E∗ + 〈z, z∗〉Z/Z∗ : Ay ≤ a a.s., By = Bz + b̃ a.s.}.

It follows that

(15) ρ∗(z∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup E[
∑T

t=1 (ztz
∗
t − c�t yt)]

yt ∈ Lp(Ω,Ft,P;R
kt), zt ∈ Lq(Ω,Ft,P), t = 1, . . . , T,

Atyt ≤ at a.s., t = 1, . . . , T,∑t−1
τ=0 Bt,τyt−τ = ztbt + b̃t a.s., t = 2, . . . , T.

Due to (i) and (ii), complete recourse and dual feasibility also hold for (15) for every
z∗ ∈ dom(ρ∗), where dom(ρ∗) is given by (10). Using once again Lagrangian duality
for problem (15), we obtain for ρ∗(z∗) dual representation (9).

Theorems 2.3 and 2.5 allow us to provide a criterion for an extended polyhedral
risk measure to be multiperiod coherent.

Corollary 2.6. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (6) with

all at null and ht(zt) = ztbt for some vector bt. Let the conditions of Theorem 2.5 be
satisfied (complete recourse and dual feasibility) and let

Mρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ∈ ×T
t=1Lq(Ω,Ft,P) such that there exist

μ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), μ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2) satisfying

μ1,t ≥ 0 a.s ., t = 1, . . . , T,

ct +A�
t μ1,t +

∑T
τ=max(2,t) B�

τ,τ−tE[μ2,τ−1|Ft] = 0 a.s .,

t = 1, . . . , T, and

λ1 = 0, λt = μ�
2,t−1bt a.s ., t = 2, . . . , T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

be the (convex) set of dual multipliers. If Mρ ⊆ DT , then ρ is a multiperiod coherent
risk measure.

Proof. Using representation (7) of Theorem 2.5, we can write ρ(z) = supλ∈Mρ
−∑T

t=1 E[λtzt]. We conclude using Theorem 2.3 with Pρ = Mρ.
Using representation (8) of Theorem 2.5, the properties of ρ can also be charac-

terized by properties of dom(ρ∗), where dom(ρ∗) is given by (10).
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Corollary 2.7. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (6) with

ht(zt) = ztbt + b̃t for some vectors bt, b̃t, and let the conditions of Theorem 2.5 be
satisfied (complete recourse and dual feasibility). The following hold:

(i) ρ is monotone ⇐⇒ for all z∗ ∈ dom(ρ∗) we have z∗t ≤ 0 a.s. for t = 1, . . . , T .

(ii) ρ is translation invariant ⇐⇒ for all z∗ ∈ dom(ρ∗) we have
∑T

t=1 E[z∗t ] =
−1.

(iii) ρ is positively homogeneous ⇐⇒ for all z∗ ∈ dom(ρ∗) we have ρ∗(z∗) = 0.
When T = 2, since z1 is deterministic, Definition 2.4 corresponds to one-period

extended polyhedral risk measures that assess the riskiness of one random variable z
only. For later reference we recall the definition of such risk measures which extend
the class of one-period polyhedral risk measures.

Definition 2.8. Let (Ω,F ,P) be a probability space and let h(z) = (h1(z), . . . ,
hn2,2(z))

� for given functions h1, . . . , hn2,2 : Lp(Ω,F ,P) → Lp′(Ω,F ,P) with 1 ≤
p′ ≤ p. A risk measure ρ on Lp(Ω,F ,P) with p ∈ [1,∞) is called extended polyhedral
if there exist matrices A1, A2, B2,0, B2,1, and vectors a1, a2, c1, c2 such that for every
random variable z ∈ Lp(Ω,F ,P)

(16) ρ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf c�1 y1 + E[c�2 y2]

y1 ∈ R
k1 , y2 ∈ Lp(Ω,F ,P;Rk2),

A1y1 ≤ a1, A2y2 ≤ a2 a.s .,

B2,1y1 +B2,0y2 = h(z) a.s .

For one-period risk measures, dual representations from Theorem 2.5 specialize
as follows.

Corollary 2.9. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with some

p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Assume
(i) complete recourse: {y1 : A1y1 ≤ a1} �= ∅ and {B2,0y2 : A2y2 ≤ a2} = R

n2,2 ;
(ii) dual feasibility: {(u, v) : u ∈ R

n1,1×R
n2,1 , v ∈ R

n2,2 , ct + A�
t ut + B�

2,2−tv =
0, t = 1, 2} �= ∅.

Then ρ is finite, convex, continuous, and with 1
p +

1
q = 1, ρ admits the dual represen-

tation

ρ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup −λ�
1 a1 − E[λ�

2 a2 + λ�
3 (zb2 + b̃2)]

λ1 ∈ R
n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),

c1 +A�
1 λ1 +B�

2,1E[λ3] = 0,

c2 +A�
2 λ2 +B�

2,0λ3 = 0 a.s .,

λ1 ≥ 0, λ2 ≥ 0, a.s .

We also have

(17) ρ(z) = sup {E[z∗z]− ρ∗(z∗) : z∗ ∈ Lq(Ω,F ,P)} ,
where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by

(18) ρ∗(z∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

inf E[λ�
1 a1 + λ�

2 a2 + λ�
3 b̃2]

λ1 ∈ R
n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),

z∗ = −λ�
3 b2 a.s., λ1 ≥ 0, λ2 ≥ 0 a.s .,

c1 +A�
1 λ1 +B�

2,1E[λ3] = 0,

c2 +A�
2 λ2 +B�

2,0λ3 = 0 a.s .,
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where

(19) dom(ρ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z∗ ∈ Lq(Ω,F ,P) such that there exist

λ1 ∈ R
n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1),

λ3 ∈ Lq(Ω,F ,P;Rn2,2) satisfying

c1 +A�
1 λ1 +B�

2,1E[λ3] = 0, λ1 ≥ 0, λ2 ≥ 0 a.s .,

c2 +A�
2 λ2 +B�

2,0λ3 = 0 a.s ., and z∗ = −λ�
3 b2 a.s .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. It suffices to use Theorem 2.5 with T = 2.
Definition 2.2 specializes as follows to the one-period case.
Definition 2.10. A functional ρ : Lp(Ω,F ,P) → R̄ is called a convex risk

measure if it satisfies the following three conditions for all z, z̃ ∈ Lp(Ω,F ,P):
(i) Monotonicity: if z ≤ z̃ a.s., then ρ(z) ≥ ρ(z̃).
(ii) Translation invariance: for each r ∈ R we have ρ(z + r) = ρ(z)− r.
(iii) Convexity: for all μ ∈ [0, 1] we have ρ(μz + (1− μ)z̃) ≤ μρ(z) + (1− μ)ρ(z̃).

Such a functional ρ is said to be coherent if it is positively homogeneous, i.e., ρ(μz) =
μρ(z) for all μ ≥ 0 and z ∈ Lp(Ω,F ,P).

Using Theorems 2.3 and Corollary 2.9, a sufficient criterion can be provided for
a one-period extended polyhedral risk measure to be coherent.

