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Abstract Discrete approximations to chance constrained and mixed-integer two-
stage stochastic programs require moderately sized scenario sets. The relevant dis-
tances of (multivariate) probability distributions for deriving quantitative stability re-
sults for such stochastic programs are B-discrepancies, where the class B of Borel sets
depends on their structural properties. Hence, the optimal scenario reduction prob-
lem for such models is stated with respect to B-discrepancies. In this paper, upper
and lower bounds, and some explicit solutions for optimal scenario reduction prob-
lems are derived. In addition, we develop heuristic algorithms for determining nearly
optimally reduced probability measures, discuss the case of the cell discrepancy (or
Kolmogorov metric) in some detail and provide some numerical experience.

Keywords Stochastic programming · Chance constraints · Two-stage ·
Mixed-integer · Scenario reduction · Discrepancy · Kolmogorov metric

1 Introduction

Quantitative stability studies in stochastic programming (see [20] for a recent sur-
vey) indicate which probability metrics (i.e., distances of probability distributions)
are relevant and, in some sense, even canonical for the stability of specific classes
of stochastic programs. In particular, Fortet-Mourier and Wasserstein metrics are rel-
evant for two-stage stochastic programs [19, 21], B-discrepancies are canonical for
(static) chance constrained models [9, 10, 22] and also relevant for two-stage mixed-
integer models [19, 24]. The class B of Borel sets is chosen as small as possible
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but large enough to contain all sets appearing in chance constrained models or all
closures of continuity regions of integrands in two-stage mixed-integer models.

Fortet-Mourier metrics have recently been used for the (nearly) optimal reduc-
tion of discrete probability distributions in two-stage stochastic programs without
integrality requirements [4, 6, 8]. Furthermore, a multiperiod recursive extension of
the reduction technique is developed in [7] for generating scenario trees as inputs
of multistage stochastic programs. Inserting discrete probability distributions into
chance constrained and two-stage mixed-integer stochastic programs represents an
often used approximation technique for solving these models (cf. [23]). Such discrete
approximations lead to mixed-integer programs in both cases (see [17, Chap. 11.9]
for chance constrained models), whose dimensions grow rapidly with the number
of scenarios involved. Hence, moderately sized scenario sets that represent good ap-
proximations of the underlying probability distribution are even of greater importance
than for two-stage models without integrality requirements.

The present paper aims at paving some roads for optimal scenario reduction
in chance constrained and mixed-integer two-stage stochastic programming mod-
els. Let P be a discrete probability measure on R

s with support {ξ1, . . . , ξN } and
P(ξ i) = pi > 0 for i = 1, . . . ,N . We consider the problem of finding another dis-
crete probability measure Q on R

s which is supported on a subset of {ξ1, . . . , ξN }
and which deviates from P as little as possible with respect to some discrepancy. We
recall from [11, 12] that, for given Borel probability measures P , Q on R

s and for
a given system B of Borel subsets of R

s , the B-discrepancy between P and Q is
defined as

αB(P,Q) := sup
B∈B

|P(B) − Q(B)|.

Important examples are the systems Bcl of all closed subsets, Bconv of all closed,
convex subsets, Bpolyk of all polyhedra having at most k vertices, Brect of all closed,
s-dimensional rectangles ×s

i=1Ii with Ii , i = 1, . . . , s, denoting a closed interval in
R, and Bcell of all closed cells (i.e., sets of the form ξ + R

s− with ξ ∈ R
s ) of R

s .
Evidently, one has that

αBcell ≤ αBrect ≤ αBpolyk ≤ αBconv ≤ αBcl
, (1)

where for the inequality αBrect ≤ αBpolyk one has to require that k ≥ 2s (in order to
ensure that Brect ⊆ Bpolyk). Any B-discrepancy is a semimetric on the space of all
probability measures on R

s , i.e., it is non-negative, symmetric and satisfies the trian-
gle equality. The discrepancy αBcell (and, thus, all discrepancies in (1)) are metrics as,
in addition, αBcell(P,Q) = 0 implies P = Q. A sequence (Pn) of probability mea-
sures converges to P with respect to αB with B ⊆ Bcl iff it converges weakly to P and
P(∂B) = 0 holds for each B ∈ B (with ∂B denoting the boundary of B) [2]. We re-
fer to the monograph [1] for further background on weak convergence of probability
measures.

In the literature (cf. [18]), αBcell is also called uniform or Kolmogorov metric as
αBcell(P,Q) is just the uniform distance of the probability distribution functions of
P and Q on R

s . The distance αBconv is known as isotrope discrepancy [14] and αBcl

as total variation [18]. Consistently, the distance αBcell (αBrect , αBpolyk ) will be called
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cell (rectangular, polyhedral) discrepancies. Some of these discrepancies have been
extensively used for studying properties of uniformly distributed sequences in the
s-dimensional unit cube Us = [0,1]s [13] and, more recently, for developing Quasi-
Monte Carlo methods [15]. Converse inequalities to (1), e.g., for the isotrope and
rectangular discrepancies of probability measures P and Q on R

s , were also derived
[11, 13, 14, 16]. For instance, the estimate

αBconv(P,Q) ≤ s

(
4Ms

s − 1

) s−1
s

αBrect(P,Q)
1
s

holds if P has a density (with respect to the Lebesgue measure on R
s ) which is

bounded by M [16]. In the context of quantitative stability of stochastic programs it
is worth noting that the polyhedral, rectangular and cell discrepancies are of special
importance for linear chance constrained and mixed-integer two-stage models [10,
19–21, 24].

Denoting by δξ the Dirac-measure placing mass one at the point ξ , one may write
the discrete measure P introduced above as

P =
N∑

i=1

piδξi , (2)

where
∑N

i=1 pi = 1. Now, the reduction problem formulated above can be restated as
the following optimization problem:

minimize αB(P,Q) = αB

( N∑
i=1

piδξi ,

n∑
j=1

qj δηj

)
,

subject to {η1, . . . , ηn} ⊂ {ξ1, . . . , ξN },
qj ≥ 0 (j = 1, . . . , n),

n∑
j=1

qj = 1.

(3)

The variables to be optimally adjusted here are η1, . . . , ηn and q1, . . . , qn and alto-
gether they define the desired reduced discrete measure Q via

Q =
n∑

j=1

qj δηj . (4)

The optimization problem (3) may be decomposed into two subproblems: a combi-
natorial optimization problem for determining the scenario set η = {η1, . . . , ηn} and
a (linear) program for fixing q = (q1, . . . , qn). To describe this in more detail, we de-
note by αB(P, (η, q)) the B-discrepancy between P and Q, and by Sn the standard
simplex in R

n, i.e.,

αB(P, (η, q)) := αB

( N∑
i=1

piδξi ,

n∑
j=1

qj δηj

)
,
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Sn :=
{
q ∈ R

n|qj ≥ 0, j = 1, . . . , n,

n∑
j=1

qj = 1

}
.

Now, the optimization problem (3) is of the form

min
η

{
min
q∈Sn

αB(P, (η, q))|η ⊂ {ξ1, . . . , ξN },#η = n
}
, (5)

with the inner optimization model

min{αB(P, (η, q))|q ∈ Sn} (6)

for fixed scenario set η. While (5) represents a specific clustering problem, a so-called
k-median problem of combinatorial optimization, the problem (6) will turn out as a
linear program. Both problems will be further discussed in Sect. 3. In Sect. 2, we de-
rive upper and lower bounds of the optimal value of (3) and discuss some particular
cases, which allow for an explicit solution. In Sect. 4, we provide some preliminary
numerical experience for optimal scenario reduction with respect to the cell discrep-
ancy (or Kolmogorov distance).

