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René Henrion · Werner Römisch
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Abstract. We study perturbations of a stochastic program with a probabilistic constraint and r-concave
original probability distribution. First we improve our earlier results substantially and provide conditions
implying Hölder continuity properties of the solution sets w.r.t. the Kolmogorov distance of probability dis-
tributions. Secondly, we derive an upper Lipschitz continuity property for solution sets under more restrictive
conditions on the original program and on the perturbed probability measures. The latter analysis applies to
linear-quadratic models and is based on work by Bonnans and Shapiro. The stability results are illustrated by
numerical tests showing the different asymptotic behaviour of parametric and nonparametric estimates in a
program with a normal probabilistic constraint.
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1. Introduction

We consider the following optimization problem with chance constraints:

(P ) min{g(x) | x ∈ X, P(ξ ≤ h(x)) ≥ p}.
Here ξ is an s-dimensional random vector defined on some probability space (�, A, P),
g : R

m → R is an objective, X ⊆ R
m is some abstract constraint set, h : R

m → R
s

defines a system of inequalities and p ∈ (0, 1) is some probability level. The meaning
of the probabilistic constraint above is that the system of inequalities ξ ≤ h(x) has to be
satisfied with probability p at least. The most prominent representative of (P ) is given
by linear constraints, i.e. h(x) = Ax for some matrix A. By µ := P ◦ ξ−1 ∈ P(Rs) (the
space of Borel probability measures on R

s) we denote the probability distribution of ξ .
Throughout the paper we shall make the following basic convexity assumptions:

g is convex, X is closed and convex, h has concave components and the
probability measure µ is r-concave for some r < 0. (BCA)
The latter property means that µr is a convex set function, i.e.,

µr(λA + (1 − λ)B) ≤ λµr(A) + (1 − λ)µr(B)
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holds true for all λ ∈ [0, 1] and for all Borel measurable and convex A, B ⊆ R
s such

that λA + (1 − λ)B is Borel measurable too. Note that many prominent multivariate
distributions (e.g. normal, Pareto, Dirichlet or uniform distribution on convex, compact
sets) share the property of being r-concave for some r < 0 (see [12]).

Introducing the distribution function of the probability measure µ as Fµ(y) = µ(z ∈
R

s |z ≤ y), the problem (P ) can be equivalently rewritten as

(P ) min{g(x) | x ∈ X, Fµ(h(x)) ≥ p}.
Usually, only partial information about µ is available, and (P ) is solved on the basis of
some estimation ν ∈ P(Rs) of µ. Typically, ν is chosen as a parametric or nonparametric
estimator of µ. Hence, rather than the original program (P ), some substitute

(Pν) min{g(x) | x ∈ X, Fν(h(x)) ≥ p}
is solved. Although, at least in principle, arbitrarily good approximations ν of µ can
be obtained, it is by no means obvious that the solutions of (Pν) will well approximate
those of (P = Pµ) as ν tends to µ. A counterexample illustrating ’wrong convergence’
or emptiness of approximating solutions is provided by Example 15 in the appendix.

Although the original data are supposed to be convex, we do not make any assump-
tions on the data of the perturbed problems (Pν). This allows to admit the important
class of empirical approximations which lack any convexity or smoothness properties.
Since, in general, the solutions of (Pν) are not unique under the assumptions (BCA),
we have to deal with solution sets. The dependence of solutions and optimal values on
the parameter ν is described by the set-valued mapping � : P(Rs) ⇒ R

m and the
extended-valued function ϕ : P(Rs) → R̄ via

�(ν) = argmin{g(x) | x ∈ X, Fν(h(x)) ≥ p}
ϕ(ν) = inf{g(x) | x ∈ X, Fν(h(x)) ≥ p}.

We are interested in conditions formulated for the data of the original problem (P ) such
that � and ϕ behave stable locally around the fixed measure µ. In order to measure
distances among parameters and among solutions, we mostly rely on the Kolmogorov
metric between probability measures

dK(ν1, ν2) = sup
z∈Rs

∣
∣Fν1(z) − Fν2(z)

∣
∣ (ν1, ν2 ∈ P(Rs))

and on the Hausdorff distance between closed subsets of R
m

dH (A, B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

(A, B ⊆ R
m).