Corollary 2.11. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with
a1, a2 null, p ∈ [1,∞), and h(z) = zb2 for some vector b2. Let the conditions of
Corollary 2.9 be satisfied (complete recourse and dual feasibility), and let Mρ be the
following (convex) set of dual multipliers:

(20)

Mρ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ ∈ Lq(Ω,F ,P) such that there exist

(μ1, μ2, μ3) ∈ R
n1,1 × Lq(Ω,F ,P;Rn2,1)× Lq(Ω,F ,P;Rn2,2) satisfying

c1 +A�
1 μ1 +B�

2,1E[μ3] = 0,

c2 +A�
2 μ2 +B�

2,0μ3 = 0 a.s., μ1 ≥ 0, μ2 ≥ 0 a.s . with λ = μ�
3 b2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If Mρ ⊆ D1, then ρ is a (one-period) coherent risk measure.
Proof. From Corollary 2.9, we obtain ρ(z) = supλ∈Mρ

−E[λz], and the result
follows taking Pρ = Mρ in Theorem 2.3.

A dual representation of the second-stage problem for (16) will prove useful for
obtaining further properties of one-period risk measures of the form (16).

Proposition 2.12. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with

some p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of
Corollary 2.9 be satisfied (complete recourse and dual feasibility). Assume the feasible
set D of the dual of the second-stage problem is nonempty where

(21) D = {λ = (λ1, λ2) ∈ R
n2,2 × R

n2,1 : λ2 ≤ 0, B�
2,0λ1 +A�

2 λ2 = c2}.
Then ρ is finite, convex, continuous and is given by

ρ(z) = inf
A1y1≤a1

{
c�1 y1 + E

[
sup
λ∈D

λ�
1 (zb2 + b̃2 −B2,1y1) + λ2a2

]}
.

Proof. Finiteness, convexity, and continuity follow from Corollary 2.9. Next, we
write ρ(z) as

(22) ρ(z) = inf
y1

{c�1 y1 + E[Q2(y1, z)] : A1y1 ≤ a1},
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where for each y1 such that A1y1 ≤ a1 and for each z ∈ R we have defined

Q2(y1, z) = inf
y2

{c�2 y2 : B2,0y2 = zb2 + b̃2 −B2,1y1, A2y2 ≤ a2}.

Finally, since D �= ∅, by duality, we can express Q2(y1, z) as

Q2(y1, z) = sup
(λ1,λ2)

{λ�
1 (zb2 + b̃2 −B2,1y1)(23)

+ λ�
2 a2 : λ2 ≤ 0, B�

2,0λ1 +A�
2 λ2 = c2}.

The following proposition provides a sufficient criterion for some extended poly-
hedral risk measures to be convex risk measures when

(24) Y1 = {y1 : A1y1 ≤ a1}
is not necessarily a cone (a1 need not be 0).

Proposition 2.13. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with

p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corol-
lary 2.9 be satisfied (complete recourse and dual feasibility), and let D be defined as
in Proposition 2.12. Assume

(i) D �= ∅ with D ⊆ {b2}∗×R
n2,1 ;

(ii) c1 �= 0 and b2 is of the form b2 = −Bi
2,1/c1(i) for at least one i ∈ I = {j :

c1(j) �= 0} with y1(i) unconstrained and where Bi
2,1 denotes the ith column of

B2,1.
Then ρ is a finite-valued convex risk measure.

Proof. Let Y1 be defined by (24). Finiteness and convexity of ρ follow from
Corollary 2.9. The monotonicity of ρ follows from (i). Indeed, if z, z̃ ∈ Lp(Ω,F ,P)
satisfy z ≤ z̃ a.s., then for every y1 ∈ Y1 and every (λ1, λ2) ∈ D we have

λ�
1 (zb2 + b̃2 −B2,1y1) + λ�

2 a2 ≥ λ�
1 (z̃b2 + b̃2 −B2,1y1) + λ�

2 a2.

With the notation of Proposition 2.12 and with ϕ(y1, z) = c�1 y1 + E[Q2(y1, z)], it
follows that for every y1 ∈ Y1, we have E[Q2(y1, z)] ≥ E[Q2(y1, z̃)], ϕ(y1, z) ≥ ϕ(y1, z̃),
and ρ(z) = infy1∈Y1 ϕ(y1, z) ≥ infy1∈Y1 ϕ(y1, z̃) = ρ(z̃). The translation invariance
condition follows from (ii). Indeed, eventually after reordering the components of
y1, c1, and the columns of B2,1, we can always assume that the index i satisfying (ii)
is the last k1th index, i.e., that c1, B2,1, and Y1 are of the form c1 = (ĉ1, c̄1)

� with

c̄1 ∈ R
∗, B2,1 = [B̂2,1,−c̄1b2], and Y1 = {y1 = (ŷ1, ȳ1) : Â1ŷ1 ≤ a1, ȳ1 ∈ R}. We

then have for each r ∈ R, for each z ∈ Lp(Ω,F ,P), and setting ỹ1 = ȳ1 +
r
c̄1

∈ R

ρ(z + r) = inf
Â1ŷ1≤a1, ȳ1∈R

{
ĉ�1 ŷ1 + c̄1ȳ1

+E

[
sup

(λ1,λ2)∈D
λ�
1 ((z + r)b2 + b̃2 − B̂2,1ŷ1 + ȳ1c̄1b2) + λ�

2 a2

]}

= inf
Â1ŷ1≤a1, ỹ1∈R

{
ĉ�1 ŷ1 + c̄1ỹ1

+E

[
sup

(λ1,λ2)∈D
λ�
1 (zb2 + b̃2 − B̂2,1ŷ1 + ỹ1c̄1b2) + λ�

2 a2

]}
− r

= ρ(z)− r.

Proposition 2.13 extends the corresponding result in Eichhorn and Römisch [ER05].
Proposition 2.14 below shows that condition (i) in Proposition 2.13 ensures in fact a
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stronger type of monotonicity than (i) in Definition 2.10. Such monotonicity is based
on stochastic dominance rules (see Müller and Stoyan [MS02]). For real-valued ran-
dom variables z, z̃ ∈ L1(Ω,F ,P), stochastic dominance rules are defined by classes of
measurable real-valued functions on R. The stochastic dominance rule with respect
to class F is defined by

z �F z̃ :⇐⇒ ∀ f ∈ F : [ if E[f(z)] and E[f(z̃)] exist, then E[f(z)] ≤ E[f(z̃)]]

for each z, z̃ ∈ L1(Ω,F ,P). Important special cases are the classes Fnd of nonde-
creasing functions and Fndc of nondecreasing concave functions which, respectively,
characterize first and second order stochastic dominance rules:

z �FSD z̃ :⇐⇒ z �Fnd
z̃ ⇐⇒ P(z ≤ t) ≥ P(z̃ ≤ t) ∀ t ∈ R,

z �SSD z̃ :⇐⇒ z �Fndc
z̃ ⇐⇒ E[min(z, t)] ≤ E[min(z̃, t)] ∀ t ∈ R.

In particular, it is said that a risk measure ρ is consistent with second order stochastic
dominance (see Ogryczak and Ruszczyński [OR02]) if z �SSD z̃ implies ρ(z) ≥ ρ(z̃).

Proposition 2.14. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with

p ∈ [1,∞) and h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corol-
lary 2.9 be satisfied (complete recourse and dual feasibility), and let D be defined as
in Proposition 2.12. Assume D �= ∅ with D ⊆ {b2}∗×R

n2,1 . Then ρ is consistent with
second order stochastic dominance.

Proof. With Y1 defined as in (24), let g be the function defined for every y1 ∈ Y1

and z ∈ R by

(25) g(y1, z) = c�1 y1 + sup
(λ1,λ2)∈D

{λ�
1 (zb2 + b̃2 −B2,1y1) + λ�

2 a2}.

