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Introduction

Most approaches for solving stochastic programs of the form

min

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X

}
with a probability measure P on Ξ and a (normal) integrand f0,

require numerical integration techniques, i.e., replacing the integral

by some quadrature formula∫
Ξ

f0(x, ξ)P (dξ) ≈
n∑

i=1

pif0(x, ξi),

where pi = P ({ξi}),
∑n

i=1 pi = 1 and ξi ∈ Ξ, i = 1, . . . , n.

Since f0 is often expensive to compute, the number n should be

as small as possible. For the special case pi = 1
n, i = 1, . . . , n, the

best possible choice of elements ξi ∈ Ξ, i = 1, . . . , n (scenarios),

for given n is obtained by minimizing

sup
x∈X

∣∣∣∣∣
∫

Ξ

f0(x, ξ)P (dξ)− 1

n

n∑
i=1

f0(x, ξi)

∣∣∣∣∣.
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The latter optimization problem may be reformulated as a best

approximation problem with respect to the (semi-) distance

dF(P, Q) := sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣,
with F := {f0(x, ·) : x ∈ X} and Q varying in

Pn(Ξ) := {Q : Q is a uniform probability measure, |supp(Q)| ≤ n}.

Hence, it may also be reformulated as a semi-infinite program. It is

also known as optimal quantization of P with respect to the func-

tion class F .

Aim of the talk:
Solving the best approximation problem for function classes F ,

which are relevant for mixed-integer two-stage stochastic programs.

Additional motivation: Scenario reduction methods are impor-

tant for generating scenario trees.
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Linear two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where c ∈ Rm, Ξ and X are polyhedral subsets of Rs and Rm,

respectively, P is a Borel probability measure on Ξ and the d×m-

matrix T (·), vector h(·) ∈ Rd are affine functions of ξ.

Furthermore, Φ and D denote the infimum function of the linear

second-stage program and its dual feasibility set, i.e.,

Φ(u, t) := inf{〈u, y〉 :Wy = t, y ∈ Y } ((u, t) ∈ Rm × Rd)

D := {u ∈ Rm : {z ∈ Rd : W>z − u ∈ Y ∗} 6= ∅} ,

where q(ξ) ∈ Rm are the recourse costs, W is the d×m recourse

matrix, Y ⊆ Rm a polyhedral cone, W> is the transposed of W

and Y ∗ the polar cone of Y .
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Theorem: (Walkup/Wets 69)

The function Φ(·, ·) is finite and continuous on the polyhedral set

D × W (Y ). Furthermore, the function Φ(u, ·) is piecewise linear

convex on the polyhedral set W (Y ) for fixed u ∈ D, and Φ(·, t) is

piecewise linear concave on D for fixed t ∈ W (Y ).

Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X,

h(ξ)− T (ξ)x ∈ W (Y );

(A2) dual feasibility: q(ξ) ∈ D holds for all ξ ∈ Ξ.

(A3) existence of second moments:
∫

Ξ ‖ξ‖
2P (dξ) < +∞.

Note that (A1) is satisfied if W (Y ) = Rd (complete recourse). In

general, (A1) and (A2) impose a condition on the support of P .

Recent extension to models with random recourse in Römisch-Wets 07.
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Scenario reduction

We consider discrete distributions P with scenarios ξi and proba-

bilities pi, i = 1, . . . , N , and Q being supported by a given subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .

Optimal reduction of a given scenario set J :

The best approximation of P with respect to ζr by such a distribu-

tion Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P, Q∗) = min
Q

ζr(P, Q) =
∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

=
∑
i∈J

pi min{
n−1∑
k=1

cr(ξlk, ξlk+1) : n ∈ N, lk ∈ {1, . . . , N},

l1 = i, ln = j 6∈ J}

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J .
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Fortet-Mourier metrics: (r ≥ 1)

ζr(P, Q) := sup

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)

∣∣∣∣,
where

Fr(Ξ) := {f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev/Rüschendorf 98)

ζr(P, Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
where ĉr ≤ cr and ĉr is the metric (reduced cost)

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.
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Determining the optimal scenario index set J with prescribed car-

dinality n is, however, a combinatorial optimization problem of set

covering type:

min

{
DJ =

∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj) : J ⊂ {1, ..., N}, |J | = N − n

}
Hence, the problem of finding the optimal set J to delete is NP-

hard and polynomial time solution algorithms do not exist.
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Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .

Step [i]: li ∈ arg min
l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .

Step [N-n+1]: Optimal redistribution.
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Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .

Step [n+1]: Optimal redistribution.
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Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)
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<Start Animation>

file:E:/anim05/animation.html
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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Reduced load scenario tree obtained by the backward reduction method (12 scenarios)

−1000

−500

0

500

1000

24 48 72 96 120 144 168



Home Page

Title Page

Contents

JJ II

J I

Page 13 of 32

Go Back

Full Screen

Close

Quit

Application: Scenario trees for multistage models

 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

<Illustration> of the forward construction for T=5 time periods starting with 58 scenarios

file:E:/anim05/animation.html


Home Page

Title Page

Contents

JJ II

J I

Page 14 of 32

Go Back

Full Screen

Close

Quit

Mixed-integer two-stage stochastic programs

We consider

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where Φ is given by

Φ(u, t) := inf

{
〈u1, y1〉 + 〈u2, y2〉

∣∣∣∣ W1y1 + W2y2 = t

y1 ∈ Rm1
+ , y2 ∈ Zm2

+

}
for all pairs (u, t) ∈ Rm1+m2 × Rr, and c ∈ Rm, X is a closed

subset of Rm, Ξ a polyhedron in Rs, T ∈ Rr×m, W1 ∈ Qr×m1,

W2 ∈ Qr×m2, and q(ξ) ∈ Rm1+m2 and h(ξ) ∈ Rr are affine

functions of ξ, and P is a Borel probability measure such that∫
Ξ

‖ξ‖2P (dξ) < +∞.

In addition, we assume relatively complete recourse and dual feasi-

bility.



Home Page

Title Page

Contents

JJ II

J I

Page 15 of 32

Go Back

Full Screen

Close

Quit

Example 1: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:

min = max, m = 2, m1 = 0, m2 = 4, c = (1.5, 4), X = [−5, 5]2,

h(ξ) = ξ, q(ξ) ≡ q = (16, 19, 23, 28), yi ∈ {0, 1}, i = 1, 2, 3, 4,

P ∼ U(5, 5.5, . . . , 14.5, 15} (discrete)

Second stage problem: MILP with 1764 Boolean variables and 882 constraints.

T =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)
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The function Φ is well understood (Blair-Jeroslow 77, Bank-Mandel 88) and ac-

cording to (Schultz 96, Römisch-Vigerske 07) the function class F is contained

in

F2,B(Ξ) := {f1lB : f ∈ F2(Ξ), B ∈ B},
where B is a class of (convex) polyhedra in Ξ with a uniformly

bounded number of faces containing all sets of the form

{ξ ∈ Ξ : h(ξ) ∈ Tx + B},

where x ∈ X and B is a polyhedron in Rr each of whose facets,

i.e., (r − 1)-dimensional faces, is parallel to a facet of the cone

pos W1 = {W1y1 : y1 ∈ Rm1
+ } or of the unit cube [0, 1]r.

Here, 1lB denotes the characteristic function of the set B and the

class F2(Ξ) consists of all continuous functions f : Ξ → R such

that the estimates

|f (ξ)|≤max{1, ‖ξ‖2} and f (ξ)− f (ξ̃)≤max{1, ‖ξ‖, ‖ξ̃‖}‖ξ − ξ̃‖

hold true for all ξ, ξ̃ ∈ Ξ.
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Proposition:
In case F = F2,B(Ξ), convergence with respect to the metric dF is

equivalent to convergence with respect to ζ2 (Fortet-Mourier metric

of order 2) and αB (B-discrepancy), where

αB(P, Q) := sup
B∈B

|P (B)−Q(B)|

If the set Ξ is bounded, it even holds

αB(P, Q) ≤ dF(P, Q) ≤ CαB(P, Q)
1

s+1

with some constant C depending on Ξ.

In the following, we consider the situation r = s and h(ξ) = ξ,

and denote the class B by Bpoly(W). Special cases are Brect (rect-

angular discrepancy) for the pure integer situation and Bcell (cell

discrepancy). Cells are sets of the form (−∞, ξ] in Rs.
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Influence of different metrics: αBrect versus ζ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform

distribution on [0, 1]2 and optimal probabilities adjusted w.r.t. λαBrect + (1− λ)ζ2 for

λ = 1 (gray balls) and λ = 0.9 (black circles)
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Example 2:
We consider the following mixed-integer two-stage stochastic pro-

gram: Let m = 1, s = 2, c = 0, X := {0}, Ξ = [0, 10]× [0, 0.5],

the probability measure P consists of N = 1000 uniformly weighted

points, sampled from the uniform distribution on Ξ, and

Φ(t) = inf{2y1 + y2 : y1 + y2 ≥ t1, y1 ≤ t2, y1 ∈ R+, y2 ∈ Z+}

=

{
bt1c + 1 , if t1 − bt1c > t2,

bt1c + 2(t1 − bt1c) , otherwise.