2 Bounds and specific solutions

In this section, we shall derive a specific solution for problem (3) in the case of the
closed set discrepancy αB = αBcl

as well as universal bounds for the optimal value of
(3) in case of general discrepancies. By ‘universal’ we mean a bound that just depends
on the probabilities pi of the original discrete measure P but not on its support. In
particular, these bounds do not depend on the geometry of the support or the space
dimension s. Hence, in contrast to the exact solution of (3), these bounds are very
easy to compute for a quite general class of discrepancies.

2.1 Ordered solution and upper bound

Intuitively, approximating the original discrete measure P by some other measure Q

which is supported by a subset of the support of P , requires well to approximate those
supporting points of P having large probability. In this section, we assume, without
loss of generality, that p1 ≥ · · · ≥ pN . Then, a naive idea for solving (3) would be to
put in the definition (4) of Q:

ηj := ξj (j = 1, . . . , n), qj := pj (j = 1, . . . , n − 1), qn :=
N∑

i=n

pi .

(7)
This means that Q selects its support as the atoms of P having largest probability
and, that the assignment of probabilities is adopted from the original measure except
at the last atom, where the new probability is modified to make all qj sum up to
one. Evidently, this simple approximating probability measure Q is feasible in (3).
From now on, it shall be called the ordered solution. Although it may be a poor
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approximation in general, Q has the interesting feature that it realizes a universal
(with respect to any discrepancy), easy to calculate upper bound in (3), which is
actually sharp in case of the closed set discrepancy. This is shown by the following
proposition and the subsequent corollary.

Proposition 2.1 As before, we assume, without loss of generality, that p1 ≥ · · · ≥ pN .
Denote by �B the optimal value of (3), where B is any system of Borel measurable
subsets of R

s . Then, one has that

1. �B ≤ ∑N
i=n+1 pi .

2. �Bcl
= ∑N

i=n+1 pi .

Proof Define Q in (4) as the ordered solution according to (7). Let B ∈ B be arbitrary
and put

C := {ξ i : i = n,n + 1, . . . ,N}.
Since P and Q coincide on {ξ i |i = 1, . . . ,N} \ C, we have

|P(B) − Q(B)| = |P(B ∩ C) − Q(B ∩ C) + P(B \ C) − Q(B \ C)|
= |P(B ∩ C) − Q(B ∩ C)|

and, therefore, we may assume that B ⊂ C. Thus, we can write

|P(B) − Q(B)| =
∣∣∣∣∣

N∑
i=n+1

piδξi (B) + (pn − qn)δξn(B)

∣∣∣∣∣

=
{∣∣∣∑N

i=n+1 piδξi (B) − ∑N
i=n+1 pi

∣∣∣ if ξn ∈ B,∑N
i=n+1 piδξi (B) if ξn /∈ B.

Due to

0 ≤
N∑

i=n+1

piδξi (B) ≤
N∑

i=n+1

pi,

one arrives at

|P(B) − Q(B)| ≤
N∑

i=n+1

pi.

Since B ∈ B was arbitrary, there follows assertion 1:

�B ≤ αB(P,Q) = sup
B∈B

∣∣∣∣∣P(B) − Q(B)

∣∣∣∣∣ ≤
N∑

i=n+1

pi.

Concerning assertion 2, let Q in (4) be any discrete measure which is feasible in
problem (3) with respect to the special discrepancy distance αB = αBcl

. Feasibility
of Q in (3) implies that {η1, . . . , ηn} ⊆ {ξ1, . . . , ξN }. Therefore, ηj = ξ ij for certain
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selections ij ∈ {1, . . . ,N} and j = 1, . . . , n. Since B := {ξ1, . . . , ξN }\{η1, . . . , ηn} is
a closed set, one derives that B ∈ Bcl and thus:

αBcl
(P ,Q) ≥ |P(B) − Q(B)|

=
∣∣∣∣∣

∑
i∈{i1,...,in}

piδξi (B) +
∑

i /∈{i1,...,in}
piδξi (B) −

n∑
j=1

qj δηj (B)

∣∣∣∣∣

=
∑

i /∈{i1,...,in}
pi ≥

N∑
i=n+1

pi,

where in the last inequality the assumed decreasing order of the pi was exploited. As
Q was supposed to be arbitrary feasible in (3), one gets that

�Bcl
= inf{αBcl

(P ,Q)|Q feasible in (3)} ≥
N∑

i=n+1

pi.

Taking into account the reverse inequality, already proved in assertion 1 for an arbi-
trary discrepancy, there follows assertion 2. �

Corollary 2.1 Every probability measure Q satisfying

Q =
n∑

j=1

qj δξj and qj ≥ pj , j = 1, . . . , n (8)

is an optimal solution of problem (3) for the closed set discrepancy αBcl
. In particular,

this is true for the ordered solution defined in (7).

Proof On the one hand,
∑N

i=n+1 pi is the optimal value in (3) for the closed set
discrepancy αBcl

(see assertion 2 in Proposition 2.1). On the other hand, we proceed
as in the first part of the proof of Proposition 2.1, to show that for any discrepancy αB ,
each probability measure Q with (8) realizes an objective value in (3) which is not
larger than

∑N
i=n+1 pi . To this end, we consider such a Q fulfilling (8) and B ∈ Bcl

to obtain

|P(B) − Q(B)| =
∣∣∣∣

∑
i∈{1,...,N}∩B

pi −
∑

j∈{1,...,n}∩B

qj

∣∣∣∣

=
∣∣∣∣

∑
i∈{1,...,n}∩B

(pi − qi) +
∑

i∈{n+1,...,N}∩B

pi

∣∣∣∣

≤
N∑

i=n+1

pi.
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The inequality holds since from (8) it follows that the sums under the norms have dif-
ferent signs and, furthermore, both |∑i∈{1,...,n}∩B(pi − qi)| and

∑
i∈{n+1,...,N}∩B pi

are less than
∑N

i=n+1 pi . �

The last corollary shows, that in case of the closed set discrepancy, an explicit solu-
tion of problem (3) can be found without any computational effort. The same does not
hold true for the weaker discrepancies mentioned in the introduction. Nevertheless,
for those other discrepancies too, one may benefit from the upper bound information
for the optimal value in (3) provided by the first statement in Proposition 2.1. For
instance, from the (ordered) values of the original probabilities pi , one can directly
read off the number of atoms n < N required for the approximating measure Q, in
order to make the approximation error αB(P,Q) not exceed a prescribed tolerance
ε > 0. In the special case of pi = N−1 (i = 1, . . . ,N), one derives the condition

n

N
≥ 1 − ε.

For instance, a tolerance of 10% (ε = 0.1) can be satisfied, if n is at least 90% of
N . Of course, such linear relation between tolerance and size of distribution is not
very satisfactory. Indeed, the second assertion of Proposition 2.1 tells us, that, in the
assumed equi-distributed case, one actually observes this undesirable linear relation
for the closed set discrepancy. However, there is some hope, that a better behaviour
can be observed for the weaker discrepancies, which are more appropriate for the
stability of chance constrained and mixed-integer stochastic programs (cf. Sect. 1).
This, however, comes at the price that a simple solution of (3) is no longer available
and, actually, cannot even be obtained computationally for relevant problem sizes in
an exact sense.