For every y1 ∈ Y1, g(y1, ·) is convex and, since D ⊆ {b2}∗×R
n2,1 , it is also nonincreas-

ing. Let z �SSD z̃. For every y1 ∈ Y1, since −g(y1, ·) is concave and nondecreasing,
E[−g(y1, z)] ≤ E[−g(y1, z̃)] and ρ(z) = infy1∈Y1 E[g(y1, z)] ≥ infy1∈Y1 E[g(y1, z̃)] =
ρ(z̃).

For a one-period risk measure of the form (16) with h(z) = zb2 + b̃2 for some
vectors b2, b̃2, the first-stage solution set S(ρ(z)) ⊆ Y1 is given by

(26) S(ρ(z)) =

{
y1 ∈ Y1 : ρ(z) = c�1 y1+ sup

(λ1,λ2)∈D
{λ�

1 (zb2+ b̃2−B2,1y1)+λ�
2 a2}

}
.

For algorithmic issues considered in sections 3 and 4, it can be useful to have at hand
conditions that guarantee the boundedness of S(ρ(z)). This question is addressed in
the following proposition.

Proposition 2.15. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with
p ∈ [1,∞), a2 null, and h(z) = zb2 for some vector b2. Let the conditions of Corol-
lary 2.9 be satisfied (complete recourse and dual feasibility), and assume that S(ρ(0))
is nonempty and bounded. Then S(ρ(z)) is nonempty, convex, and compact for any
z ∈ Lp(Ω,F ,P).

Proof. The proof follows the proof of Proposition 2.9 in Eichhorn and Römisch
[ER05], with, in our case, g given by (25).

We provide examples of extended polyhedral risk measures. The above criteria
for coherence and consistency with second order stochastic dominance are applied.

Example 2.16 (spectral risk measures and CVaR). Let Fz(x) = P(z ≤ x) be the
distribution function of random variable z, and let F←z (p) = inf{x : Fz(x) ≥ p}
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be the usual generalized inverse of Fz. Given a risk spectrum φ ∈ L1([0, 1]) the
spectral risk measure ρφ generated by φ is given by Acerbi [Ace02]:

ρφ(z) = −
∫ 1

0

F←z (p)φ(p)dp.

Spectral risk measures have been used in a number of applications (portfolio selection
in Acerbi and Simonetti [AS], and insurance in Cotter and Kevin [CD06]). The
conditional value-at-risk (CVaR) of level 0 < ε < 1, also called average value-at-
risk (AVaR) in Föllmer and Schied [FS04], is a particular spectral risk measure with
a piecewise constant risk function φ having a jump at ε: φ(u) = 1

ε10≤u≤ε (Acerbi
[Ace02]). Let us consider more generally a piecewise constant risk function φ(·) with
J jumps at 0 < p1 < p2 < · · · < pJ < 1. Setting Δφk = φ(p+k ) − φ(p−k ) = φ(pk) −
φ(pk−1) for k = 1, . . . , J , with p0 = 0, we assume

(i) φ(·) is positive, (ii) Δφk < 0, k = 1, . . . , J, (iii)

∫ 1

0

φ(u)du = 1.

With this choice of φ, we can express ρφ(z) as the optimal value of a linear program-
ming problem (see Acerbi and Simonetti [AS]):

(27) ρφ(z) = inf
x∈RJ

J∑
k=1

Δφk[pkxk − E [xk − z]+]− φ(1)E[z].

When J = 1, Δφ1 = −1/ε, p1 = ε, and φ(1) = 0, the above formula reduces to the
formula for the CVaR given by Rockafellar and Uryasev [RU02]:

(28) CV aRε[z] = inf
x∈R

[
x+

1

ε
E[z + x]−

]
.

A spectral risk measure with a piecewise constant risk function satisfying (i), (ii),
and (iii) above is a coherent extended polyhedral risk measure. Indeed, with respect
to (16), we have c1 = Δφ ◦ p with Δφ = (Δφ1, . . . ,ΔφJ )

�, c2 = (−Δφ; 0J,1;−φ(1)),
B2,1 = (IJ ; 01,J), B2,0 = (−IJ , IJ , 0J,1; 01,2J , 1), A2 = (−I2J , 02J,1), and h(z) = ze.
The matrix A1 and the vectors a1 and a2 are null, b2 is a (J + 1)-vector of ones,
and b̃2 = 0. Notice that when J > 1 it is not polyhedral in the sense of Eichhorn
and Römisch [ER05]. The complete recourse and dual feasibility assumptions from
Corollary 2.9 are easily checked. This theorem provides for ρφ the dual representation

(29) ρφ(z) =

⎧⎪⎨
⎪⎩

sup −E[λz]

λ = μ�e+ φ(1), μ ∈ Lq(Ω,F ,P;RJ),

E[μ] = −Δφ ◦ p, 0 ≤ μ ≤ −Δφ a.s.

Let Mρφ
be the set of dual multipliers from Corollary 2.11 for ρφ. For every λ ∈ Mρφ

,
we have λ ≥ 0 a.s. and

E[λ] = E[φ(1) + μ�e] = φ(1)−
J∑

i=1

Δφipi = φ(1)−
J∑

i=1

(φ(pi)− φ(pi−1))pi

= φ(0)p1 +

J−1∑
i=1

φ(pi)(pi+1 − pi) + (1 − pJ)φ(1) =

∫ 1

0

φ(u)du = 1.
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It follows that Mρφ
⊆ D1 and using Corollary 2.11, ρφ is a coherent one-period risk

measure. Next, the set D in Proposition 2.14 is given by D = {(λ1, λ2) ∈ R
J+1×R

2J :
λ2 ≤ 0, λ1,J+1 = −φ(1), λ1,1:J = λ2,J+1:2J , λ1,1:J = −λ2,1:J + Δφ}. For every
(λ1, λ2) ∈ D, we have λ�

1 b2 = λ�
1 e ≤ 0. It follows that D ⊆ {b2}∗×R

n2,1 and due to
Corollary 2.14, ρφ is consistent with second order stochastic dominance. When J = 1,
Δφ1 = −1/ε, p1 = ε, and φ(1) = 0, ρφ = CV aRε and we recover results given in
Eichhorn and Römisch [ER05]: the CVaR is consistent with second order stochastic
dominance and is an extended polyhedral risk measure of the form (16) with c1 = 1,
c2 = (1ε ; 0), B2,1 = −1, B2,0 = (−1, 1), A2 = −I2, h(z) = z, and A1, a1, a2 null. The
dual representation (29) becomes

CV aRε(z) = sup

{
−E[λz] : λ ∈ Lq(Ω,F ,P), 0 ≤ λ ≤ 1

ε
a.s., E[λ] = 1

}
.

Example 2.17 (optimized certainty equivalent (OCE) and expected utility). Given
a concave nondecreasing utility function u, the optimized certainty equivalent Su(z)
of the random variable z is defined in Ben-Tal and Teboulle [BTT07] by Su(z) =
supy1∈R y1 + E[u(z − y1)]. Considering for u a piecewise affine concave function,
we can express the convex function −u as follows (see Rockafellar and Wets [RW98,
Example 3.54]:

(30) −u(x) = inf{c�y : y ∈ R
k, y ≥ 0, e�y = 1, b�y = x}

for some vectors b, c ∈ R
k. It follows that if u is a piecewise affine concave function,

ρ(z) = −Su(z) is given by

(31) ρ(z) =

{
inf −y1 + E[c�y2]
y1 ∈ R, y2 ∈ R

k, y2 ≥ 0, e�y2 = 1, b�y2 = z − y1.