Qualitative stability results in the sense of dH (�(µ), �(ν)) → 0 as dK(µ, ν) → 0 have
been obtained in [5] based on earlier works like [15] and [6]. These results guarantee that,
under the imposed conditions (see Theorem 1 below), cluster points of approximating
solutions will be solutions of the original problem and that any solution of the original
problem is the limit of a sequence of approximating solutions. For further work in this
direction we refer to [4, 9, 11, 17, 18].
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Beyond qualitative stability it is of much interest to know how fast solutions or
optimal values of approximating problems converge to original solutions, which is a
question of quantitative stability. Recall that � is Hausdorff-Hölder continuous with
rate κ > 0 at µ, if there are L, δ > 0 such that

dH (�(µ), �(ν)) ≤ L [dK(µ, ν)]κ for allν ∈ P(Rs), dK(µ, ν) < δ. (1)

There exists an immediate link between Hausdorff-Hölder continuity with rate κ of the
solution set mapping and exponential bounds for empirical solution estimates. Consider
independent s-dimensional random vectors ξ1, . . . , ξN on (�, A, P) having common
distribution µ. Then, νN(ω) := N−1 ∑N

i=1 δξi (ω) (with δz denoting the Dirac measure
placing mass one at z ∈ R

s) is an empirical measure approximating µ as N → ∞.
The deviation between the original solution set and its empirical approximation can be
estimated as follows (see Proposition 6 in [6]):

∃C > 0 ∀N ∈ N ∀ε > 0

P(dH (�(µ), �(νN)) ≥ ε) ≤ C [N · λ(ε, δ, κ, L)]s−0.5 exp(−2N · λ(ε, δ, κ, L)),(2)

where λ(ε, δ, κ, L) = [

min{δ, (ε/L)1/κ}]2
and δ, L, κ refer to (1).

Conditions for Hausdorff-Hölder continuity of � at rate κ = 1/2 were obtained
in [6] for the special case of linear chance constraints with convex-quadratic objective
and in [7] for the more general setting of the above data assumptions (BCA). The first
part of this paper is devoted to a substantial improvement of the previous results in two
directions: firstly, the mentioned results relate to so-called localized solution sets rather
than to the solution sets themselves. This technical restriction seemed to be a necessary
consequence of considering non-convex perturbations of the original convex measure.
It turns out, however, that one can exploit additional arguments provided in [5] in order
to get rid of localizations. Of course, statements on stability of solution sets themselves
as in (1) are easier to interpret than their localized counterparts. Secondly, all previous
results on quantitative stability of � essentially relied on the condition

�(µ) ∩ argmin{g(x) | x ∈ X} = ∅, (3)

which means that no solution of (P ) is a solution of the relaxed problem with the chance
constraint removed and vice versa. In this paper we shall obtain the same results without
requiring such kind of strict complementarity condition.

Specializing our setting to linear chance constraints, the best (largest) rate we can
obtain is κ = 1/2 provided that the random variable has at least dimension s = 2. Of
course, the exponential bound in (2) improves with increasing κ . Thus, it is of much
interest to find conditions ensuring even Hausdorff-Lipschitz continuity of � (κ = 1).
It is interesting to note that a Lipschitz rate results for linear chance constraints with
1−dimensional random variable ξ (but with arbitrary dimension of the decision variable
x). Yet, this observation seems to be too restrictive for practical relevance. The second
part of the paper investigates more reasonable settings and conditions for Lipschitz rates.
Two basic additional requirements turn out to be crucial then: firstly the approximating
measures ν can no longer be arbitrary but have to be restricted to class C1,1 in a sense to
be precised. Secondly, the strict complementarity condition (3) which was dispensable
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for the Hölder rate κ = 1/2, has to be incorporated into the set of conditions now. Doing
so, one may derive an upper Lipschitz result for solution sets, but now with respect to a
C1,1-type distance between probability measures which is stronger than the previously
used Kolmogorov distance. Such a result might be useful for studying the asymptotic
behaviour of nonparametric density estimators (cf. [16], Sect. 24) of the original distri-
bution µ.