The following example complements Corollary 2.1 by showing that the ordered
solution need not be optimal for a discrepancy different from αBcl

:

Example 2.1 Define the original measure P on R by

ξ1 := 1, ξ2 := 3, ξ3 := 2, ξ4 := 4,

p1 := p2 := 0.4, p3 := p4 := 0.1.

We are looking for the optimally reduced measure Q in problem (3) which selects
n := 2 atoms from the original measure. As far as this is done with respect to the
closed set discrepancy αBcl

, Corollary 2.1 guarantees that the ordered solution Q

defined by

η1 := 1, η2 := 3, q1 := 0.4, q2 := 0.6

is optimal and, by Proposition 2.1, realizes the minimal discrepancy �Bcl
= p3 +

p4 = 0.2. For the convex set discrepancy αBconv (see introduction), this ordered so-
lution realizes the same value αBconv(P,Q) = 0.2. However, considering the reduced
measure Q∗ defined by

η1 := 1, η2 := 3, q1 := 0.5, q2 := 0.5,
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it follows that αBconv(P,Q∗) = 0.1. Consequently, the ordered solution is not optimal
in (3) with respect to αBconv . At the same time, this is an example for a strict inequality
in statement 1 of Proposition 2.1.

2.2 Lower bound

In this section, we want to find a universal lower bound for the optimal value of
problem (3). For this purpose, we will access on the following property.

Definition 2.1 We call a system B of Borel subsets of R
s isolating if for any finite

subset {x1, . . . , xp} ⊆ R
s there exist sets Bi ∈ B for i = 1, . . . , p with

Bi ∩ {x1, . . . , xp} = {xi} (i = 1, . . . , p).

Clearly, the systems Brect, Bconv, Bcl and Bpolyk (for k ≥ 2s ) mentioned in the
introduction are isolating, whereas Bcell, for instance, is not.

Theorem 2.1 Let B be an isolating system of Borel subsets of R
s . In (3), let n < N .

Then, assuming as before that the pi are decreasingly ordered, the optimal value �B
in problem (3) has the lower bound

�B ≥ max

{
pn+1, n

−1
N∑

i=n+1

pi

}
.

Proof Each measure Q defined by (4) which is feasible in problem (3) induces an
injective selection mapping σ : {1, . . . , n} → {1, . . . ,N} with

ηi = ξσ(i) (i = 1, . . . , n).

Applying Definition 2.1 to the support {ξ1, . . . , ξN } of the original measure P , we
derive the existence of sets Bi ∈ B for i = 1, . . . ,N such that

Bi ∩ {ξ1, . . . , ξN } = {ξ i} (i = 1, . . . ,N).

Then,

|P(Bσ(i)) − Q(Bσ(i))| = |P({ξσ(i)}) − Q({ηi})| = |pσ(i) − qi | (i = 1, . . . , n),

|P(Bi) − Q(Bi)| = pi (i ∈ Cσ ),

where Cσ := {1, . . . ,N}\{σ(1), . . . , σ (n)}. It follows for the discrepancy that

αB(P,Q) ≥ max
i=1,...,N

|P(Bi) − Q(Bi)| = max
{

max
i∈Cσ

pi, max
i=1,...,n

|pσ(i) − qi |
}
.

Note, that the variation of Q among the feasible measures in (3) amounts to varia-
tion of the selection mapping σ and to variation of coefficients qi ≥ 0 subject to the
constraints

∑n
i=1 qi = 1. This allows to write
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�B = inf{αB(P,Q)|Q feasible in (3)}
≥ inf{ϕ(σ)|σ : {1, . . . , n} → {1, . . . ,N} injective}, (9)

where

ϕ(σ) : = max
{

max
i∈Cσ

pi,ψ(σ )
}

ψ(σ) : = inf

{
max

i=1,...,n
|pσ(i) − qi | | qi ≥ 0 (i = 1, . . . , n),

n∑
i=1

qi = 1

}
.

Next, we want to develop the expression for ψ(σ). Since pi > 0 for i = 1, . . . ,N and
n < N , by assumption, it follows that

γ :=
n∑

i=1

pσ(i) < 1.

Note that the infimum in the definition of ψ(σ) is always realized as a minimum. We
claim that q̂ ∈ R

n defined by

q̂i = pσ(i) + n−1(1 − γ ) (i = 1, . . . , n) (10)

provides this minimum. We have q̂i ≥ 0 for i = 1, . . . , n due to γ < 1 and∑n
i=1 q̂i = 1, hence q̂ is feasible in the definition of ψ(σ). Now, let q ′ ∈ R

n be
any other feasible n-tuple. Then, by

n∑
i=1

q ′
i =

n∑
i=1

q̂i = 1,

it is excluded that q ′
i < q̂i holds true for all i = 1, . . . , n. Consequently, there exists

some k ∈ {1, . . . , n} with q ′
k ≥ q̂k . From the relation q̂k ≥ pσ(k) (see (10)), one derives

that |pσ(k) − q ′
k| ≥ |pσ(k) − q̂k|. Thus,

max
i=1,...,n

|pσ(i) − q ′
i | ≥ |pσ(k) − q̂k| = n−1(1 − γ ) = max

i=1,...,n
|pσ(i) − q̂i |.

This shows that indeed q̂ realizes the infimum in the definition of ψ(σ) and so, by
(10) and by definition of Cσ , one gets that

ψ(σ) = n−1(1 − γ ) = n−1
(

1 −
n∑

i=1

pσ(i)

)
= n−1

∑
i∈Cσ

pi.

Now, we continue (9) as

�B ≥ inf

{
max

{
max
i∈Cσ

pi, n
−1

∑
i∈Cσ

pi

} ∣∣∣∣ σ : {1, . . . , n} → {1, . . . ,N} injective

}
.
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Identifying the set of all selections as given in this relation with the system of all
subsets of {1, . . . ,N} having cardinality n, one obtains the reformulation

�B ≥ inf

{
max

{
max
i∈A

pi, n
−1

∑
i∈A

pi

} ∣∣∣∣ A ⊆ {1, . . . ,N}, #A = N − n

}
.

As the pi are decreasingly ordered, both expressions

max
i∈A

pi and n−1
∑
i∈A

pi

are simultaneously minimized by the set A∗ := {n + 1, . . . ,N}. Therefore,

�B ≥ max

{
max

i∈{n+1,...,N}
pi, n

−1
N∑

i=n+1

pi

}
.

Owing to max{pi |i ∈ {n + 1, . . . ,N}} = pn+1, the assertion of the theorem is
proved. �

Remark 2.1 The lower bound from Theorem 2.1 can be interpreted as follows. Con-
sider an arbitrary reduced measure Q. Since B is isolating, the B-discrepancy be-
tween P and Q is not smaller than the maximal difference of P and Q on a singleton.
Over all common mass points of P and Q, this maximum is at least n−1 ∑N

i=n+1 pi ,
over all points without Q-mass it is not less than pn+1.