In this case, the opposite of the OCE is an extended one-period polyhedral risk mea-
sure with h affine: c1 = −1, c2 = c, A2 = [−Ik; e

�;−e�], a2 = [0k,1; 1;−1], B2,1 = 1,

B2,0 = b�, b2 = 1, and A1, a1, and b̃2 null. Notice that it is not polyhedral in the sense
of Eichhorn and Römisch [ER05] and that complete recourse does not hold. However,
properties of the OCE, given in Ben-Tal and Teboulle [BTT07], are easily checked:
monotonicity follows from the definition of −Su and the fact that u is nondecreasing;
translation invariance follows from the change of variable ȳ1 = y1 − r in (31) (for
ρ(z + r)) or in the definition of −Su(z + r); convexity can be checked directly from
the definition of Su (or using representation (31) and [BS00, Proposition 2.143], as in
the proof of Theorem 2.5).

Let us consider as a special case a piecewise linear utility function of the form

(32) u(x) = γ1(x)
+ − γ2(−x)+, where 0 ≤ γ1 < 1 < γ2

(note that u(x) < x for x �= 0). The corresponding risk measure ρ(z) = −Su(z) is an
extended polyhedral risk measure with c1 = −1, c2 = (−γ1; γ2), B2,1 = 1, B2,0 = [1−
1], A2 = −I2, h(z) = z, and A1, a2, a2 null. Since complete (and even simple) recourse
and dual feasibility hold, Corollary 2.9 provides the following dual representation:

ρ(z) = −Su(z) = sup{−E[λz] : λ ∈ Lq(Ω,F ,P), E[λ] = 1, γ1 ≤ λ ≤ γ2 a.s.}.
Using Corollary 2.11, we deduce that when u is of the form (32), ρ(z) = −Su(z) is a
coherent risk measure. More generally, it is shown in Ben-Tal and Teboulle [BTT07]
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that if u is a strongly risk-averse function (see Ben-Tal and Teboulle [BTT07]), ρ(z) =
−Su(z) is coherent if and only if u is of the form (32). For 0 < ε < 1, CVaRε

constitutes a particular case with γ1 = 0 and γ2 = 1
ε . The set D in Proposition 2.14

is given by D = {(λ1, λ2) : −γ2 ≤ λ1 ≤ −γ1, λ2 ≤ 0}. Since for every (λ1, λ2) ∈ D we
have λ�

1 b2 = λ�
1 e ≤ 0, using Proposition 2.14 we conclude that −Su(z) is consistent

with second order stochastic dominance.
For any concave utility function u, the risk measure ρ(z) = −E(u(z)) is an ex-

tended polyhedral risk measure with h = u, B2,0 = c2 = 1, while the other parameters
are null. In the particular case when u is a piecewise affine concave function, rep-
resentation (30) shows that −E(u(z)) can be written as an extended polyhedral risk
measure with h(z) = z and that complete recourse does not hold. However, a dual
representation of ρ can be derived from the dual representation

(33) −u(x) = sup{−λ1x− λ2 : λ ∈ R
2, λ1b + λ2e ≤ −c}

of −u. Applying the expectation operator to both sides of the above equation and
using Rockafellar and Wets [RW98, Theorem 14.60] (for switching the inf and expec-
tation operators), we obtain for ρ the dual representation

ρ(z) = sup{−E[λ1z + λ2] : λ ∈ Lq(Ω,F ,P;R2), λ1b+ λ2e ≤ −c a.s.}.
Since −u is nonincreasing, for every (λ1, λ2) in the feasible set of (33) we have λ1 ≥ 0
(otherwise, there would be positive subgradients of −u at large enough points). It
follows that in the above representation of ρ, λ1 ≥ 0 a.s., which implies that ρ
is monotone, convex, and consistent with second order stochastic dominance. The
expected regret or expected loss ρ(z) = E(z − β)− for some target β is a special case
(already considered in Eichhorn and Römisch [ER05]) with utility function u(z) =
−(z − β)−. Finally, notice that ρ(z) = E[(z − E[z])k] for some 1 ≤ k ≤ p − 1 is an
extended polyhedral risk measure with h(z) = (z − E[z])k.

Example 2.18 (multiperiod extended polyhedral risk measures). We consider
functionals ρ on ×T

t=1Lp(Ω,Ft,P) (p ∈ [1,∞)) of the form ρ(z) = ρφ(Φ(z)), where ρφ
is a spectral risk measure of form (27) with φ(·) satisfying (i), (ii), (iii) in Example 2.16,
and the function Φ is defined on R

T and maps to the extended real numbers.
Then ρ is a finite-valued coherent multiperiod risk measure if the function Φ

(i) is concave, (ii) is monotone with respect to the (canonical) partial ordering in
R

T , (iii) is positively homogeneous, (iv) satisfies the property Φ(ζ1 + r, . . . , ζT + r) =
Φ(ζ1, . . . , ζT ) + r for all r ∈ R and ζ ∈ R

T , and (v) has linear growth; i.e., for some

constant L > 0 it holds |Φ(ζ)| ≤ L
∑T

t=1 |ζt| for every ζ ∈ R
T .

There are three important special cases of the function Φ:
(a) Φ(ζ) =

∑T
t=1 γtζt with γt ≥ 0, t = 1, . . . , T , such that

∑T
t=1 γt = 1. Using

(27), we have

ρ(z) = ρφ

(
T∑

t=1

γtzt

)

= inf
x∈RJ

(Δφ ◦ p)�x+ E

⎛
⎝−

J∑
k=1

Δφk

[
xk −

T∑
t=1

γtzt

]+
− φ(1)

T∑
t=1

γtzt

⎞
⎠

=

⎧⎪⎨
⎪⎩

inf (Δφ ◦ p)�x+ E

(
−∑J

k=1 Δφkwk − φ(1)vT

)
x ∈ R

J , vt = vt−1 + γtzt, vt ∈ Lp(Ω,Ft,P), t = 1, . . . , T, v0 = 0,
wk ≥ 0, wk ≥ xk − vT , wk ∈ Lp(Ω,FT ,P), k = 1, . . . , J.
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The stochastic program above can be rewritten in the form (6), and ρ is a multiperiod
extended polyhedral coherent risk measure. In the case when ρφ = CV aRε, according
to the dual representation of CV aRε, we obtain

ρ(z) = sup

{
−

T∑
t=1

E(λtzt) : λt ∈ Lq(Ω,Ft,P), E(λt) = γt, 0 ≤ λt ≤ γt
ε
, t = 1, . . . , T,

γtE(λt+1|Ft) = γt+1λt a.s., t = 1, . . . , T − 1

}
,

where λt = γtE(λ|Ft), t = 1, . . . , T , and 1
p+

1
q = 1. Hence, ρ is a multiperiod extended

polyhedral coherent risk measure according to Theorems 2.3 and 2.5.
(b) Φ(ζ) = minγ∈S〈γ, ζ〉 = minγ∈S

∑T
t=1 γtζt, where S denotes the standard

simplex S = {γ ∈ R
T : γt ≥ 0, t = 1, . . . , T,

∑T
t=1 γt = 1}, may be used instead of the

function Φ in (a). This function satisfies conditions (i)–(v), but avoids specifying the
weights γt, t = 1, . . . , T .

