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Abstract. We consider convex stochastic programs with an (approximate) initial probability distribution P
having finite support supp P , i.e., finitely many scenarios. The behaviour of such stochastic programs is stable
with respect to perturbations of P measured in terms of a Fortet-Mourier probability metric. The problem of
optimal scenario reduction consists in determining a probability measure that is supported by a subset of supp
P of prescribed cardinality and is closest to P in terms of such a probability metric. Two new versions of
forward and backward type algorithms are presented for computing such optimally reduced probability measures
approximately. Compared to earlier versions, the computational performance (accuracy, running time) of the new
algorithms has been improved considerably. Numerical experience is reported for different instances of scenario
trees with computable optimal lower bounds. The test examples also include a ternary scenario tree representing
the weekly electrical load process in a power management model.
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1. Introduction

Many stochastic decision problems may be formulated as convex stochastic programs of
the form

min

{ ∫
�

f0(ω, x)P(dω) : x ∈ X

}
, (1)

where X ⊂ R
m is a given nonempty closed convex set, � a closed subset of R

s , the function
f0 from � × R

m to R is continuous with respect to ω and convex with respect to x , and P
is a fixed Borel probability measure on �, i.e., P ∈ P(�). For instance, this formulation
covers (convex) two- and multi-stage stochastic programs with recourse.

Typical integrands f0(·, x), x ∈ X , in convex stochastic programming problems are non-
differentiable, but locally Lipschitz continuous on �. In the following, we assume that there
exist a continuous and nondecreasing function h : R+ → R+ with h(0) = 0, a nondecreasing
function g : R+ → R+\{0} and some fixed element ω0 ∈ R

s such that

| f0(ω, x) − f0(ω̃, x)| ≤ g(‖x‖)c(ω, ω̃) (2)

for each x ∈ X , where the function c : � × � → R is given by

c(ω, ω̃) := max{1, h(‖ω − ω0‖), h(‖ω̃ − ω0‖)}‖ω − ω̃‖, ∀ω, ω̃ ∈ �. (3)
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This means that the function h(‖· −ω0‖) describes the growth of the local Lipschitz constants
of f0(·, x) in balls around ω0 with respect to some norm ‖ · ‖ on R

s . Polynomial growth of
h, i.e., h(r ) = r p−1 for r ∈ R+ and some p ≥ 1, represents an important special case. For
instance, in [11] it is shown that the choice p = 2 is appropriate for two-stage models with
stochasticity entering prices and right-hand sides.

In [4, 11] it is shown that the model (1) is stable with respect to small perturbations in
terms of the probability metric

ζc(P, Q) := sup
f ∈Fc

∣∣∣∣
∫

�

f (ω)P(dω) −
∫

�

f (ω)Q(dω)

∣∣∣∣,
where Fc is the class of continuous functions defined by

Fc = { f : � → R : f (ω) − f (ω̃) ≤ c(ω, ω̃) for all ω, ω̃ ∈ �}
and probability measures P and Q in the set

Pc(�) :=
{

Q ∈ P(�) :
∫

�

c(ω, ω0)Q(dω) < ∞
}
.

The distance ζc is a probability metric onPc(�) and is called a Fortet-Mourier (type) metric.
In this generality, it is introduced in [13] and further studied in [10, 12]. The metric ζc may be
estimated from above by the Kantorovich functional µ̂c, i.e., it holds for any P, Q ∈ Pc(�)
that

ζc(P, Q) ≤ µ̂c(P, Q), where (4)

µ̂c(P, Q) := inf

{ ∫
�×�

c(ω, ω̃)η(d(ω, ω̃)) : η ∈ P(� × �), η(B × �) = P(B),

η(� × B) = Q(B) for all B ∈ B
}

and the minimization problem defining µ̂c is known as Monge-Kantorovich mass trans-
portation problem (cf. [10, 12]). Equality holds in (4) if h ≡ 1.

As an important instance let us mention that the initial probability measure P is itself
discrete with finitely many atoms (or scenarios) or that P represents a good discrete ap-
proximation of the original measure. Its support may be very large so that, for reasons of
computational complexity and time limitation, this probability measure is further approxi-
mated by a probability measure Q carried by a (much) smaller subset of scenarios. In this
case, the distances ζc(P, Q) and µ̂c(P, Q) represent optimal values of finite-dimensional
linear programs. For example, the Monge-Kantorovich mass transportation problem defin-
ing µ̂c reduces for P = ∑N

i=1 piδωi and Q = ∑N
j=1, j /∈J q jδω j to the well known linear

transportation problem

µ̂c(P, Q) = min




N∑
i, j=1
j /∈J

c(ωi , ω j )ηi j : ηi j ≥ 0,

N∑
i=1

ηi j = q j ,

N∑
j=1
j /∈J

ηi j = pi



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where J ⊂ {1, . . . , N } and δω ∈ P(�) denotes the Dirac measure placing unit mass at ω.
In Section 2 it will turn out that metric µ̂c is very useful to evaluate distances of specific
probability measures obtained during a scenario-reduction process.

Various reduction rules appear in the literature in the context of recent large-scale real-
life applications. We refer to the corresponding discussion in [4], to the recent work [3] on
scenario generation and reduction, and to the scenario generation approach in [9] based on
Fortet-Mourier distances.