Corollary 2.2 Under the assumptions of Theorem 2.1, the following holds true:

1. If n ≥ N
2 , then the lower bound in Theorem 2.1 reduces to pn+1.

2. If n = 1, then �B = 1 − p1 and an optimal solution of (3) is given by the measure
Q placing unit mass on the atom realizing maximum probability with respect to
the original measure P .
If n = N − 1, then �B = pN , and any measure Qj of the form

Qj =
N−1∑

i=1,i �=j

piδξ i + (pj + pN)δξj , j ∈ {1, . . . ,N − 1},

is an optimal solution of (3).

Proof The decreasing order of the pi implies assertion 1 (by Theorem 2.1) as well as
the estimate

npn+1 ≥ (N − n)pn+1 ≥
N∑

i=n+1

pi,

which proves the first statement.
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In both cases n = 1 and n = N − 1, Theorem 2.1 provides that �B ≥ ∑N
i=n+1 pi .

Now, the upper bound in Proposition 2.1 turns this inequality into an equality:

�B =
N∑

i=n+1

pi =
{

1 − p1 if n = 1,

pN if n = N − 1.

From the proof of statement 1 in Proposition 2.1 we know that the ordered solution
always realizes a discrepancy not larger than

∑N
i=n+1 pi , where this last value was

just recognized to be optimal for n = 1 and n = N − 1. Consequently, the ordered
solution must be optimal in these cases. For n = 1, the ordered solution places unit
mass on the atom with highest probability in the original measure P . For n = N − 1,
the ordered solution corresponds to the measure QN−1. Moreover, by construction
any measure Qj, j ∈ {1, . . . ,N − 1} realizes a discrepancy of pN and is therefore
optimal, too. �

Unfortunately, the results in Corollary 2.2 are lost for the cell discrepancy αBcell

as the next example shows.

Example 2.2 Consider the probability measure P = ∑3
i=1 piδξi on R

2 with ordered
probabilities p1 ≥ p2 ≥ p3 and ξ1 = 1, ξ2 = 0, ξ3 = 2. For n = 1 we obtain �Bcell =
αBcell(P, δξ1) = p2, which shows that the assertion of Corollary 2.2 does not hold in
this case.

3 Solution techniques

As mentioned in Sect. 1, problem (3) can be tackled by a bilevel approach: in an outer
iteration, the support selection is carried out by solving the combinatorial optimiza-
tion problem (5), whereas in an inner iteration optimal probabilities qj are determined
conditional to the fixed support by solving (6). Since k-median problems are known
to be NP-hard [5], we resort to applying heuristic approaches for solving problem (5).
For two-stage models certain forward selection and backward reduction techniques
are developed in [6]. In the context of the present paper, their analogues represent
recursive extensions of the cases n = 1 and n = N − 1 in Corollary 2.2. The forward
and backward algorithms determine index subsets J [n] and J [N−n], respectively, of
{1, . . . ,N}. Both index sets are of cardinality n and the corresponding scenario sets
form the support of the reduced probability measure Q.

Algorithm 3.1 (Forward selection)

Step [0]: J [0] := ∅.

Step [i]: li ∈ argminl �∈J [i−1] infq∈Si
αB(P, ({ξ l1 , . . . , ξ li−1 , ξ l}, q)),

J [i] := J [i−1] ∪ {li}.
Step [n + 1]: Minimize αB(P, ({ξ l1 , . . . , ξ ln}, q)) subject to q ∈ Sn.
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Algorithm 3.2 (Backward reduction)

Step [0]: J [0] := {1, . . . ,N}.
Step [i]: ui ∈ argminu∈J [i−1] infq∈SN−i

αB(P, ({ξj |j ∈ J [i−1] \ {u}}, q)),

J [i] := J [i−1] \ {ui}.
Step [N − n + 1]: Minimize αB(P, ({ξj |j ∈ J [N−n]}, q)) subject to q ∈ Sn.

Note that, at each Step [i], i = 1, . . . , n, one has to solve N − i linear programs,
which are of dimension i and N − i in Algorithms 3.1 and 3.2, respectively. Hence,
forward selection seems to be preferable in most relevant cases. Although both algo-
rithms do not lead to optimality in (3) in general, the performance evaluation of their
implemented analogues for transportation distances in [6, 8] is encouraging.

3.1 Formulation as a linear optimization problem

In this section, we consider the inner iteration problem of optimizing the probability
distribution conditional to a fixed support. Without loss of generality, we may assume
that {η1, . . . , ηn} = {ξ1, . . . , ξn}. Of course, we may no longer maintain then the as-
sumption of ordered probabilities pi from the previous section without restricting
the generality. Anyway, ordered probabilities pi are no longer relevant in the sequel.
Then, problem (6) is of the form:

minimize αB(P, ({ξ1, . . . , ξn}, q)) = αB

( N∑
i=1

piδξi ,

n∑
j=1

qj δξj

)
,

subject to q ∈ Sn.

(11)

In the following, we are going to reformulate (11) as a linear optimization problem.
To this end, we define for B ∈ B a ‘critical index set’ I (B) ⊆ {1, . . . ,N} by

I (B) := {i ∈ {1, . . . ,N} | ξ i ∈ B}.
Then,

|P(B) − Q(B)| =
∣∣∣∣

∑
i∈I (B)

pi −
∑

j∈I (B)∩{1,...,n}
qj

∣∣∣∣. (12)

Obviously, this value does not depend on the concrete structure of the set B but is
uniquely determined by the index set I (B). That is why, for calculating the discrep-
ancy αB(P,Q), it suffices to know all (finitely many) critical index sets which may
occur when B varies in B. We define the system of critical index sets as

IB := {I ⊆ {1, . . . ,N}|∃B ∈ B : I = I (B)}.
For the closed set discrepancy, for instance, one has IBcl

= 2{1,...,N}, because for each
arbitrary subset I ⊆ {1, . . . ,N} the set B := ⋃

i∈I {ξ i} is closed with and I (B) = I .
For the other systems B considered in the introduction, all one usually gets, is the
strict inclusion IB ⊂ 2{1,...,N}.
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As soon as for some concrete B the system IB of critical index sets is known,
the discrepancy between P and Q may be calculated according to (12) by using the
formula

αB(P,Q) = max
I∈IB

∣∣∣∣
∑
i∈I

pi −
∑

j∈I∩{1,...,n}
qj

∣∣∣∣.

We recall the well-kown fact that minimizing a function |f (x)| in terms of the vari-
able x is equivalent to minimizing the function t subject to the constraints f (x) ≤ t

and −f (x) ≤ t in terms of the variables (x, t). This allows to solve (11) by means of
the following linear optimization problem:

minimize t,

subject to q ∈ Sn,

(13)
−∑

j∈I∩{1,...,n} qj ≤ t − ∑
i∈I pi∑

j∈I∩{1,...,n} qj ≤ t + ∑
i∈I pi

}
I ∈ IB.

The variables to be optimized here, are t and the qj . If (q∗, t∗) is an optimal so-
lution of (13), then q∗ is an optimal solution of the original problem (11), whereas
t∗ indicates the optimal value attained by q∗ in (13), i.e., t∗ provides the minimal
discrepancy αB(P,Q) between the original measure P and any measure Q whose
support coincides with the first n points of the support of P .