(c) Φ(ζ) = mint=1,...,T ζt for ζ ∈ R
T . Using representation (27), we obtain

ρ(z) = ρφ

(
min

t=1,...,T
zt

)

= inf
x∈RJ

(Δφ ◦ p)�x+ E

(
−

J∑
k=1

Δφk

[
xk − min

t=1,...,T
zt

]+
− φ(1) min

t=1,...,T
zt

)

= inf
x∈RJ

(Δφ ◦ p)�x+ E

(
−

J∑
k=1

Δφk max
t=1...,T

(0, xk − zt) + φ(1) max
t=1,...,T

−zt

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf (Δφ ◦ p)�x+ E

(
−∑J

k=1 ΔφkvkT + φ(1)vT

)
x ∈ R

J , v1 ≥ −z1, vt ≥ vt−1, vt ≥ −zt, t = 2, . . . , T,

vkt ≥ vkt−1, vkt ≥ xk − zt, vt, vk,t ∈ Lp(Ω,Ft,P),

k = 1, . . . , J, t = 1, . . . , T, vk0 = 0.

The latter linear stochastic program may be rewritten in the form (6), and ρ is
a multiperiod extended polyhedral coherent risk measure. In the case when ρφ =
CV aRε, we obtain

ρ(z) = inf

{
x+

1

ε
E(vT ) :vt ∈ Lp(Ω,Ft,P),−x− zt ≤ vt, vt−1 ≤ vt,(34)

t = 1, . . . , T, v0 = 0, x ∈ R

}
.

Example (34) was first studied by Eichhorn in [Eic07].

3. Risk-averse dynamic programming.

3.1. General setting. When using a multiperiod extended polyhedral risk mea-
sure to deal with uncertainty in the multistage stochastic programming framework (4),
we consider accumulated revenues zt = −∑t

τ=1 fτ (xτ , ξτ ) and the sigma-algebras
Ft = σ(ξj , j ≤ t) for t = 1, . . . , T . Recall that x0 and χ1(x0, ξ1) are deterministic and
that for any time step t = 1, . . . , T , we denote by ξ[t] the available realizations of the
process up to this time step, i.e., ξ[t] = (ξj , j ≤ t).
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We also denote by Zt the space of Ft-measurable functions (these sets are em-
bedded: Z1 ⊂ · · · ⊂ ZT ). Next, for t = 1, . . . , T, we assume the following:

(H1) the functions ft : R
Nt,x ×R

Mt → R are continuous and χt : R
Nt−1,x ×R

Mt ⇒
R

Nt,x are measurable, bounded, and closed-valued multifunctions.
We are now in a position to define a risk-averse problem for (1) via a multiperiod risk
measure. Let ρ : Z1 × . . .ZT → R be a multiperiod risk measure and let us introduce
the risk-averse problem

(35)
inf ρ

(
−f1(x1, ξ1),−

2∑
τ=1

fτ (xτ (ξ[τ ]), ξτ ), . . . ,−
T∑

τ=1

fτ (xτ (ξ[τ ]), ξτ )

)

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

In the above problem, the optimization is performed over Ft-measurable functions
xt, t = 1, . . . , T , satisfying the constraints and such that ft(xt(·), ·) ∈ Zt. The
sequence of measurable mappings xt(·), t = 1, . . . , T , is called a policy. The Ft-
measurability of xt(·) implies the nonanticipativity of the policy, i.e., implies that xt

is a function of ξ[t]. The policy obtained from (35) will be said to be risk-averse. A pol-
icy is said to be feasible if the constraints xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T,
are satisfied with probability one.

In this section, our objective is to provide a class of form (1) problems and a class
of multiperiod risk measures ρ having the following two properties:

(P1) DP equations can be written for (35).
(P2) The SDDP algorithm applied to problem (35) decomposed by stages converges

to an optimal solution of (35).
We intend to enforce (P2) obtaining DP equations that satisfy conditions given in
Philpott and Guan [PG08]. These conditions imply the following:

(P3) The recourse functions are given as the optimal value of a non-risk-averse
stochastic program (the objective function is an expectation) where the ran-
domness appears on the right-hand side of the constraints only.

Property (P3) leads us naturally to use the class of extended polyhedral risk measures
introduced in the previous section.

3.2. Extended polyhedral risk measures. Taking for ρ a multiperiod ex-
tended polyhedral risk measure of the form (6), problem (35) can be written as

(36)

inf E

[
T∑

t=1

c�t yt

]

Atyt ≤ at a.s., t = 1, . . . , T,

t−1∑
τ=0

Bt,τyt−τ = ht

(
−

t∑
τ=1

fτ (xτ , ξτ )

)
a.s., t = 2, . . . , T,

xt ∈ χt(xt−1, ξt) a.s., t = 1, . . . , T.

Remark 3.1. In (36), the dependence of xt and yt with respect to ξ[t] was sup-
pressed to alleviate notation. This will in general be done in what follows.

We first check that (P1) and (P3) hold for problem (36) above. Since we want to
write DP equations, we start with the following simple remark.

Remark 3.2. Let us consider the following T-stage optimization problem:

P

{
inf f(x1, . . . , xT )
xt ∈ X(x0, . . . , xt−1), t = 1, . . . , T.
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We decompose f as f(x) =
∑T

k=1 fk(x1:k), where fk is the sum of all the functions in
the sum of functions defining f which depend on xk but not on xk+1:T (for a given k,
fk is 0 if no such functions exist). DP equations for P can be written as follows:

Qt(x0:t−1) =

{
inf
xt

ft(x1:t) +Qt+1(x0:t)

xt ∈ X(x0:t−1)

for t = 1, . . . , T , with QT+1 ≡ 0.
The application of Remark 3.2 to (36) yields the following DP equations: for

t = 1, . . . , T , Qt(x0:t−1, ξ[t−1], y1:t−1) is given by

Qt(x0:t−1, ξ[t−1], y1:t−1)
(37)

= Eξt|ξ[t−1]

⎛
⎜⎜⎜⎝

infxt,yt c�t yt +Qt+1(x0:t, ξ[t], y1:t)
Atyt ≤ at,

(1− δt1)
(∑t−1

τ=0 Bt,τyt−τ − ht

(
−∑t

τ=1 fτ (xτ , ξτ )
))

= 0,

xt ∈ χt(xt−1, ξt)

⎞
⎟⎟⎟⎠ ,

where here, and in what follows, QT+1 ≡ 0. Since these DP equations correspond
to the stagewise decomposition of risk-averse problem (36), the recourse functions
Qt in (37) are said to be risk-averse. Compared to the DP equations of the original
stochastic program, a new state variable yt and new constraints for it appear in (37) at
time t. They serve for computing the multiperiod extended polyhedral risk measure.

Let us now take as a special case for ρ the multiperiod risk measure defined by

(38) ρ(z1, . . . , zT ) = −θ1E[zT ] +
T∑

t=2

θtρ
t(zt)

for some nonnegative weights θt, t = 1, . . . , T , summing to one (
∑T

t=1 θt = 1) and
for some one-period coherent extended polyhedral risk measures ρt : Zt → R, t =
2, . . . , T .

Remark 3.3. We easily check that ρ in (38) is a multiperiod (coherent) extended
polyhedral risk measure.