2. Hölder Stability

The main result of this section is stated with the technical details of proof left to the
appendix. We start by recalling a result on qualitative stability of solution sets and quan-
titative stability of optimal values which is needed for the proof of our main theorem but
which is also of independent interest:

Theorem 1. (see [5], Th. 1) In addition to the basic convexity assumptions (BCA), let
the following conditions be satisfied at the fixed probability measure µ ∈ P(Rs):

1. �(µ) is nonempty and bounded.
2. There exists some x̂ ∈ X such that Fµ(h(x̂)) > p.

Then, � : P(Rs) ⇒ R
m is upper semicontinuous in the sense of Berge at µ, and

there exist constants L, δ > 0, such that

�(ν) �= ∅ and |ϕ(ν) − ϕ(µ)| ≤ LdK(ν, µ) for all ν ∈ P(Rs) with dK(ν, µ) < δ.

We note that the Lipschitz estimate for ϕ in the previous theorem is restricted in the
sense that one of the measures (µ) has to be kept fixed. A full Lipschitz result, where
both measures are allowed to vary freely around µ does not hold true under the given
assumptions (see Example 1 in [8]).
The key for obtaining quantitative stability results for solution set is a two-level decom-
position of the parametric program (Pν). To this aim, we introduce the following objects,
where V is an open ball containing �(µ) under the boundedness assumption of Theorem
1:

YV = [h(X ∩ cl V ) + R
s
−] ∩ F−1

µ ([p/2, 1])

π(y) = inf{g(x) | x ∈ X ∩ cl V, h(x) ≥ y},
σ (y) = argmin {g(x) | x ∈ X ∩ clV, h(x) ≥ y} (y ∈ YV )

.Y (ν) = argmin {π(y) | y ∈ YV , Fν(y) ≥ p} (ν ∈ P(Rs))

Note that σ and π denote the solution set and optimal value, respectively, of a lower level
parametric program, the parameter y of which refers to right-hand side perturbations of
the inequalities defined by the mapping h. In contrast, the multifunction Y represents the
solution set of an upper level parametric program, where the explicit inequality constraint
reduces to a description based on distribution functions Fν . This allows to separate the
influence of Fν and h in the inequality defining (Pν). The relation between lower and
upper level solution sets and optimal values on the one hand and overall solution set and
optimal value of (Pν) is characterized in Proposition 10 in the appendix.
Now, we are in a position to state the main result of this section which is proved in the
appendix (following the proof of Prop. 12).
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Theorem 2. In addition to the basic convexity assumptions (BCA), let the following
conditions be satisfied at some fixed µ ∈ P(Rs):

1. �(µ) is nonempty and bounded.
2. There exists some x̂ ∈ X such that Fµ(h(x̂)) > p.
3. F r

µ is strongly convex on some convex open neighbourhood U of Y (µ), where r < 0
is chosen from (BCA) such that µ is r- concave.

4. σ is Hausdorff Hölder continuous with rate κ−1 on YV .

Then, � is Hausdorff Hölder continuous with rate (2κ)−1 at µ, i.e., there are L, δ > 0
such that

dH (�(µ), �(ν)) ≤ L [dK(µ, ν)]1/(2κ) ∀ν ∈ P(Rs), dK(µ, ν) < δ.

The first assumption of Theorem 2 is of technical nature. It can be enforced, for instance,
by compactness of X (the nonemptiness of the compact constraint set is then a conse-
quence of the second assumption). The second assumption can be interpreted as a Slater
condition (see proof of Prop. 12). In special situations, its verification is possible without
explicit knowledge of the measure µ. For instance, in the situation of linear chance con-
straints under nonnegativity restrictions (h(x) = Ax, X = R

m+), it suffices to know that
A ≥ 0 and that A does not contain zero rows. Indeed, for v := A1 with 1 =(1, . . . , 1),
one has vi > 0 for all i. Consequently, limλ→∞ Fµ(λv) = 1. Since p < 1, there is
some λ > 0 such that Fµ(λv) > p. Hence, Fµ(Ax̂) > p for x̂ := λ1 ∈ X, which is
condition 2. in Theorem 2. An alternative situation occurs when X = R

m and A has
linearly independent rows.