The function ξ 7→ Φ(ξ) from Ξ to R is shown in

0

2.5

5

7.5
10

Ξ1

00.20.4

Ξ2

0

2.5

5

7.5

10

Q2

0

2.5

5

7.5
10

Ξ1

0

2.5

5

7.5

10
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While Φ is discontinuous, introducing slack variables and writing

the linear program in standard form entails that the continuous

variable y1 ∈ R3
+ is assigned to the recourse matrix

W1 =

(
1 −1 0

1 0 1

)
.

Hence, the closures of the regions of continuity of Φ are indeed

contained in the family Bpoly(W), i.e., they are polyhedra each of

whose facets parallels a facet of pos W1 or of the unit cube.
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Scenario reduction

We consider a probability measure P with finite support {ξ1, . . . , ξN}
and set pi := P ({ξi}) > 0 for i = 1, . . . , N . Denoting by δξ the

Dirac measure placing mass one at the point ξ, the measure P has

the form

P =

N∑
i=1

piδξi.

The problem of optimal scenario reduction consists in determining

a discrete probability measure Q on Rs supported by a subset of

{ξ1, . . . , ξN} and deviating from P as little as possible with respect

to αB. It can be written as

min

αB

 N∑
i=1

piδξi,

n∑
j=1

qjδηj

∣∣∣∣∣∣
{η1, . . . , ηn} ⊂ {ξ1, . . . , ξN}

qj ≥ 0 j = 1, . . . , n,
n∑

j=1

qj = 1

.

This optimization problem may be decomposed into an outer prob-

lem for determining supp (Q) = η and an inner problem for choos-

ing the probabilities qj, j = 1, . . . , n.
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To this end, we denote

αB(P, (η, q)) := αB

 N∑
i=1

piδξi,

n∑
j=1

qjδηj


Sn := {q ∈ Rn : qj ≥ 0, j = 1, . . . , n,

∑n

j=1
qj = 1}.

Then the scenario reduction problem may be rewritten as

min
η
{min

q∈Sn

αB(P, (η, q)) : η ⊂ {ξ1, . . . , ξN}, |η| = n}

with the inner problem (optimal redistribution)

min{αB(P, (η, q)) : q ∈ Sn}

for the fixed support η. The outer problem is a combinatorial opti-

mization problem (NP hard) while the inner problem may be refor-

mulated as a linear program.
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We assume for the sake of notational simplicity, that η = {ξ1, . . . , ξn}.
Then the inner problem is of the form:

min{αB(P, ({ξ1, . . . , ξn}, q)) : q ∈ Sn}
The finiteness of the support of P allows to define for B ∈ B the

critical index set I(B) by

I(B) := {i ∈ {1, . . . , N} : ξi ∈ B}
and to write

|P (B)−Q(B)| =

∣∣∣∣∣∣
∑

i∈I(B)

pi −
∑

j∈I(B)∩{1,...,n}

qj

∣∣∣∣∣∣ .

Furthermore, we define the system of critical index sets of B as

IB := {I(B) : B ∈ B}.
Thus, the B-discrepancy between P and Q may be reformulated

as follows:

αB(P, Q) = max
I∈IB

∣∣∣∣∣∣
∑
i∈I

pi −
∑

j∈I∩{1,...,n}

qj

∣∣∣∣∣∣.
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This allows to solve the inner problem by means of the following

linear program:

min

t

∣∣∣∣∣∣∣
q ∈ Sn, I ∈ IB
−

∑
j∈I∩{1,...,n} qj ≤ t−

∑
i∈I pi∑

j∈I∩{1,...,n} qj ≤ t +
∑

i∈I pi


Since |IB| ≤ 2N , the number of inequalities is too large to solve

this LP numerically.

However, whenever two critical index sets share the same intersec-

tion with the set {1, . . . , n}, only the right-hand sides of the related

inequalities differ. Thus, it is possible to pass to the minimum of

all right-hand sides corresponding to the same left-hand side.

To this end, we introduce the following reduced system of critical

index sets

I∗B := {I(B) ∩ {1, . . . , n} : B ∈ B}.
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Thereby, every member J ∈ I∗B of the reduced system is associated

with a family ϕ(J) ⊂ IB of critical index sets, all of which share

the same intersection with {1, . . . , n}:

ϕ(J) := {I ∈ IB : J = I ∩ {1, . . . , n}} (J ∈ I∗B).

Finally, we consider the quantities

γJ := max
I∈ϕ(J)

∑
i∈I

pi and γJ := min
I∈ϕ(J)

∑
i∈I

pi (J ∈ I∗B),

to write the linear program as

min

t

∣∣∣∣∣∣∣
q ∈ Sn, J ∈ I∗B
−

∑
j∈J qj ≤ t− γJ∑

j∈J qj ≤ t + γJ


Now we have |I∗B| ≤ 2n and, hence, drastically reduced the max-

imum number of inequalities. This can make the LP solvable at

least for moderate values of n.
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How to determine I∗B, γJ and γJ?