Observe that since ρt is coherent and z1 deterministic, we have ρt(zt − z1) =
ρt(zt) + z1, and ρ(z1, . . . , zT ) in (38) can be expressed as ρ(z1, . . . , zT ) = −z1 −
θ1E[zT − z1] +

∑T
t=2 θtρ

t(zt − z1). This expression reveals that the corresponding
objective function in (35) is the sum of the first-stage (deterministic) cost and of a
convex combination of the mean future cost and of risk measures of future partial
costs. With this choice of ρ, problem (35) becomes

(39)
inf f1(x1, ξ1) + θ1E

[
T∑

t=2

ft(xt, ξt)

]
+

T∑
t=2

θtρ
t

(
−

t∑
k=2

fk(xk, ξk)

)

xt ∈ χt(xt−1, ξt), t = 1, . . . , T.
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Plugging the expression (16) of the risk measure ρt (taking the same for all time steps)
into (39), the latter can be written as

inf
xt,wt,yt

f1(x1, ξ1) +

T∑
t=2

θtc
�
1wt + E

[
θ1

T∑
t=2

ft(xt, ξt) +

T∑
t=2

θtc
�
2 yt

]

B2,1wt +B2,0yt = h

(
−

t∑
k=2

fk(xk, ξk)

)
, t = 2, . . . , T,

A1wt ≤ a1, A2yt ≤ a2, t = 2, . . . , T,

xt ∈ χt(xt−1, ξt), t = 1, . . . , T.

In turn, the above optimization problem can be expressed as

(40)
inf

x1,w2:T

f1(x1, ξ1) +

T∑
t=2

θtc
�
1wt +Q2(x1, ξ[1], w2, . . . , wT )

A1wt ≤ a1, t = 2, . . . , T, x1 ∈ χ1(x0, ξ1),

where
(41)

Q2(x1, ξ[1], w2:T ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
xt,yt

E

[
θ1
∑T

t=2 ft(xt, ξt) +
∑T

t=2 θtc
�
2 yt

]
B2,1wt +B2,0yt = h

(
−∑t

k=2 fk(xk, ξk)
)
, t = 2, . . . , T,

A2yt ≤ a2, t = 2, . . . , T,

xt ∈ χt(xt−1, ξt), t = 2, . . . , T.

The application of Remark 3.2 to optimization problem (41) yields the following DP
equations: for t = 2, . . . , T , Qt(x1:t−1, ξ[t−1], wt:T ) is given by

(42)

Eξt|ξ[t−1]

(
inf
xt,yt

θ1ft(xt, ξt) + θtc
�
2 yt +Qt+1(x1:t, ξ[t], wt+1:T )

B2,1wt +B2,0yt = h(−∑t
k=2 fk(xk, ξk)), A2yt ≤ a2, xt ∈ χt(xt−1, ξt)

)
.

In DP equations (37) and (42) obtained for, respectively, risk-averse problems (36)
and (39), the state variables memorize the relevant history of the process and of the
decisions. For (37) (resp., (42)), we can reduce the size of the state vector replacing
the history of the decisions x1:t−1 by xt−1 and zt−1 (resp., xt−1 and z̃t−1 with z̃t−1 =
zt−1 − z1). Variable z̃t−1 represents the total revenue (opposite of the cost) from
time step 2 until time step t − 1 (i.e., the total income until time step t − 1 for the
time steps where the data are random). Variables z̃t satisfy z̃t = z̃t−1 − ft(xt, ξt)
for t = 2, . . . , T , with z̃1 set equal to 0. With this notation, DP equations (37) for
problem (36) become

Qt(xt−1, ξ[t−1], zt−1, y1:t−1)(43)

= Eξt|ξ[t−1]

⎛
⎜⎜⎝

inf
xt,yt,zt

c�t yt +Qt+1(xt, ξ[t], zt, y1:t)

(1 − δt1)
(∑t−1

τ=0 Bt,τyt−τ − ht(zt)
)
= 0, Atyt ≤ at,

zt = zt−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

⎞
⎟⎟⎠
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for t = 1, . . . , T , with z0 = 0. As for the DP equations (40) and (42), they simplify
as follows: in (40), Q2(x1, ξ[1], w2, . . . , wT ) needs to be replaced by Q2(x1, ξ[1], z̃1,
w2, . . . , wT ) and for t = 2, . . . , T we have

Qt(xt−1, ξ[t−1], z̃t−1, wt:T )(44)

= Eξt|ξ[t−1]

⎛
⎜⎝

inf
xt,z̃t,yt

− δtT θ1z̃t + θtc
�
2 yt +Qt+1(xt, ξ[t], z̃t, wt+1:T )

B2,1wt +B2,0yt = h(z̃t), A2yt ≤ a2,
z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

⎞
⎟⎠ .

Remark 3.4. Comparing the non-risk-averse DP equations (3) with the risk-
averse ones (43) or (40) and (44), we see that additional decision and state variables
are introduced in the latter cases. More precisely, at the first time step, in the non-
risk-averse case the decision x1 is taken, while in risk-averse case (43) (resp., (40) and
(44)), additional decision variables y1 and z1 (resp., (w2, . . . , wT )) are needed. This
first-stage problem is deterministic for all models.

For time step t = 2, . . . , T , in risk-averse case (43) (resp., (40) and (44)), the
state vector is augmented with partial cost zt−1 and with the variables (y1, . . . , yt−1)
(resp., partial cost z̃t−1 and the variables (wt, . . . , wT )). For both risk-averse models,
additional decisions zt (or z̃t) and yt are needed for stages t = 2, . . . , T . This is
summarized in Table 1.

Table 1

Decision and state variables for the non-risk-averse (NRA) DP equations (3) as well as for the
risk-averse ones (43) (RA1), and (40) and (44) (RA2).

First stage Stages t = 2, . . . , T

Decision variables
NRA x1 xt

RA1 (x1, z1, y1) (xt, zt, yt)
RA2 (x1, w2, . . . , wT ) (xt, z̃t, yt)

State variables
NRA (x0, ξ[0]) (xt−1, ξ[t−1])
RA1 (x0, ξ[0]) (xt−1, ξ[t−1], zt−1, y1, . . . , yt−1)
RA2 (x0, ξ[0]) (xt−1, ξ[t−1], z̃t−1, wt, . . . , wT )

Remark 3.5. Other special cases for the multiperiod risk measure ρ in (35) for
which DP equations can be written are the risk measures from Example 2.18.

Properties (P1) and (P3) thus hold for (36) and hold for (39) when using extended
one-period polyhedral risk measures for ρt. We now concentrate on (P2). So far, all
the developments of this section were valid for a problem of the form (1). To ensure
that (P2) holds, we consider the special case when (1) is a stochastic linear program
(SLP). Indeed, the convergence of the SDDP algorithm and of related sampling-based
algorithms is proved in Philpott and Guan [PG08] for SLP. We observe that if (1) is
an SLP, then risk-averse problem (36) (resp., (39)) is an SLP if and only if

ht(z) = zbt + b̃t for some bt, b̃t ∈ R
nt,2(45)

(resp., h(z) = zb2 + b̃2 for some b2, b̃2 ∈ R
n2,2).