In the present paper, we follow the approach for reducing scenarios of a given discrete
probability measure P = ∑N

i=1 piδωi developed in [4]. It consists in determining an index
set J∗ ⊂ {1, . . . , N } of given cardinality #J∗ = N − n and a probability measure Q∗ =∑N

j=1, j /∈J∗ q∗
j δω j such that

µ̂c(P, Q∗) = min


µ̂c


P,

N∑
j=1
j /∈J

q jδω j


 : J ⊂ {1, . . . , N }, #J = N − n, (5)

∑
j /∈J

q j = 1, q j ≥ 0, j /∈ J


 .

Problem (5) may be reformulated as a mixed-integer program.
In Section 2 we derive bounds for (5), develop two new heuristic algorithms ( fast forward

selection and simultaneous backward reduction) for solving (5) and study their complexity
and their relations to the algorithms in [4]. Indeed, the fast forward selection algorithm turns
out to be an efficient implementation of the forward selection procedure of [4], generating
the same reduced probability measures.

In order to compare the performance of the algorithms we provide, in Section 3, explicit
formulas for the minimal distances (5) in case that h ≡ 1, P is a regular (binary or ternary)
scenario tree (i.e., a tree having a specific structure) and Q∗ is a reduced tree with fixed
cardinality n.

In Section 4 we report on numerical experience for the reduction of regular binary and
ternary scenario trees. The test trees also include a ternary scenario tree representing the
weekly electrical load process in a power management model, which was considered in
[4]. It turns out that the new implementation of the fast forward selection algorithm is
about 10–100 times faster than the earlier version. When comparing accuracy, fast forward
selection performed best, and simultaneous backward reduction performed better than the
backward reduction variant of [4] in most cases, but at the expense of higher running times.
When comparing running times, fast forward selection (simultaneous backward reduction)
is preferable in case of approximately n < N

4 (n > N
4 ).

2. Scenario reduction

We consider the stochastic program (1) and select the function c of form (3) such that the
Lipschitz condition (2) is satisfied. Let the initial probability distribution P be discrete
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and carried by finitely many scenarios ωi ∈ � with weights pi > 0, i = 1, . . . , N , and∑N
i=1 pi = 1, i.e., P = ∑N

i=1 piδωi . Let n ∈ N, n < N , J ⊂ {1, . . . , N } with #J = N − n
and consider the probability measure Q having scenarios ω j with probabilities q j , j ∈
{1, . . . , N }\J , i.e., compared to P , the measure Q = ∑

j /∈J q jδω j is reduced by deleting
all scenarios ω j , j ∈ J , and by assigning new probabilistic weights q j to each scenario
ω j , j /∈ J . The optimal reduction concept described above recommends to consider the
probability distance

D(J ; q) := µ̂c

(
N∑

i=1

piδωi ,
∑
j /∈J

q jδω j

)

depending on the index set J and q. The optimal reduction concept (5) says that the index
set J∗ and the optimal weight q∗ are selected such that D(J∗; q∗) = min{D(J ; q) : J ⊂
{1, . . . , N }, #J = N − n,

∑
j /∈J q j = 1, q j ≥ 0, j /∈ J}. First we recall the following

explicit formula for min{D(J ; q) :
∑

j /∈J q j = 1, q j ≥ 0, j /∈ J} when the index set
J ⊂ {1, . . . , N } is fixed ([4], Theorem 3.1).

Theorem 2.1 (redistribution). Given J ⊂ {1, . . . , N } we have

DJ = min

{
D(J ; q) : q j ≥ 0,

∑
j /∈J

q j = 1

}
=

∑
i∈J

pi min
j /∈J

c(ωi , ω j ). (6)

Moreover, the minimum is attained at

q̄ j = p j +
∑
i∈J j

pi , for each j /∈ J, (7)

where Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min j /∈J c(ωi , ω j ) for each i ∈ J .

Formula (7) will be called optimal redistribution rule. It reveals that the new probability of
a preserved scenario is equal to the sum of its former probability and of all probabilities of
deleted scenarios that are closest to it with respect to the “distance” c on �.

Next we discuss the optimal choice of an index set J for scenario reduction with fixed
cardinality #J . Theorem 2.1 motivates us to consider the following formulation of the
optimal reduction problem for given n ∈ N, n < N :

min

{
DJ :=

∑
i∈J

pi min
j /∈J

c(ωi , ω j ) : J ⊂ {1, . . . , N }, #J = N − n

}
. (8)

Problem (8) means that the set {1, . . . , N } has to be covered by two sets J ⊂ {1, . . . , N }
and {1, . . . , N }\J such that J has fixed cardinality N − n and the cover has minimal cost
DJ . Thus, (8) represents a set-covering problem. It may be formulated as a 0-1 integer
program (cf. [7]) and is NP-hard. Since efficient solution algorithms are hardly available
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in general, we are looking for (fast) heuristic algorithms exploiting the structure of the costs
DJ . In the specific cases of n = 1 and n = N − 1, (8) may be solved quite easily.

If #J = 1, the problem (8) takes the form

min
l∈{1,...,N }

pl min
j �=l

c(ωl , ω j ). (9)

If the minimum is attained at l∗ ∈ {1, . . . , N }, i.e., the scenario ωl∗ is deleted, the re-
distribution rule (7) yields the probability distribution of the reduced measure Q̄. If j∗ ∈
arg min j �=l∗ c(ωl∗ , ω j ), then it holds that q̄ j∗ = p j∗ + pl∗ and q̄l = pl for all l /∈ {l∗, j∗}.
Of course, the optimal deletion of a single scenario may be repeated recursively until a
prescribed number N − n of scenarios is deleted. This strategy recommends a conceptual
algorithm called backward reduction.