Observation:
I∗B, γJ and γJ are determined by those polyhedra (belonging to P),

each of whose facets contains an element of {ξ1, . . . , ξn}, such that

it can not be enlarged without changing its interior’s intersection

with {ξ1, . . . , ξn}. The polyhedra in P are called supporting.

Non supporting polyhedron (left) and supporting polyhedron (right). The dots represent the
remaining scenarios ξ1, . . . , ξn
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Proposition:

I∗B = {J ⊆ {1, . . . , n} :∃B ∈ P ,∪j∈J{ξj} = {ξ1, . . . , ξn} ∩ int B}
γJ = max{P (int B) : B ∈ P ,∪j∈J{ξj} = {ξ1, . . . , ξn} ∩ int B}
γJ =

∑
i∈I

pi with I ⊆ {1, . . . , N} defined by

I :=

{
i : min

j∈J
〈ml, ξj〉 ≤ 〈ml, ξi〉 ≤ max

j∈J
〈ml, ξj〉, l = 1, . . . , k

}
,

where mj, j = 1, . . . , k, are the rows of a matrix M ∈ Rk×s having

the property that every polyhedron B ∈ Bpoly(W) can be written as

B = {ξ ∈ Rs : aB ≤ Mξ ≤ āB}

for some aB and āB in Rk
.

Note that |P| ≤
(
n+2

2

)k
!

For n = 5, k = 3 and n = 20, k = 12, the latter is equal to 3375

and 7.36 · 1027, respectively.
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Numerical results

Optimal redistribution w.r.t. the polyhedral discrepancy αBpoly(W ):

k n=5 n=10 n=15 n=20

cell 0.01 0.01 0.01 0.05
R3 3 0.01 0.04 0.56 6.02

N=100 6 0.03 1.03 14.18 157.51
9 0.15 7.36 94.49 948.17

cell 0.01 0.01 0.05 0.30
R4 4 0.01 0.19 1.83 17.22

N=100 8 0.11 5.66 59.28 521.31
12 0.67 39.86 374.15 3509.34

cell 0.01 0.01 0.01 0.07
R3 3 0.01 0.05 0.53 4.28

N=200 6 0.03 0.76 11.80 132.21
9 0.12 4.22 78.49 815.79

cell 0.01 0.01 0.06 0.29
R4 4 0.01 0.20 2.56 41.73

N=200 8 0.11 4.44 73.70 1042.78
12 0.74 28.29 473.72 6337.68

Running times [sec] of the optimal redistribution algorithm
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Example 2: (continued)
The distribution P is approximated by different methods:

• random sampling: 10, 000 random samples of size n from P , i.e., every

sample consists of n equally weighted points. The approximate problem was solved

for each sample and the average relative deviation of the optimal value to the optimal

value of the initial problem has been computed.

• Quasi Monte Carlo (QMC): The first n numbers of the Halton se-

quences with bases 2 and 3 provide n equally weighted points in R2. The resulting

discrepancy to the initial measure has been computed for fixed probability weights.

The approximate problem has been solved.

• adjusted Quasi Monte Carlo: The probabilities of the Halton points

have been adjusted by the optimal redistribution algorithm to obtain a minimal poly-

hedral discrepancy to P . The approximate problem has been solved.

• Forward selection:
Step [0]: J [0] := ∅ .

Step [i]: li ∈ argminl 6∈J [i−1] inf
q∈Si

αB(P, ({ξl1 , . . . , ξli−1 , ξl}, q)), J [i] := J [i−1] ∪ {li}.

Step [n+1]: Minimize αB({P, (ξl1 , . . . , ξln}, q)) s.t. q ∈ Sn.
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Conclusion: Random sampling performs badly, (next neighbor)

QMC is somewhat better, (next neighbor) QMC and readjusting

the probabilities to the correct discrepancy decreases significantly

the approximation error. Forward selection provides good results,

but is very slow due to the optimal redistribution after each step.
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Relative error of the optimal value |v−ṽ|
|v| , depending on n for forward selection (bold), sampling

(thin), Quasi-Monte Carlo (dashed) and readjusted Quasi-Monte Carlo (dotted).
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Conclusions and outlook

• There exist reasonable fast heuristics for linear two-stage stochas-

tic programs,

• The heuristics apply to generate scenario trees for multistage

stochastic programs,

• For mixed-integer two-stage stochastic programs similar heuris-

tics exist, but they are more expensive and restricted to mod-

erate dimensions,

• Development of mixed heuristics based on the (rectangular)

discrepancy and Fortet-Mourier metrics,

• Hence, there is hope for generating scenario trees for mixed-

integer multistage models.
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