Of interest for applications, we now specialize the above DP equations (44) taking
extended polyhedral risk measures with h(·) of the kind (45) above. As seen in the
previous section, spectral risk measures with piecewise constant spectra are of this
kind. We provide the DP equations obtained in this case using directly (27).
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3.3. Spectral risk measures. Let φ be a piecewise constant risk spectrum
satisfying (i), (ii), and (iii) given in Example 2.16 and let Δφk = φ(pk)−φ(pk−1), k =
1, . . . , J . If we take for ρt a spectral risk measure ρφ (the same for all time steps),
using (27) we can decompose (39) by stages and express it under the form

(46)
inf f1(x1, ξ1) +

T∑
t=2

θtc
�
1wt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ R
J , t = 2, . . . , T,

with z̃1 = 0, c1 = Δφ ◦ p, and where for t = 2, . . . , T,

Qt(xt−1, ξ[t−1], z̃t−1, wt:T )(47)

= Eξt|ξ[t−1]

(
inf
xt,z̃t

f̃t(z̃t, wt) +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

)

with

f̃t(z̃t, wt) = −(δtT θ1 + φ(1)θt)z̃t − θt Δφ�(wt − z̃te)
+.

When the risk spectrum φ has one jump, we obtain the CVaR.

3.4. Conditional value-at-risk. When taking ρt = CVaRεt and using (28), we
can express (39) under the form

(48)
inf

x1,w2:T

f1(x1, ξ1)−
T∑

t=2

θtwt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ R, t = 2, . . . , T,

with z̃1 = 0, and where for t = 2, . . . , T ,

Qt(xt−1, ξ[t−1], z̃t−1, wt:T )(49)

= Eξt|ξ[t−1]

⎛
⎝ inf

xt,z̃t
− δtT θ1z̃t +

θt
εt
(wt − z̃t)

+ +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

⎞
⎠ .

3.5. Convergence of SDDP in a risk-averse setting. The convergence of
the SDDP algorithm and of related sampling-based algorithms is proved in Philpott
and Guan [PG08] for SLP with the following properties:

(A1) Random data only appear on the right-hand side of the constraints.
(A2) The supports of the distributions of the underlying random vectors are dis-

crete and finite.
(A3) Random vectors are interstage independent or satisfy a certain type of inter-

stage dependence (see Philpott and Guan [PG08]).
(A4) The feasible set of the linear program is nonempty and bounded in each stage.

In what follows, we consider multistage SLPs of the form (1) where

(50) ft(xt, ξt) = d�
t xt and χt(xt−1, ξt) = {xt : xt ≥ 0, Ctxt = ξt −Dtxt−1}.

For these programs, assumption (A1) holds, and it can be noted that if (A1) holds
for (1), then (A1) holds for risk-averse problems (36) and (39). In the remainder of
the paper, we assume (A2) and (A3). We also assume that (A4) holds for (1), which,
in our context, can be expressed as follows:
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(A4) For t = 1, . . . , T , for any feasible state xt−1, and for any realization ξit of ξt,
the set

χt(xt−1, ξit) = {xt | xt ≥ 0, Ctxt = ξit −Dtxt−1}

is bounded and nonempty.
To apply the convergence results from Philpott and Guan [PG08] in our risk-averse
setting, (A4) should also hold for risk-averse problems (36) or (39). For (36), (A4)
takes the following form:

(A5) {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for any feasible
states x1, y1, . . . , xt−1, yt−1, and for any sequence of realizations ξi1, . . . , ξ

i
t

of ξ1, . . . , ξt, the set {yt : Atyt ≤ at, Bt,0yt = ht(−
∑t

τ=1 fτ (xτ , ξ
i
τ )) −∑t−1

τ=1Bt,τyt−τ for some xt ∈ χt(xt−1, ξit)} is bounded and nonempty.
For (39), remembering Proposition 2.15, a condition implying (A4) is the following:

(A6) For t = 2, . . . , T , the sets S(ρt(0)) are nonempty and bounded, where S(ρt(0))
is defined in (26). {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for
any feasible x1, y1, . . . , xt−1, yt−1, w2:T , and for any sequence of realizations
ξi1, . . . , ξ

i
t of ξ1, . . . , ξt, the set {yt : Atyt ≤ at, ∃ xt ∈ χt(xt−1, ξit), B2,0yt =

h(−∑t
τ=2 fτ (xτ , ξ

i
τ ))−B2,1wt} is bounded and nonempty.

Indeed, with respect to the non-risk-averse setting, recall that the additional decision
variables for (39) are z̃t (bounded, due to (A4)), yt, and wt. Variables wt, t = 2, . . . , T ,
are first-stage decision variables and, due to Proposition 2.15, if S(ρt(0)) is nonempty
and bounded, then optimal wt are bounded. Next, condition (A6) guarantees the
boundedness of optimal yt.

However, even if the feasible set at each stage for (36) or (39) is not bounded, we
may be able to show, in some cases, that these feasible sets can be replaced by bounded
feasible sets without changing the problems, i.e., that the solutions are bounded. Such
is the case for problems (46) and (48). Indeed, for these problems, the only additional
variables with respect to the non-risk-averse case are z̃t (bounded, due to (A4)) and
first-stage variables w2, . . . , wT . For the spectral risk measure ρt = ρφ, t = 2, . . . , T ,
considered in (46), the sets S(ρt(0)) = S(ρφ(0)) = {0}, t = 2, . . . , T , are nonempty
and bounded. Using Proposition 2.15, optimal values of wt in (46) are bounded. This
result can also be easily proved directly.

Lemma 3.6. Let assumption (A4) hold, and let φ be a piecewise risk spectrum
satisfying (i), (ii), and (iii) given in Example 2.16. Let w∗2 , . . . , w

∗
T be optimal values

of w2, . . . , wT for (46). Then w∗t (k) is finite for every t = 2, . . . , T , and k = 1, . . . , J .
Proof. Since χt, t = 1, . . . , T , are bounded and Δφ < 0, we can bound from

below the objective function of (46) by L1(w) = K1 +
∑T

t=2 θt(Δφ ◦ p)�wt and

L2(w) = K2 +
∑T

t=2 θt(Δφ ◦ (p − e))�wt for some constants K1 and K2. Since
Δφ◦p < 0, if one component wt(k) = −∞, then L1(w) = +∞, the objective function
is therefore +∞, and such wt(k) cannot be an optimal value of wt(k). Similarly, since
Δφ ◦ (p − e) > 0, if one wt(k) = +∞, then L2(w) = +∞, the objective function is
+∞, and such wt(k) cannot be an optimal value of wt(k).

The following corollary is an immediate consequence of this lemma.
Corollary 3.7. Let assumption (A4) hold. Let w∗2 , . . . , w

∗
T be optimal values of

w2, . . . , wT for (48). Then w∗t is finite for every t = 2, . . . , T .
It follows that we can add (sufficiently large) box constraints on wt in (46) and (48)

without changing the optimal solutions of (46) and (48). Gathering our observations,
we come to the following proposition.
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Proposition 3.8 (convergence of SDDP in a risk-averse setting). Consider
multistage SLPs of the form (1) with ft and χt given by (50). Assume that for such
multistage programs, assumptions (A1), (A2), (A3), and (A4) hold. Consider the
risk-averse formulations (46), (47) and (48), (49). Then an SDDP algorithm applied
on these DP equations will converge if the sampling procedures satisfy the FPSP and
BPSP assumptions (see Philpott and Guan [PG08]).

The same convergence result holds for the following two risk-averse formulations:
(1) assuming (A5), for risk-averse program (36) decomposed by stages as (43)

with ht(·) given by (45);
(2) assuming (A6), for risk-averse program (39) decomposed by stages as (40),

(44) with h(·) given by (45).
In the next section, we detail the SDDP algorithm for interstage independent risk-

averse problems of form (35). The developments can be easily adapted to the case
when the process affinely depends on previous values. Our notation follows closely
that of Birge and Donohue [BD06].