Unfortunately, the size of (13) is too large to be useful, in general. Indeed, since
IBcl

= 2{1,...,N}, as observed above, the number of constraints in (13) amounts to
2N+1 + n + 1. On the other hand, one recognizes from (13), that many inequalities
are just copies of themselves as far as the involved coefficients qj are concerned,
because many different index sets I ∈ IB may lead to the same intersection I ∩
{1, . . . , n}. The only term which varies then for those sets I , is the right-hand side of
the inequalities in (13). Consequently, one may pass to the minimum of these right-
hand sides corresponding to one and the same intersection I ∩ {1, . . . , n} which will
drastically reduce the number of inequalities. In order to do so formally correct, we
introduce a reduced system of critical index sets as

I ∗
B := {I ∩ {1, . . . , n}|I ∈ IB}.

Each member J ∈ I ∗
B of the reduced system generates a set ϕ(J ) of members in the

original system IB all of which share the same intersection with {1, . . . , n}:

ϕ(J ) := {I ∈ IB|J = I ∩ {1, . . . , n}} (J ∈ I ∗
B). (14)

Now, introducing the quantities

γ J := max
I∈ϕ(J )

∑
i∈I

pi and γJ := min
I∈ϕ(J )

∑
i∈I

pi (J ∈ I ∗
B), (15)
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(13) may be rewritten as

minimize t,

subject to q ∈ Sn,
(16)

−∑
j∈J qj ≤ t − γ J∑
j∈J qj ≤ t + γJ

}
J ∈ I ∗

B.

This corresponds indeed to passing to the minimum on the right-hand sides of the
inequalities in (13). Since I ∗

B is a subset of {1, . . . , n}, the number of inequalities in
(16) is not larger than 2n+1 + n + 1. Having in mind that often n � N , this results in
a drastic reduction of size in the linear optimization problem (13). Moreover, at least
for small dimensions s the size of I ∗

B will be significantly smaller than 2n, see the
Tables 1 and 2 in Sect. 4.

A condition on q ∈ Sn ensuring optimality in (16) can be obtained by the following
considerations. The linear constraints for each J ∈ I ∗

B imply that every feasible t of
problem (16) satisfies t ≥ 1

2 (γ J − γJ ) and, thus, one obtains the lower bound

1

2
max
J∈I ∗

B
(γ J − γJ ) ≤ inf

q∈Sn

αB(P, ({ξ1, . . . , ξn}, q)).

Equality holds if and only if there exists a q∗ ∈ Sn satisfying the inequalities in (16)
with t being equal to this threshold, i.e.

γ J − 1

2
max
J∈I ∗

B
(γ J − γJ ) ≤

∑
j∈J

q∗
j ≤ 1

2
max
J∈I ∗

B
(γ J − γJ ) + γJ (J ∈ I ∗

B). (17)

Consequently, such a q∗ would be optimal for (16). In particular, evaluation of (17)
in J∗ ∈ argmaxJ∈I ∗

B
(γ J − γJ ) implies

∑
j∈J∗

q∗
j = 1

2
(γ J∗ + γJ∗).

3.2 The special case of the cell discrepancy αBcell

The main challenge in the solution of (16) is not the solution of the linear program
itself but the computational determination of the reduced critical index set I ∗

B and
of the coefficients γ J and γJ introduced in (15). As these strongly depend on the
geometric structure of the chosen system B of Borel subsets, there is no general
procedure available for their determination. In this section, an algorithmic approach
for dealing with the special case of the cell discrepancy αBcell shall be presented.
The same methodology can be carried over to the rectangle discrepancy αBrect though
with higher computational effort. The more general discrepancies αBpolyk and αBconv

of polyhedra and closed convex sets, would require more sophisticated approaches
which are outside the scope of this paper.
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Recall that the system of cells is defined by

Bcell = {z + R
s−|z ∈ R

s},
where R

s− = {x ∈ R
s |xj ≤ 0 (j = 1, . . . , s)} is the negative orthant of R

s . For the
purpose of abbreviation, we put [z] := z + R

s− for z ∈ R
s .

Since the support {ξ1, . . . , ξN } of the measure P is finite, it is contained in an open
rectangle (c, d) for some c, d ∈ R

s . We introduce an artificial point set {r1, . . . , rs}
in order to control the boundary of the support, where rj is defined by

r
j
j := dj and r

j
k := ck if k �= j. (18)

Recall that, by assumption, the support of any feasible reduced measure Q in (11)
is given by the set {ξ1, . . . , ξn} of first n atoms of the support of P . We will show
that it is sufficient to consider those cells, which are bounded in every direction by an
element of

R := {ξ1, . . . , ξn} ∪ {r1, . . . , rs}
in the following sense.

Definition 3.1 A cell [z] is called supporting, if there exists a subset {x1, . . . , xs} ⊆
R such that {x1, . . . , xs} ⊆ [z] and x

j
j = zj for j = 1, . . . , s.

Indeed, we can restrict ourselves on supporting cells as shown by the following
proposition, which relies on the fact that every cell can be enlarged until it is a sup-
porting one. As the proof of this proposition is rather technical, it is given in the
Appendix.

Proposition 3.1 For any J ∈ I ∗
Bcell

, there exists a supporting cell [z] such that γ J =
P(int[z]) and ⋃

j∈J

{ξj } = {ξ1, . . . , ξn} ∩ int[z]. (19)

Before drawing some essential conclusions from Proposition 3.1, we mention the
obvious fact that for any z ∈ R

s and any finite subset F ⊆ R
s , there exists some

ε > 0, such that

[zε] ∩ F = int[z] ∩ F, (20)

where zε is defined by zε
j := zj − ε for j = 1, . . . , s.

Corollary 3.1 Define

Z := {z ∈ R
s |[z] is a supporting cell}.

Then,
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I ∗
Bcell

= {J ⊆ {1, . . . , n}|∃z ∈ Z : (19) holds true},
γ J = max{P(int[z])|z ∈ Z, (19) holds true} ∀J ∈ I ∗

Bcell
.

Proof The inclusion ‘⊆’ in the first identity follows directly from the second state-
ment of Proposition 3.1. Similarly, the inequality ‘≤’ in the second identity follows
directly from the first statement of Proposition 3.1. For the reverse direction of the
first identity, let z ∈ Z be given such that (19) holds true for some J ⊆ {1, . . . , n}.
Now, we apply (20) to F := {ξ1, . . . , ξn} to derive the existence of some zε such that

{ξ1, . . . , ξn} ∩ [zε] = {ξ1, . . . , ξn} ∩ int[z] =
⋃
j∈J

{ξj }. (21)

Since [zε] ∈ Bcell, we observe upon recalling the definition of I (B) for B ∈ Bcell in
the beginning of Sect. 3.1, that

I ([zε]) = {i ∈ {1, . . . ,N}|ξ i ∈ [zε]} = J ∪ {i ∈ {n + 1, . . . ,N}|ξ i ∈ [zε]}.
Therefore,

I ([zε]) ∩ {1, . . . , n} = J ∩ {1, . . . , n} = J, (22)

which provides J ∈ I ∗
Bcell

via the definition of I ∗
Bcell

. This shows the inclusion ‘⊇’
in the first identity. Concerning the reverse direction of the second identity, let J ∈
I ∗

Bcell
and z ∈ Z be arbitrary, such that (19) holds true. Applying again (20), this time

consecutively to {ξ1, . . . , ξn} and to {ξ1, . . . , ξN }, one deduces the existence of some
zε such that (21) and

{ξ1, . . . , ξN } ∩ [zε] = {ξ1, . . . , ξN } ∩ int[z] (23)

hold true simultaneously. From (21) it follows (22) as in the lines above. Therefore,
I ([zε]) ∈ ϕ(J ) (see (14)) and