If #J = N − 1, the problem (8) is of the form

min
u∈{1,...,N }

N∑
i=1

pi c(ωi , ωu). (10)

If the minimum is attained at u∗ ∈ {1, . . . , N }, only the scenario ωu∗ is kept and the redistri-
bution rule (7) provides q̄u∗ = pu∗ +∑

i �=u∗ pi = 1. This strategy provides the basic concept
of a second conceptual algorithm called forward selection.

First, we take a closer look at the backward reduction strategy. A backward type algorithm
was already suggested in [4, 6]. It determines a reduced scenario set by reducing N − n
scenarios from the original set of scenarios as follows. Let the indices li be selected such
that

li ∈ arg min
l∈{1,...,N }\{l1,...,li−1}

pl min
j �=l

c(ωl , ω j ), i = 1, . . . , N − n. (11)

Then

lb :=
N−n∑
i=1

pli min
j �=li

c
(
ωli , ω j

)
(12)

can be shown to be a lower bound of the optimal value of (8). Furthermore, the index
set {l1, . . . , lN−n} is a solution of (8) if the set arg min j �=li c(ωli , ω j )\{l1, . . . , li−1, li+1, . . . ,

lN−n} is nonempty for all i = 1, . . . , N−n ([4, 6]). This property is the reason for developing
the following algorithm. In the first step, an index n1 with n ≤ n1 < N is determined using
formula (11) such that J1 = {l1, . . . , lN−n1} is a solution of (8) for n = n1. Next, the
redistribution rule of Theorem 2.1 is used. This leads to the reduced probability measure
P1 containing all scenarios indexed by {1, . . . , N }\J1. If n < n1, the measure P1 is further
reduced by deleting all scenarios belonging to some index set J2 with #J2 = n1 − n2 and
n ≤ n2 < n1, which is obtained in the same way by using formula (11). This procedure
is continued until, in step r , we have nr = n and J = ⋃r

i=1 Ji . Finally, the redistribution
rule (7) is used again for the index set J . This algorithm is called backward reduction of
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scenario sets. Yet, there are many variants for choosing the next scenario in each step. Often
there exist several candidates for deletion. In Section 4 we use a special implementation of
backward reduction of scenario sets.

Another particular variant covers the case that #Ji = 1 for each i = 1, . . . , N − n.
This variant (without the final redistribution) was already announced in [2, 5]. However,
numerical tests have shown that the backward reduction of scenario sets provides slightly
more accurate results compared to backward reduction of single scenarios.

Next we present a new modification of the backward reduction principle. The major dif-
ference consists in including all deleted scenarios into each backward step simultaneously.
Namely, the next index li is determined as a solution of the optimization problem

li ∈ arg min
l /∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j /∈J [i−1]∪{l}

c(ωk, ω j ). (13)

A more detailed description of the whole algorithm, which is called simultaneous backward
reduction, is given in

Algorithm 2.2 (simultaneous backward reduction).

Step 1: ck j := c(ωk, ω j ), k, j = 1, . . . , N ,

Sorting of {ck j : j = 1, . . . , N }, k = 1, . . . , N ,

c[1]
ll := min

j �=l
cl j , l = 1, . . . , N ,

z[1]
l := plc

[1]
ll , l = 1, . . . , N ,

l1 ∈ arg min
l∈{1,...,N }

z[1]
l , J [1] := {l1}.

Step i: c[i]
kl := min

j /∈J [i−1]∪{l}
ck j , l /∈ J [i−1], k ∈ J [i−1] ∪ {l},

z[i]
l :=

∑
k∈J [i−1]∪{l}

pkc[i]
kl , l /∈ J [i−1],

li ∈ arg min
i /∈J [i−1]

z[i]
l , J [i] := J [i−1] ∪ {li }.

Step N − n+1: Redistribution by (7).

Algorithm 2.2 allows the following interpretation. Its first step corresponds to the optimal
deletion of only one scenario. For i > 1, li is chosen such that

DJ [i−1]∪{li } = min
l /∈J [i−1]

DJ [i−1]∪{l}, (14)

where DJ [i−1]∪{l} is defined in (8). Hence, the index li is defined recursively such that the
index set {l1, . . . , li−1, li } will be optimal provided that the previous indices {l1, . . . , li−1}
are fixed.
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Since running times are important characteristics of scenario reduction algorithms, we
study the computational complexity, i.e., the number of elementary arithmetic operations,
of Algorithm 2.2. In [6] it is shown that a proper implementation (without sorting) of
backward reduction of scenario sets requires a complexity of O(N 2) operations (uniformly
with respect to n). When comparing formulas (11) and (13), one notices an increase of
complexity in the cost structure of (13) for determining li . More precisely, step i requires
the computation of N − i + 1 sums, each of which consists of i summands and N − i + 1
comparisons. Each summand represents a product of two numbers. One of these factors
requires about 2 operations for determining the minimum. The sorting process in step 1
requires O(N 2 log N ) operations ([1], Ch. 1). When excluding the complexity of evaluating
the function c and that of the redistribution rule, altogether we obtain bN (n) operations for
selecting a subset of n scenarios, where

bN (n) := O(N 2 log N ) +
N−n∑
i=1

(3i + 1)(N − i + 1)

= n3 − n2

(
3

2
N + 1

2

)
− n

3

2
(N + 1) + a(N )

and a(N ) := N 3

2
+ O(N 2 log N ) + 2N 2 + 3

2
N . (15)

Proposition 2.3. The computational complexity for reducing a set of N ∈ N scenarios to
a subset containing n ∈ {1, . . . , N } scenarios consists of bN (n) (see (15)) operations when
using simultaneous backward reduction.