4. Decomposition algorithms for a class of risk-averse stochastic pro-
grams. We consider the risk-averse recourse functions (43) from section 3 in the case
when ft and χt are given by (50) and ht(·) is given by (45). Recall that risk-averse DP
equations (43) satisfy (P3) (like the non-risk-averse DP equations (3) but with addi-
tional state and control variables). We assume interstage independence and relatively
complete recourse for (1). We also assume that the hypotheses of Proposition 3.8
hold. In this context, relatively complete recourse also holds for risk-averse problems
(43). As a result, the SDDP algorithm [PP91], [Sha11] can be applied to obtain ap-
proximations of the corresponding risk-averse recourse functions. At each iteration,
this algorithm consists of a forward pass followed by a backward pass. The backward
pass builds cuts for the recourse functions (hyperplanes lying below these functions)
at some points computed in the forward pass. If H cuts are built for each recourse
function at each iteration, iteration i ends with a lower bounding approximation of
form

Qi
t(xt−1, zt−1, y1:t−1) = max

j=0,1,...,iH

[
−Ej

t−1xt−1 − Zj
t−1zt−1 −

t−1∑
τ=1

Y j,τ
t−1yτ + ejt−1

](51)

for Qt, knowing that the algorithm starts taking for Q0
t a known lower bounding affine

approximation of Qt while Qi
T+1 ≡ 0. In the above expression, Zj

t−1 ∈ R, while Ej
t−1

and Y j,τ
t−1 are row vectors of appropriate dimensions.

The forward pass of iteration i samples H scenarios (ξk2 , . . . , ξ
k
T ), k = (i− 1)H +

1, . . . , iH , from the distribution of (ξ2, . . . , ξT ). On scenario (ξk2 , . . . , ξ
k
T ), the decisions

(xk
1 , . . . , x

k
T , y

k
1 , . . . , y

k
T ) as well as the partial costs (z

k
1 , . . . , z

k
T ) are computed replacing

recourse functions Qt by Qi−1
t for t = 2, . . . , T +1. The stopping criterion is discussed

in [Sha11].
The cuts are computed from time step T + 1 down to time step 2. For time step

T + 1, since Qi
T+1 = QT+1 = 0, cuts for QT+1 are obtained taking null values for

Ek
T , Z

k
T , Y

k,τ
T , and ekT for k = (i − 1)H + 1, . . . , iH . At t = 2, . . . , T , cuts for Qt are

computed at (xk
t−1, zkt−1, yk1:t−1), k = (i − 1)H + 1, . . . , iH . More precisely, having

at hand the lower bounding approximation Qi
t+1 of Qt+1, we can bound from below

Qt(xt−1, zt−1, y1:t−1) by Eξt [Q
i
t(xt−1, zt−1, y1:t−1, ξt)] with Qi

t(xt−1, zt−1, y1:t−1, ξt)
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given as the optimal value of the following linear program:

(52)

inf
xt,yt,zt,θ̃t

c�t yt + θ̃t

Atyt ≤ at, xt ≥ 0,

t−1∑
τ=0

Bt,τyt−τ − ztbt = b̃t, (a)

zt + d�
t xt = zt−1, (b)

Ctxt = ξt −Dtxt−1, (c)

−→
E i

txt +
−→
Z i

tzt + eθ̃t ≥ −
t∑

τ=1

−→
Y i,τ

t yτ +
−→e i

t, (d)

where
−→
Z i

t = (Z0
t , Z

1
t , . . . , Z

iH
t )� and

−→
Y i,τ

t is the matrix whose (j+1)th line is Y j,τ
t for

j = 0, . . . , iH . We denote by ξjt , j = 1, . . . , qt < +∞, the possible realizations of ξt
with p(t, j) = P(ξt = ξjt ). We also denote by σk,j

t , μk,j
t , πk,j

t , and ρk,jt the (row vectors)
optimal Lagrange multipliers associated to constraints (52)-(a), (52)-(b), (52)-(c), and
(52)-(d) for the problem defining Qi

t(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ). With this notation, the

following theorem provides the cuts computed for Qt at iteration i.
Theorem 4.1. Let Qt, t = 2, . . . , T + 1, be the risk-averse recourse functions

given by (43) with ht(·) given by (45). In the backward pass of iteration i of the SDDP
algorithm, the following cuts are computed for these recourse functions. For t = T+1,
we set Ek

t−1, Z
k
t−1, Y

k,τ
t−1 and ekt−1 to 0 for k = (i− 1)H + 1, . . . , iH and τ = 1, . . . , T .

For t = 2, . . . , T and k = (i − 1)H + 1, . . . , iH, Ek
t−1 =

∑qt
j=1 p(t, j)πk,j

t Dt and

Zk
t−1 = −

qt∑
j=1

p(t, j)μk,j
t ,Y k,τ

t−1 =

qt∑
j=1

p(t, j)(σk,j
t Bt,t−τ + ρk,jt

−→
Y i,τ

t ), τ = 1, . . . , t− 1.

Next, ekt−1 is given by

qt∑
j=1

p(t, j)

[
Qi

t(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )− μk,j

t zkt−1

+
t−1∑
τ=1

(σk,j
t Bt,t−τ + ρk,jt

−→
Y i,τ

t )ykτ + πk,j
t Dtx

k
t−1

]
.

Proof. Since relatively complete recourse and assumptions (A4) and (A5) hold,
the linear program defining Qi

t(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ) has a nonempty feasible set and

its optimal value is finite. As a result, both this primal problem and its dual have the
same optimal value. Since a dual solution is a subgradient of the value function for
problem (52), we obtain for Qi

t(xt−1, zt−1, y1:t−1, ξ
j
t ) the lower bound

Qi
t(x

k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )−

t−1∑
τ=1

σk,j
t Bt,τ (yt−τ − ykt−τ )−

t−1∑
τ=1

ρk,jt

−→
Y i,τ

t (yτ − ykτ )

+ μk,j
t (zt−1 − zkt−1)− πk,j

t Dt(xt−1 − xk
t−1).

Plugging this bound into the relation Qt(xt−1, zt−1, y1:t−1) ≥ ∑qt
j=1 p(t, j)Qi

t(xt−1,
zt−1, y1:t−1, ξ

j
t ), rearranging the terms, and identifying with (51) gives the announced

cuts.
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The above cuts can be easily specialized to DP equations (46)–(47) (based on
spectral risk measures) or to (44) with h(·) as in (45).

5. Conclusion. The class of extended polyhedral risk measures was introduced
in this paper. Dual representations of these risk measures were obtained and used
to provide conditions for coherence, convexity, and consistency with second order
stochastic dominance.

This class allowed us to write risk-averse dynamic programming equations for
some risk-averse problems with risk measures taken from this class. We then detailed a
stochastic dual dynamic programming algorithm for approximating the corresponding
risk-averse recourse functions for some stochastic linear programs. In particular, con-
ditions were given to guarantee convergence. The methodology can be easily adapted
if the recourse functions are approximated using other sampling-based decomposition
algorithms such as AND (Birge and Donohue [BD06]) and DOASA (Philpott and
Guan [PG08]).

A forthcoming work will assess the proposed approach on a midterm multistage
production management problem Guigues [Gui].
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