γ J ≥
∑

i∈I ([zε])
pi =

∑
ξ i∈[zε]

P(ξ i) = P([zε]) = P(int[z]),

where the last equality relies on (23). Since z ∈ Z was chosen arbitrarily such that
(19) holds true, this shows the inequality ‘≥’ in the second identity. �

Corollary 3.1 suggests that one can calculate the index family I ∗
Bcell

as well as all

upper coefficients γ J for J ∈ I ∗
Bcell

, as soon as one knows the set Z of supporting
cells which is finite. Indeed, it follows from Definition 3.1, that each supporting cell
is defined by an s-tuple {x1, . . . , xs}. Consequently, one may extract the finite system
of all s-tuples {x1, . . . , xs} out of the set R = {ξ1, . . . , ξn} ∪ {r1, . . . , rs} and check
for each of its

(
n+s
s

)
members, whether this s-tuple defines a supporting cell. If so,

this cell contributes to the calculation of I ∗
Bcell

and of γ J for J ∈ I ∗
Bcell

. Referring
again to the Tables 1 and 2 in Sect. 4 we indicate that, depending on s, the number
of critical index sets may be significantly smaller than

(
n+s
s

)
. It remains to determine

the lower coefficients γJ for J ∈ I ∗
Bcell

.
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Proposition 3.2 For all J ∈ I ∗
Bcell

, one has γJ = ∑
i∈I pi , where

I := {i ∈ {1, . . . ,N}|ξ i
k ≤ max

j∈J
ξ

j
k (k = 1, . . . , s)}.

Proof Completely analogous to the derivation of (24) in the Appendix, one obtains
that

γJ = min

{
P([y])|[y] ∩ {ξ1, . . . , ξn} =

⋃
j∈J

{ξj }
}
.

Define z ∈ R
s by zk := maxj∈J ξ

j
k for k = 1, . . . , s. Then, ξj ∈ [z] for all j ∈ J and,

thus, ⋃
j∈J

{ξj } ⊆ [z] ∩ {ξ1, . . . , ξn}.

Assume that this inclusion is strict. Then, there is some i ∈ {1, . . . , n}\J such that
ξ i ∈ [z]. J ∈ I ∗

Bcell
means that there exists some B ∈ Bcell with J = I (B)∩{1, . . . , n}.

Consequently, ξj ∈ B for all j ∈ J , which entails that [z] ⊆ B , by construction of z.
We derive that ξ i ∈ B and, hence, i ∈ I (B). On the other hand, i ∈ {1, . . . , n}\J ,
which is a contradiction. It follows that

⋃
j∈J

{ξj } = [z] ∩ {ξ1, . . . , ξn}

and, thus, γJ ≤ P([z]). On the other hand, if y ∈ R
s is arbitrary feasible in the de-

finition of γJ , then ξj ∈ [y] for all j ∈ J , and so, [z] ⊆ [y] again by construction
of z. Now, P([z]) ≤ P([y]) which, upon passing to the minimum over all feasible y,
provides P([z]) ≤ γJ . We may conclude that

γJ = P([z]) =
∑

ξ i∈[z]
pi,

which proves the assertion of the proposition. �

4 Algorithm and numerical results

The results of the previous sections suggest the following algorithmic approach for
the solution of problem (11) in the special case of the cell discrepancy αBcell , given the
problem data N , n, s, {ξ1, . . . , ξN }, {p1, . . . , pN }, and the fixed support {ξ1, . . . , ξn}.

Algorithm 4.1

Step [1]: To find an open rectangle (c, d) such that {ξ1, . . . , ξN } ⊆ (c, d), define

cj := min
i=1,...,N

ξ i
j − 1, dj := max

i=1,...,N
ξ i
j + 1 (j = 1, . . . , s).
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Calculate the set R from Definition 3.1 with points rj defined in (18).

Put I ∗
B := {∅}, A′ := {∅} and γ J := 0 for all J ⊆ {1, . . . , n}.

Let A := {A ⊆ {1, . . . , n + s}|#A = s}.
Step [2]: If A′ = A, then go to Step [7], else select A = {i1, . . . , is} ∈ A\A′.

Put A′ := A′ ∪ {A} and

xj :=
{
ξ ij if ij ≤ n,

rij −n if ij > n
(j = 1, . . . , s).

Then, xj ∈ R for j = 1, . . . , s.

Step [3]: Define a ‘potential’ supporting cell [z] for some z ∈ R
s by

zk := max
j=1,...,s

x
j
k (k = 1, . . . , s).

Check whether it is indeed a supporting cell according to Definition 3.1.

If not so, then go to Step [2].

Step [4]: Define J by the relation (19), i.e.,

J := {i ∈ {1, . . . , n}|ξ i
k < zk (k = 1, . . . , s)}.

If γ J = 1, then go to Step [2]. Else if J ∈ I ∗
B then go to Step [6].

Step [5]: I ∗
B := I ∗

B ∪ {J }. Calculate γJ according to Proposition 3.2.

Step [6]: Calculate α := ∑
i∈I pi, where I := {i ∈ {1, . . . ,N}|ξ i

k < zk (k = 1, . . . , s)}.
If α > γ J , then γ J := α. Go to Step [2].

Step [7]: With the additional data I ∗
B and γJ , γ J for all J ∈ I ∗

B solve the linear

optimization problem (16).

Remark 4.1 When using Algorithm 4.1 repeatedly with varying support, e.g. within a
forward selection, it is desirable to reuse some of the data I ∗

B and γ
J
, γ J for J ∈ I ∗

B
that has been computed for preceding support. To this end, we assume without loss
of generality that the previous support was given by

(ξ1, . . . , ξn1, ξn+1, ξn+2, . . . , ξn2) with 0 < n1 ≤ n ≤ n2

and the new support has the form (ξ1, . . . , ξn), i.e. the set A := {ξn1+1, . . . , ξn} has
been added to and R := {ξn+1, . . . , ξn2} has been removed from the previous support.
For J ⊂ {1, . . . , n}, we define [J ] as the smallest closed cell containing {ξj : j ∈ J }.
It is easy to see that we can get the values γJ , γ J from older ones, whenever one of
the following two conditions holds for every point ξm ∈ R ∪ A:

(i) [J ] is separated from ξm, i.e., there exists ξk, k ∈ {1, . . . , n1} such that ξk /∈ [J ]
and ξk ∈ [J ∪ {m}].

(ii) ξm ∈ int[J ].
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If this is the case, it follows that

J � (J \ {i|ξ i ∈ A and (ii) holds for ξ i}) ∪ {i|ξ i ∈ R and (ii) holds for ξ i} ∈ I ∗
B,

so we can set γJ = γ
J

and γ J = γ J .

Algorithm 4.1 remains unchanged until Step [4], where the parts b and c are inserted:

Step [4a]: Define J by the relation J := {i ∈ {1, . . . , n}|ξ i
k < zk (k = 1, . . . , s)}.

Step [4b]: If J ∈ I ∗
B and J is completed, go to Step [2].

Step [4c]: If either (i) or (ii) is fulfilled get γJ , γ J from the old data as described
above, mark J as completed, add J to I ∗

B (if not already contained) and
go to Step [2].

Step [4d]: If J ∈ I ∗
B go to Step [6].