Hence, the complexity of simultaneous backward reduction is increasing with decreasing n
and is, of course, minimal at n = N . This result corresponds to the running time observations
of our numerical tests reported in Section 4.

Next, we describe a strategy that is just the opposite of backward reduction. Its conceptual
idea is based on formula (10) and consists in the recursive selection of scenarios that will
not be deleted. The basic concept of such an algorithm is given in [4] and called forward
selection. Forward selection determines an index set {u1, . . . , un} such that

ui ∈ arg min
u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j /∈J [i−1]\{u}

c(ωk, ω j ), (16)

for i = 1, . . . , n, where J [i−1] := {1, . . . , N }\{u1, . . . , ui−1}. The first step of this pro-
cedure coincides with the solution of problem (10). After the last step, the optimal redis-
tribution rule has to be used to determine the reduced probability measure. Formula (16)
allows the same interpretation as in the case of simultaneous backward reduction. It is again
closely related to the structure of DJ in (8). Now, let us consider the following algorithm,
which is easily implementable and is called fast forward selection.

Algorithm 2.4 ( fast forward selection).

Step 1: c[1]
ku := c(ωk, ωu), k, u = 1, . . . , N ,
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z[1]
u :=

N∑
k=1
k �=u

pkc[1]
ku , u = 1, . . . , N ,

u1 ∈ arg min
u∈{1,...,N }

z[1]
u , J [1] := {1, . . . , N }\{u1}.

Step i: c[i]
ku := min

{
c[i−1]

ku , c[i−1]
kui−1

}
, k, u ∈ J [i−1],

z[i]
u :=

∑
k∈J [i−1]\{u}

pkc[i]
ku, u ∈ J [i−1],

ui ∈ arg min
u∈J [i−1]

z[i]
u , J [i] := J [i−1]

∖{ui }.

Step n + 1: Redistribution by (7).

Theorem 2.5. The index set {u1, . . . , un} determined by Algorithm 2.4 is a solution of
the forward selection principle, i.e., ui satisfies condition (16) for each i = 1, . . . , n.
Furthermore, z[i]

ui
= DJ [i] holds for each i = 1, . . . , n, where DJ [i] is defined in (8).

Proof: For i = 1 the result is immediate. For i = 2, . . . , N , it holds that

ui ∈ arg min
u∈J [i−1]

z[i]
u = arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pkc[i]
ku

= arg min
u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
{
c[i−1]

ku , c[i−1]
kui−1

}
= arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
{
c[i−2]

ku , c[i−2]
kui−1

, c[i−2]
kui−2

}
...

= arg min
u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
{
c[1]

ku , c[1]
kui−1

, . . . , c[1]
ku1

}
= arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j /∈J [i−1]\{u}

c(ωk, ω j )

= arg min
u∈J [i−1]

DJ [i−1]\{u}. (17)

Hence, the index ui satisfies condition (16) and it holds that

z[i]
ui

=
∑

k∈J [i]

pk min
j /∈J [i]

c(ωk, ω j ) = D j[i] (i = 1, . . . , n).

The conditions (14) and (17) show that both algorithms are based on the same basic idea
for selecting the next (scenario) index. The only difference consists in the use of backward
and forward strategies, respectively, i.e., in determining the sets of deleted and remaining
scenarios, respectively.
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As in the case of backward reduction, the computational complexity of Algorithm 2.4
is of interest. Step i requires (N − i + 1)2 operations for computing c[i]

ku (k, u ∈ J [i−1]),
(N − i + 1)(N − i) operations for z[i]

u (u ∈ J [i−1]) and N − i + 1 operations for determin-
ing ui . Altogether, we obtain

fN (n) :=
n∑

i=1

2(N − i + 1)2 = 2

3
n3 − n2(2N + 1) + n

(
2N 2 + 2N + 1

3

)
(18)

operations for selecting a subset of n scenarios. Hence, we have

Proposition 2.6. The computational complexity of fast forward selection for reducing a
set of N ∈ N scenarios to a subset containing n ∈ {1, . . . , N } scenarios consists of fN (n)
(see (18)) operations.

Hence, the complexity of fast forward selection increases with increasing n and is maximal
if n = N . Thus, the use of fast forward selection will be recommendable if the number n of
remaining scenarios satisfies the condition fN (n) ≤ bN (n). The number n∗ = n∗(N ) such
that fN (n∗) = bN (n∗) holds, is a zero of a polynomial of degree 3 that depends nonlinearly
on N . It turns out that n∗ ≈ N

4 for large N .

3. Minimal distances of scenario trees

All algorithms discussed in the previous section provide only approximate solutions of
(8) in general. Since error estimates for these algorithms are not available, we need test
examples of discrete original and reduced measures of different scale with known (optimal)
ζc-distances. Because of their practical importance, we consider probability measures with
scenarios exhibiting a tree structure. In particular, we derive optimal distances of certain
regularly structured original scenario trees and of their reduced trees containing different
numbers of scenarios.

We consider a scenario tree that represents a stochastic process with parameter set
{0, 1, . . . , K } for some K ∈ N and with scenarios (or paths) branching at each parameter
k ∈ {0, 1, . . . , K } with branching degree d (i.e., each node of the tree has d successors).
In case of d = 2 and d = 3, the tree will be called binary and ternary, respectively.
Hence, the tree consists of N := d K scenarios ωi = (ω0

i , . . . , ω
K
i ), i = 1, . . . , d K , and

has ω0
1 = · · · = ω0

d K as its root node. Furthermore, let all scenarios have equal proba-
bilities pi = 1

d K , i = 1, . . . , d K . Such a scenario tree will be called regular if, for each
k ∈ {0, . . . , K }, there exist symmetric sets Vk := {δk

1, . . . , δ
k
d} ⊂ R such that

ωk
i =

k∑
j=0

δ
j
i j

(k ∈ {0, . . . , K }), (19)

where a (K + 1)-tuple of indices (i0, . . . , iK ) ∈ {1, . . . , d}K+1 corresponds to each index
i = 1, . . . , d K . We say that Vk is symmetric if δ ∈ Vk implies −δ ∈ Vk . In case of d = 2 and
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Figure 1. Binary scenario tree.

d = 3, this means that the sets Vk are of the form Vk = {−δk, δk} and Vk = {−δk, 0, δk},
respectively, for some δk ∈ R+, and it holds δk

ik
= (2ik − 3)δk and δk

ik
= (ik − 2)δk ,

respectively, for k = 0, . . . , K . Clearly, we have δ0
1 = · · · = δ0

d = 0 for regular trees.
Figure 1 shows an example of a regular binary scenario tree with K = 3 and N = 23

scenarios. We specify the function c in (3) by setting h ≡ 1 and by choosing the maximum
norm ‖ · ‖∞ on R

K+1, i.e.,

c(ω, ω̃) := ‖ω − ω̃‖∞ = max
k=0,...,K

|ωk − ω̃k | (ω, ω̃ ∈ �).

Our first result provides an explicit formula for the minimal distance between a regular
binary tree and reduced subtrees with at least n = N

4 scenarios.

Proposition 3.1 (3/4-solution). Let a regular binary scenario tree with N = 2K scenarios
and K ≥ 3 be given. Let k0 ∈ arg min1≤k≤K δk, k0 ≤ K − 2 and max{δk0+1, δk0+2} ≤ 2δk0 .
Then the distance between any scenarios is not smaller than 2δk0 and there are 3

4 N distinct
pairs of scenarios such that the distance between the members of each pair is exactly 2δk0 .
In particular, it holds for each n ∈ N with N

4 ≤ n < N :

Dmin
n := min{DJ : #J = N − n} = N − n

N
2δk0 . (20)

Proof: We use the representation (19) of each scenario ωi for i = 1, . . . , N . Let i, j ∈
{1, . . . , N }, i �= j , and let (i0, . . . , iK ) and ( j0, . . . , jK ) denote the corresponding (K + 1)-
tuples of indices. Let l ∈ {1, . . . , K } be such that il �= jl and ir = jr for r = 0, . . . , l − 1.
Then we obtain

‖ωi − ω j‖∞ = max
k=0,...,K

∣∣ωk
i − ωk

j

∣∣ = max
k=0,...,K

∣∣∣∣∣
k∑

r=0

(
δr

ir
− δr

jr

)∣∣∣∣∣ ≥
∣∣∣∣∣

l∑
r=0

(
δr

ir
− δr

jr

)∣∣∣∣∣
=

l∑
r=0

2|ir − jr |δr = 2δl ≥ 2δk0 .
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Figure 2. Detail of the subtree Tr∗.

Hence, for each J ⊂ {1, . . . , N } with #J = N − n it holds that

DJ =
∑
i∈J

pi min
j /∈J

‖ωi − ω j‖∞ ≥
∑
i∈J

1

N
2δk0 = N − n

N
2δk0 .

It remains to show that there exists an index set J∗ such that #J∗ = N − n and such that the
lower bound is attained, i.e., DJ∗ = N−n

N 2δk0 . To this end, we consider the index set

I∗ := {
i ∈ {1, . . . , N } : sign

(
δ

k0
ik0

) = −sign
(
δ

k0+1
ik0+1

) = −sign
(
δ

k0+2
ik0+2

)}
and define J∗ := {1, . . . , N }\I∗. Let Tr∗ denote the tree consisting of all scenarios ωi for
i ∈ I∗. Figure 2 illustrates a detail of Tr∗ starting at a node at level k0 − 1 and ending at
level k0 + 2. Hence, for the cardinality of I∗ and J∗ we obtain

#I∗ = 2k0−1 · 2 · 2K−k0−2 = 1

4
2K = N

4
and #J∗ = N − #I∗ = 3

4
N .

Now we want to show that there exists an index i ∈ I∗ for each j ∈ J∗ such that ‖ωi −
ω j‖∞ = 2δk0 holds. Let j ∈ J∗ and ω j be the related scenario. Let us consider the behaviour
of ω j on the branching levels k0, k0 + 1 and k0 + 2. Since j /∈ I∗, we have to distinguish
three cases each for δ

k0
jk0

= δk0 (resp. δ
k0
jk0

= −δk0 ):

Case (1): δ
k0+1
jk0+1

= (−)
+ δk0+1 ∧ δ

k0+2
jk0+2

= (−)
+ δk0+2

Case (2): δ
k0+1
jk0+1

= (−)
+ δk0+1 ∧ δ

k0+2
jk0+2

= (+)
− δk0+2

Case (3): δ
k0+1
jk0+1

= (+)
− δk0+1 ∧ δ

k0+2
jk0+2

= (−)
+ δk0+2

Now, we consider the following (K + 1)-tuple (i0, . . . , iK ), where ik = jk for all k /∈
{k0, k0 + 1, k0 + 2} and