This avoids the computation of some γJ and many α in Steps [5] and [6], an effect that
becomes noticeable with increasing number of scenarios N . In numerical examples
reductions of the forward selection’s running time of up to 70% (N = 10 000) have
been observed.

Numerical experiments show, that the main effort in Algorithm 4.1 is spent for the
determination of supporting cells (compared to this, the time consumed by the solu-
tion of the linear program in the last step is negligible). Supporting cells are identified
in this algorithm by checking all subsets of cardinality s in a set of cardinality n + s.
Therefore, the complexity of the algorithm is mainly determined by the binomial co-
efficient

(
n+s
s

)
. This suggests that the practical value of the algorithm is limited to

small dimension s of the random distributions and moderate cardinality n of the re-
duced support or to small n and moderate s (due to the identity

(
n+s
s

) = (
n+s
n

)
). One

might wonder if there is a more efficient way of determining supporting cells than
just by crude enumeration. It seems, however, that basically all mentioned subsets
are potential candidates for realizing the upper bound in the cell discrepancy between
two measures. Indeed, recall that the cell discrepancy coincides with the supremum
distance of distribution functions (the Kolmogorov distance). Figure 1 plots the dif-
ference of two discrete distribution functions having 30 and 18 atoms, respectively. It
can be recognized at how many different regions, the maximum (positive or negative)
deviation may occur.

On the other hand, the computational effort is basically linear in the cardinality N

of the original support, so larger values of N seem to be no problem. This is easy to
see, since the impact of N on Algorithm 4.1 is limited on the number of summands
that constitute γJ in Step [5] and α in Step [6].

In the following, we present some numerical results which are based on a C++
implementation of Algorithm 4.1, where the linear program (6) has been solved with
CPLEX 10.0 [3]. Calculations have been carried out on a 3 GHz PC with 1 GB RAM.
Table 1 compiles some computing times of Algorithm 4.1 under different problem
sizes. As indicated above, the dependence of running time on the size N of the origi-
nal support is moderate (basically linear), whereas it quickly grows with the size n of
the reduced support and with the dimension s. Table 2 shows the corresponding num-
bers of supporting cells, determining the number of constraints of the linear program
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Fig. 1 Difference between the
distribution functions of two
discrete probability measures
(having 30 and 18 atoms,
respectively)

Table 1 Running time (in seconds) of Algorithm 4.1 for different problem parameters

N = 100 N = 200 N = 300

s = 4 s = 8 s = 4 s = 8 s = 4 s = 8

n = 10 0.01 0.17 0.01 0.23 0.01 0.22

n = 20 0.30 29.58 0.29 27.52 0.82 23.45

n = 30 3.88 3175.53 3.95 3322.24 9.20 1792.74

Table 2 Number of reduced critical index sets #I∗
B for different problem parameters

N = 100 N = 200 N = 300
(n+s

s

)

s = 4 s = 8 s = 4 s = 8 s = 4 s = 8 s = 4 s = 8

n = 10 106 419 88 462 91 360 1,001 43,758

n = 20 747 14,525 740 13,844 1,489 12,500 10,626 3,108,105

n = 30 3,213 157,461 3,469 293,386 5,625 150,882 46,376 48,903,492

(16). Obviously, the vast majority of the
(
n+s
s

)
potential supporting cells turn out not

to be supporting.
Figure 2 shows the decrease of the minimal discrepancy and the increase of the

running time in the course of a forward selection procedure (Algorithm 3.1), where
the initial 2-dimensional measure supported by 10 000 points sampled from a normal
distribution is approximated by measures having up to 25 atoms.

Figure 3 shows possible reductions of a randomly generated (w.r.t. support and
probabilities) 2-dimensional measure with N = 1000 atoms. A reduction on n = 50
atoms is considered. The left diagram of the figure illustrates the ordered solution de-
fined in (7). By definition, this solution selects the 50 atoms of the original measure
realizing the largest probabilities. The first 49 atoms even keep the original probabil-
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Fig. 2 Cell discrepancy and running time in the course of a forward selection procedure

Fig. 3 Reduction of a
2-dimensional measure with
1000 atoms (thin lines) to 50
atoms (thick lines). Heights
correspond to probabilities. The
left diagram illustrates the
ordered solution, whereas the
right diagram shows the
measure which, on the fixed
support of the ordered solution,
is best approximating in the
sense of the cell discrepancy.
(The height of the leading atom
in the left diagram has been cut
off to about one tenth)

ities, whereas the last one is arranged to complement the sum of theses probabilities
to one in order to make the selected measure a probability measure as well. Since
each of the selected 50 atoms has rather low probability whereas the set of all non-
selected 950 atoms has high probability, the ordered solution places almost all mass
on atom no. 50. Although such choice would be optimal in case of the closed-set
discrepancy αBcl

according to Proposition 2.1, it is intuitively clear from the picture
that such solution may not be meaningful for other discrepancy distances. Indeed,
the ordered solution realizes a closed-set discrepancy of αBcl

= 0.90. Recalling, that
discrepancies always take values between 0 and 1, this value is certainly not satisfac-
tory. It illustrates the effect of ‘linear decrease’ mentioned in Sect. 2.1: a reduction
of the support to 5% of its atoms leads to a reduction of the discrepancy which is no
more than 10%. On the other hand, Proposition 2.1 tells us, that the same value of
0.90 is an upper bound for any solution of any other discrepancy. Now, measuring
the ordered solution in the cell discrepancy instead, yields the slightly smaller value
of αBcell = 0.81, which is still far from satisfactory. However, there is no reason, why
the ordered solution should be optimal with respect to the cell discrepancy, neither
from the choice of the support nor from the assignment of probabilities. We illus-
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trate this fact by keeping the same support as the ordered solution but optimizing the
probabilities according to Algorithm 4.1. The resulting solution is illustrated in the
right diagram of Fig. 3. It realizes the cell discrepancy αBcell = 0.08, which is optimal
for the chosen fixed support (of course, even better solutions might exist for a dif-
ferent support). This value of 8% discrepancy obtained by 5% of the original atoms
highlights the potential of Algorithm 4.1 for scenario reduction.

Finally, we consider the following simple chance constrained optimization prob-
lem:

min
x,y∈R

x + y s.t. P(ξ ≤ (x, y)) ≥ p,

for some p ∈ [0,1]. Thereby, ξ = (ξ1, ξ2) is a 2-dimensional random vector, given by
1 000 equally weighted points sampled from a standard normal distribution.

We compare different scenario reduction techniques for several values of p and
denote the optimal values of the initial and the approximated problem by v and ṽ,
respectively. In Fig. 4, the relative deviations |v−ṽ|

|v| of the optimal values are plotted
for ξ being approximated by measures supported by up to n = 50 atoms.

The bold line stands for the forward selection together with Algorithm 4.1 and
the thin line is the average error of 10 000 samples of dimension n. The dashed line
represents an Quasi-Monte Carlo (QMC) approach, based on the first n points of the
Halton sequence with bases 2 and 3, cf., e.g., [15]. The dotted line is obtained by
readjusting the probabilities of the QMC points with Algorithm 4.1. It can be seen,
that in most cases the measures obtained by forward selection produce (sometimes
drastically) smaller errors than those constructed by sampling or QMC. Moreover, in
many cases the quality of the QMC approximation could be significantly improved
by simply readjusting the probabilities by a single run of Algorithm 4.1. This last
approach is of course much faster than forward selection. On the other hand, there is
no clear indication of which method provides better solutions.