δ
k0
ik0

= (+)
− δk0 ∧ δ

k0+1
ik0+1

= (−)
+ δk0+1 ∧ δ

k0+2
ik0+2

= (−)
+ δk0+2.
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Let i ∈ {1, . . . , d K } denote the corresponding index. Clearly, i ∈ I∗ and, consequently, it
holds for the distance between ωi and ω j that

‖ωi − ω j‖∞ = max
k=0,...,K

∣∣∣∣∣
k∑

r=0

(
δr

ir
− δr

jr

)∣∣∣∣∣ = max
k∈{k0,k0+1,k0+2}

∣∣∣∣∣
k∑

r=k0

(
δr

ir
− δr

jr

)∣∣∣∣∣
=




|2δk0 |, in case (1)

max{|2δk0 |, |2δk0 − 2δk0+2|}, in case (2)

max{|2δk0 |, |2δk0 − 2δk0+1|}, in case (3)

= 2δk0 .

The latter equation holds due to the assumption that δk0 ≤ max{δk0+1, δk0+2} ≤ 2δk0 . Hence,
DJ∗ = #J∗

N 2δk0 = 3
2δk0 . By considering subsets of J∗ having cardinality in [1, 3

4 N ], the result
follows for the general case, too.

The second result provides a similar formula for the minimal distance between a regular
ternary tree and reduced subtrees containing n ≥ 2

9 N scenarios.

Proposition 3.2 (7/9-solution). Let a regular ternary scenario tree with N = 3K scenarios
and K ≥ 3 be given. Let k0 ∈ arg min1≤k≤K δk with k0 ≤ K − 2, max{δk0+1, δk0+2} ≤ 2δk0 .
Then the distance between any scenarios is not smaller than δk0 and there are 7

9 N distinct
pairs of scenarios such that the distance between the members of each pair is exactly δk0 .
In particular, it holds for each n ∈ N with 2

9 N ≤ n < N :

Dmin
n = min{DJ : #J = N − n} = N − n

N
δk0 . (21)

Proof: Similarly as in Proposition 3.1 we obtain

‖ωi − ω j‖∞ ≥ δk0

for all i, j ∈ {1, . . . , N }, i �= j , and, hence,

DJ =
∑
i∈J

pi min
j /∈J

‖ωi − ω j‖∞ ≥ N − n

N
δk0

for each subset J of {1, . . . , N } with #J = N − n. Again we have to show that there exists
an index set J∗∗ such that #J∗∗ = N − n and such that the lower bound N−n

N δk0 is attained
with DJ∗∗ . We consider the index set

I∗∗ :=
{

i ∈ {1, . . . , N } :
(
δ

k0
ik0

= 0 ∧ δ
k0+1
ik0+1

�= 0 ∧ δ
k0+2
ik0+2

�= 0
)}

∨
(
δ

k0
ik0

�= 0 ∧ δ
k0+1
ik0+1

= 0 ∧ δ
k0+2
ik0+2

= 0
)}
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Figure 3. Detail of the subtree Tr∗∗.

and define J∗∗ := {1, . . . , N }\I∗∗. Let Tr∗∗ denote the tree consisting of all scenarios ωi

for i ∈ I∗∗. Figure 3 illustrates a detail of Tr∗∗ starting at a node at level k0 − 1 and ending
at level k0 + 2. For the cardinality of I∗∗ and J∗∗ we obtain that

#I∗∗ = 3k0−1 · 6 · 3K−k0−2 = 2

9
3K = 2

9
N and #J∗∗ = N − #I∗∗ = 7

9
N .

Similarly as in Proposition 3.1 it can be shown that there exists an index i ∈ I∗∗ for each
j ∈ J∗∗ such that ‖ωi − ω j‖∞ = δk0 holds. Hence, DJ∗∗ = #J∗∗

N δk0 = 7
9δk0 . By considering

subsets of J∗∗ having cardinality in [1, 7
9 N], the result follows for the general case, too.

Similar results are available under additional assumptions in case we have the Euclidean
norm instead of the maximum norm (see also [6]).

4. Numerical results

This section aims at reporting on numerical experience of testing and comparing the algo-
rithms described in Section 2, namely, on backward reduction of scenario sets, simultaneous
backward reduction, fast forward selection. All algorithms were implemented in C . The
test runs were performed on an HP 9000 (780/J280) Compute-Server with 180 MHz fre-
quency and 768 MByte main memory under HP-UX 10.20, i.e., the same configuration
as for the numerical tests in [4]. We consider the situation where the function c is defined
by c(ω, ω̃) := ‖ω − ω̃‖∞ (∀ω, ω̃ ∈ �) and the original discrete probability measure P is
given in scenario tree form. More precisely, we use a test battery of three binary and ternary
scenario trees, respectively. All test trees are regular and, thus, the results of Section 3 apply.
They will provide minimal (Fortet-Mourier) distances of P to reduced measures supported
by n scenarios if n is not too small.

Example 4.1 (Binary scenario tree). Let K = 10, d = 2, N = 210 = 1024, pi = 1
N , i =

1, . . . , N , and (δ1, . . . , δ10) = (0.5, 0.6, 0.7, 0.9, 1.1, 1.3, 1.6, 1.9, 2.3, 2.7). Figure 4 il-
lustrates the original scenario tree. Proposition 3.1 applies with k0 = 1 and Dmin

n = N−n
N

holds for each N
4 = 256 ≤ n < N .

Example 4.2 (Ternary scenario tree). Let K = 6, d = 3, N = 36 = 729, pi = 1
N , i =

1, . . . , N , and (δ1, . . . , δ6) = (0.7, 0.9, 1.2, 1.5, 2.6, 3.3). The tree is shown in figure 5.
Proposition 3.2 applies with k0 = 1 and Dmin

n = 0.7 N−n
N holds for each 2N

9 = 162 ≤ n < N .



200 HEITSCH AND RÖMISCH

Figure 4. Original binary scenario tree.

Figure 5. Original ternary scenario tree.

Example 4.3 (Ternary load scenario tree). We consider the scenario tree construction in
Section 4 of [4] for the weekly electrical load process of a German power utility (see
also [5, 8] for a description of a stochastic power management model and its solution by
Lagrangian relaxation). The original construction is based on an hourly discretization of the
weekly time horizon with branching points at tk = 24 k for k = 1, . . . , 6, and on a piece-
wise linear interpolation between the tk . The corresponding mean shifted tree is illustrated
in figure 6. For a moment, we disregard all non-branching points of the time discretization
and consider the corresponding mean shifted tree. The latter tree is a regular ternary sce-

nario tree with K = 6, N = 36 = 729, pi = 1
N for i = 1, . . . , N and δk = σtk

√
3

28−k+1 for
k = 1, . . . , 6, where σt denotes the standard deviation of the stochastic load process at time
t . Since, in this case, σt increases with increasing t , Proposition 3.2 applies with k0 = 1 and
it holds that Dmin

n = δ1 N−n
N for 2N

9 = 162 ≤ n < N . Finally, it remains to remark that, due
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Figure 6. Original load scenario tree.

to the piecewise linear structure of the scenarios and the choice of the maximum norm for
defining c, the minimal distance Dmin

n does not change when including all non-branching
points.

By using all 3 reduction algorithms the original scenario trees of the Examples 4.1–4.3
have been reduced. The corresponding tables (Tables 1–3) contain the relative accuracy
and the running time of each algorithm needed to produce a reduced tree with n scenarios.

Figure 7. Running time for reducing the load scenario tree.
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Table 1. Results of binary scenario tree reduction.

Backward of Simultaneous Fast
scenario sets backward forward

Number (n)
of scenarios ζ rel

c (%) Time (s) ζ rel
c (%) Time (s) ζ rel

c (%) Time (s)
Lower

bound (%)
Minimal

distance (%)

1 116.01 2 111.93 96 100.00 2 19.01 100.00

2 102.86 2 75.45 96 79.16 2 18.99 ∗
3 78.54 2 66.54 96 63.96 2 18.97 ∗
4 66.35 2 61.69 96 59.04 3 18.95 ∗
5 64.81 2 57.95 96 54.51 3 18.92 ∗

10 53.68 2 48.21 95 44.39 4 18.81 ∗
20 39.16 2 40.15 95 35.84 7 18.59 ∗
30 35.61 2 34.70 94 31.56 10 18.37 ∗
50 31.55 2 29.11 93 26.75 15 17.93 ∗

100 22.68 2 21.73 89 20.97 27 16.98 ∗
150 18.48 2 18.16 85 18.02 38 16.06 ∗
200 16.70 2 16.50 81 16.11 48 15.14 ∗
250 15.23 2 15.21 76 14.55 56 14.22 ∗
260 14.97 2 14.97 75 14.26 58 14.04 14.04

270 14.75 2 14.75 74 14.00 60 13.86 13.86

280 14.53 2 14.53 72 13.76 61 13.67 13.67

290 14.30 2 14.30 71 13.54 63 13.49 13.49

300 14.08 2 14.08 70 13.32 64 13.30 13.30

350 12.98 2 12.98 64 12.39 71 12.39 12.39

400 11.88 2 11.88 57 11.47 76 11.47 11.47

450 10.78 2 10.78 51 10.55 81 10.55 10.55

500 9.67 2 9.67 45 9.63 85 9.63 9.63

600 7.79 2 7.79 33 7.79 91 7.79 7.79

700 5.95 2 5.95 22 5.95 95 5.95 5.95

800 4.12 2 4.12 12 4.12 97 4.12 4.12

In addition, the tables provide the (relative) lower bound (12) and the (relative) minimal
distance Dmin

n in per cent if available. Here, “relative” means that the corresponding quantity
is divided by the minimal ζc-distance of P and one of its scenarios endowed with unit mass.
In particular, the relative accuracy is defined as the quotient of the ζc-distance of the original
measure P and the reduced measure Qn (having n scenarios) and of the ζc-distance of P
and the measure δωi ∗, i.e.,

ζ rel
c (P, Qn) := ζc(P, Qn)

ζc(P, δωi ∗)
, (22)
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Table 2. Results of ternary scenario tree reduction.