Appendix

Proof of Proposition 3.1 Let J ∈ I ∗
Bcell

be arbitrary. By definition of ϕ(J ) in (14),
for any I ∈ ϕ(J ) there exists some B ∈ Bcell such that I = I (B) and J = I (B) ∩
{1, . . . , n}. Then, by definition of I (B),

∑
i∈I

pi =
∑

i∈I (B)

pi = P(B),

whence

γ J = max
I∈ϕ(J )

∑
i∈I

pi = max{P(B)|B ∈ Bcell, J = I (B) ∩ {1, . . . , n}}

= max

{
P(B)|B ∈ Bcell, B ∩ {ξ1, . . . , ξn} =

⋃
j∈J

{ξj }
}
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= max

{
P([y])|y ∈ (c, d), [y] ∩ {ξ1, . . . , ξn} =

⋃
j∈J

{ξj }
}
, (24)

where in the last equation it was used that the support of P is contained in (c, d). Let
y(0) be a maximizing cell, i.e.,

γ J = P([y(0)]), y(0) ∈ (c, d), [y(0)] ∩ {ξ1, . . . , ξn} =
⋃
j∈J

{ξj }.

In the following, the cell y(0) will be successive enlarged in every dimension, un-
til it becomes a supporting one. To this end, for t ≥ 0 we put y(t) := (y

(0)
1 + t ,

y
(0)
2 , . . . , y

(0)
s ) and consider the enlargement [y(t)] of the cell [y(0)] along the first

coordinate direction. Put

τ := sup{t |[y(t)] ∩ R = [y(0)] ∩ R}.

Fig. 4 Relative perturbation of the optimal value |v−ṽ|
|v| , depending on n for forward selection (bold),

sampling (thin), Quasi-Monte Carlo (dashed) and Algorithm 4.1 applied on Quasi-Monte Carlo (dotted)
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Since the intersection of [y(t)] with the finite set R remains constant for small t > 0,
it follows that τ > 0. From y(0) ∈ (c, d), we derive that y

(0)
1 < d1 = r1

1 , whence r1 /∈
[y(0)] ∩ R. On the other hand, with t∗ := d1 − y

(0)
1 , one gets that r1 ∈ [y(t∗)] ∩ R.

Consequently, τ ≤ t∗ < ∞. We put y(1) := y(τ) and arrive at

[y(1)] ∩ R = {[y(1)] ∩ {z|z1 < y
(1)
1 } ∩ R} ∪ {[y(1)] ∩ {z|z1 = y

(1)
1 } ∩ R}︸ ︷︷ ︸

=:�1

=
{⋃

t<τ

[y(t)] ∩ R

}
∪ �1 = {[y(0)] ∩ R} ∪ �1.

Once more, due to [y(τ + t)] ∩R remaining constant for small t > 0 and to the
definition of τ , it follows that [y(1)] ∩ R �= [y(0)] ∩ R. Consequently, �1 �= ∅, which
means that there exists some x1 ∈ [y(1)] ∩ R such that x1

1 = y
(1)
1 .

Now, in the second step, we extend the construction above for the second coordi-
nate by defining

y(t) := (y
(1)
1 , y

(1)
2 + t, y

(1)
3 , . . . , y(1)

s )

τ := sup
{
t |[y(t)] ∩ R = [y(1)] ∩ R

}
.

Upon observing that y
(1)
2 = y

(0)
2 < d2 and replacing r1 by r2, we may repeat the

same argumentation as before, in order to verify that 0 < τ < ∞, which allows to put
y(2) := y(τ). As before, the definition of τ allows to find that

[y(2)] ∩ R = {[y(1)] ∩ R} ∪ �2 = {[y(0)] ∩ R} ∪ �1 ∪ �2,

where

�2 := {[
y(2)

] ∩ {y|y2 = y
(2)
2 } ∩ R

}
.

With the same argument as in the first step, one infers that �2 �= ∅, which means that
there exists some x2 ∈ [y(2)] ∩ R such that x2

2 = y
(2)
2 .

Continuing the construction in this way for all coordinates, we finally arrive at
points y(j) and xj for j = 1, . . . , s, such that

[y(j)] ∩ R = {[y(0)] ∩ R} ∪ �1 · · · ∪ �j

�j = {[y(j)] ∩ {y|yj = y
(j)
j } ∩ R} (j = 1, . . . , s)

and

xj ∈ [y(j)] ∩ R, x
j
j = y

(j)
j (j = 1, . . . , s).

We put z := y(s). Then,

[z] ∩ R = {[y(0)] ∩ R} ∪ �1 · · · ∪ �s. (25)
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By the very construction, [y(j)] ⊆ [y(s)] and zj = y
(s)
j = y

(j)
j for j = 1, . . . , s. Con-

sequently,

xj ∈ [z] ∩ R, x
j
j = zj (j = 1, . . . , s),

which means that [z] is a supporting cell.
To prove the remaining statements of the proposition, note that the equalities x

j
j =

zj for xj ∈ R and j = 1, . . . , s imply that cj ≤ zj ≤ dj for j = 1, . . . , s because

the same bounds apply for all points of R. Again by construction, y
(j)
j > y

(j−1)
j for

j = 1, . . . , s, which entails that zj > y
(0)
j for j = 1, . . . , s. Now, we define a sequence

of cells [zm] by

zm
j := zj − 1/m (j = 1, . . . , s). (26)

It follows that, for m large enough, zm ∈ (c, d) and

zm
j > y

(0)
j (j = 1, . . . , s). (27)

We conclude from (26) and (25) that, for all m ∈ N,

[zm] ∩ R ⊆ [z] ∩ R = {[y(0)] ∩ R} ∪ �1 · · · ∪ �s.

The definition of �j shows that all elements of this subset have j th coordinate equal

to y
(j)
j = zj . Combining this with (26) yields

[zm] ∩ �j = ∅ (j = 1, . . . , s).

Therefore, we may continue by

[zm] ∩ R ⊆ [y(0)] ∩ R.

On the other hand, [zm] ⊇ [y(0)] by (27), hence [zm] ∩ R = [y(0)] ∩ R. We recall
the fact that y(0) ∈ (c, d), whence—by definition of the set {r1, . . . , rs} in (18)—
[y(0)] ∩ {r1, . . . , rs} = ∅. With the same reasoning, the inclusion zm ∈ (c, d) stated
above, yields that [zm] ∩ {r1, . . . , rs} = ∅. Owing to the definition of y(0), we may
continue as

[zm] ∩ {ξ1, . . . , ξn} = [zm] ∩ R = [y(0)] ∩ R = [y(0)] ∩ {ξ1, . . . , ξn}
=

⋃
j∈J

{ξj } (m ∈ N). (28)

Clearly,

int[z] =
⋃
m∈N

[zm], (29)

so (28) yields that

int[z] ∩ {ξ1, . . . , ξn} =
⋃
j∈J

{ξj },
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which is (19). Finally, (24) and the inclusion [zm] ⊇ [y(0)] lead to

γ J ≥ P([zm]) ≥ P([y(0)]) = γ J (m ∈ N),

hence, actually equality holds true here. Since [zm] is an increasing sequence of cells
in the union (29), one gets that

P(int[z]) = P

( ⋃
m∈N

[zm]
)

= lim
m→∞P([zm]) = γ J .
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