Backward of Simultaneous Fast
scenario sets backward forward

Number (n)
of scenarios ζ rel

c (%) Time (s) ζ rel
c (%) Time (s) ζ rel

c (%) Time (s)
Lower

bound (%)
Minimal

distance (%)

1 164.68 1 164.68 32 100.00 1 18.66 100.00

2 93.02 1 89.29 32 80.70 1 18.63 ∗
3 72.84 1 69.77 32 61.40 1 18.60 ∗
4 56.27 1 56.27 32 56.59 1 18.56 ∗
5 53.56 1 53.56 31 51.78 1 18.53 ∗
6 50.85 1 50.85 31 49.26 1 18.50 ∗

10 45.27 1 44.69 31 41.78 2 18.37 ∗
15 39.72 1 38.83 31 36.09 3 18.20 ∗
20 33.92 1 34.74 31 32.67 3 18.06 ∗
30 30.22 1 30.74 31 28.41 5 17.77 ∗
40 27.20 1 27.56 31 25.63 6 17.50 ∗
50 25.05 1 25.04 30 23.44 7 17.25 ∗

100 18.48 1 17.58 29 17.88 13 15.98 ∗
150 15.38 1 15.33 26 15.25 18 14.71 ∗
162 14.99 1 14.89 26 14.74 19 14.40 14.40

200 13.75 1 13.62 24 13.52 22 13.44 13.44

220 13.10 1 13.01 23 12.94 24 12.93 12.93

230 12.77 1 12.72 22 12.68 24 12.68 12.68

240 12.44 1 12.43 22 12.42 25 12.42 12.42

250 12.17 1 12.17 21 12.17 26 12.17 12.17

300 10.90 1 10.90 18 10.90 28 10.90 10.90

350 9.63 1 9.63 15 9.63 31 9.63 9.63

400 8.36 1 8.36 12 8.36 32 8.36 8.36

500 5.82 1 5.82 7 5.82 34 5.82 5.82

600 3.28 1 3.28 3 3.28 35 3.28 3.28

where {ωi }i=1,...,N denotes the set of scenarios of P and ωi∗ is defined by

ζc
(
P, δωi∗

) = min{DJ : #J = N − 1} = min
i∈{1,...,N }

ζc
(
P, δωi

)
. (23)

Our numerical experience shows that all algorithms work reasonably well. All algo-
rithms reduce 50% of the scenarios of P in an optimal way. As expected, simultaneous
backward reduction and fast forward selection produce more accurate trees than backward
reduction of scenario sets at the expense of higher running times. Our results also indicate
that fast forward selection is slightly more accurate than simultaneous backward reduc-
tion, although both backward reduction variants are sometimes competitive. Fast forward
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Table 3. Results of load scenario tree reduction.

Backward of Simultaneous Fast
scenario sets backward forward

Number (n)
of scenarios ζ rel

c (%) Time (s) ζ rel
c (%) Time (s) ζ rel

c (%) Time (s)
Lower

bound (%)
Minimal

distance (%)

1 121.09 1 117.85 31 100.00 1 16.31 100.00

2 98.80 1 90.19 31 80.83 1 16.28 ∗
3 75.88 1 72.25 31 61.65 1 16.24 ∗
4 73.75 1 59.71 31 56.94 1 16.21 ∗
5 62.04 1 55.45 31 52.22 1 16.18 ∗
6 56.57 1 52.24 31 49.57 1 16.14 ∗

10 46.86 1 45.20 31 41.93 2 16.01 ∗
15 39.69 1 40.22 30 35.76 3 15.85 ∗
20 35.16 1 36.75 30 32.32 3 15.69 ∗
30 30.08 1 31.20 30 28.11 5 15.36 ∗
40 27.77 1 27.74 30 25.25 6 15.13 ∗
50 25.58 1 25.13 29 23.02 7 14.90 ∗

100 19.52 1 17.31 28 16.86 13 13.76 ∗
150 14.52 1 13.96 25 13.67 18 12.67 ∗
162 13.29 1 13.26 25 13.15 19 12.40 12.40

200 12.04 1 11.77 23 11.74 22 11.57 11.57

220 11.39 1 11.16 22 11.18 24 11.13 11.13

230 11.06 1 10.93 22 10.95 24 10.91 10.91

240 10.73 1 10.70 21 10.72 25 10.70 10.70

250 10.48 1 10.48 21 10.49 26 10.48 10.48

300 9.38 1 9.38 18 9.38 28 9.38 9.38

350 8.29 1 8.29 15 8.29 31 8.29 8.29

400 7.20 1 7.20 12 7.20 32 7.20 7.20

500 5.01 1 5.01 7 5.01 34 5.01 5.01

600 2.82 1 2.82 3 2.82 35 2.82 2.82

selection works much faster than the implementation of forward selection in [4]. For in-
stance, fast forward selection required 35 seconds to determine a load scenario subtree
(Example 4.3) containing 600 scenarios instead of 8149 seconds reported in [4]. In par-
ticular, in the case of deeply reduced trees, fast forward selection works very fast and
accurately.

Furthermore, it has turned out that the lower bound is very good (even optimal) for large
n, but extremely pessimistic for small n. Further, we observe that the reduction of half of
the scenarios implies only a loss of about 10% of the relative accuracy. For instance, in case
of Example 4.2 it is possible to determine a subtree containing only 6 out of the originally
729 scenarios that still carries about 50% of the relative accuracy.
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Figure 8. Backward reduction/load tree.

Figure 9. Simultaneous backward reduction/load tree.

Figure 10. Fast forward selection/load tree.



206 HEITSCH AND RÖMISCH

Finally, we have a closer look at the numerical results of the load scenario tree reduction.
In particular, we compare the running times of simultaneous backward reduction and fast
forward selection in this case. Figure 7 displays the running times of both algorithms and
clearly shows their opposing algorithmic strategies. It reflects the corresponding theoretical
complexity results (Propositions 2.3 and 2.6) and shows that the running time of fast for-
ward selection is smaller if n ≤ N

4 (approximately). This confirms again that the forward
selection concept will be favourable if n is small. Figures 8–10 show the reduced load trees
with 15 scenarios obtained by all algorithms. The figures display the scenarios with line
width proportional to scenario probabilities.
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