The third assumption of Theorem 2 is satisfied for r- concave measures (r < 0)
for which F r

µ is strongly convex on bounded, convex sets (because Y (µ) is compact,
see Prop. 10). An example for such measure is the multivariate normal distribution with
independent components, as it is shown in Proposition 14 in the appendix. To prove the
same result in the correlated case appears to be much more involved. But even measures
lacking the mentioned property of ’global’ strong convexity may still satisfy the third
assumption. For instance, the uniform distribution over multidimensional rectangles is
r- concave for any r < 0 and F r

µ is strongly convex on this rectangle.All one has to know
then is that Y (µ) is contained in the rectangle too. Unfortunately, not all uniform distri-
butions over polytopes share the required strong convexity property (e.g., the uniform
distribution over the triangle conv{(1, 0), (0, 1), (1, 1)} is r- concave for any r < 0 but
F r

µ fails even to be strictly convex on this triangle). If h is linear, i.e., h(x) = Ax, then
the strong convexity assumption can be simplified in the sense that it is supposed to hold
on some convex open neighbourhood U of A(�(µ)).

In the last assumption of Theorem 2, it is assumed that some Hölder continuity of σ

with respect to the Hausdorff distance is known. This is the case, for instance, for linear
mappings h, polyhedral sets X and convex-quadratic functions g . Then the Hölder rate
for σ equals 1 (see Th. 4.2 in [10] or Prop. 2.4 in [7]) and we have the following Corollary
to Theorem 2:

Corollary 3. In addition to the basic convexity assumptions (BCA), let g be convex-
quadratic, h linear and X polyhedral. Then, supposing the first three assumptions of
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Theorem 2, � is Hausdorff Hölder continuous with rate 1/2 at µ, i.e., there are L, δ > 0
such that

dH (�(µ), �(ν)) ≤ L
√

dK(µ, ν) for allν ∈ P(Rs), dK(µ, ν) < δ.

Apart from this application to linear chance constraints defined by h, there is also a
chance of identifying a Hölder rate of σ in the more general situation considered here,
when h has concave components (see Prop. 2.4 in [7] for more details).

Example 16 in the appendix demonstrates that the Hölder rate obtained in Theorem
2 and in Corollary 3 is sharp. This observation is refined in Example 17 in the appendix,
in order to show that the Hölder rate 1/2 in Corollary 3 is realized, in particular, by
discrete approximations of µ. In both of these counter-examples, the objective function
was defined by a degenerate convex quadratic form. Using more sophisticated construc-
tions, one could verify the sharpness of the Hölder rate also in case of linear or strongly
convex objective functions g (e.g., Example 2.10 in [7]).

On the other hand, all these examples live in R
2. The following Proposition which

is proved in the appendix (following the proof of Prop. 13) confirms that the Hölder
rates of Theorem 2 and Corollary 3 can be improved as long as the random variable ξ is
one-dimensional (the decision variable x is arbitrary). Moreover, in this special case no
strong convexity assumption is needed for the measure µ (condition 3. in Theorem 2):

Proposition 4. In addition to the basic convexity assumptions (BCA), let s = 1 and
assume conditions 1.,2. and 4. of Theorem 2. Then, � is Hausdorff Hölder continu-
ous with rate κ−1 at µ. In the context of Corollary 3, � is even Hausdorff Lipschitz
continuous (rate κ = 1) at µ. �

3. Lipschitz Stability

The Lipschitz result of Proposition 4 (in the context of Corollary 3) is based on the
one-dimensionality of the random variable which is rather restrictive in stochastic pro-
gramming. In order to derive Lipschitz stability in a multivariate setting, one has to
impose further conditions and also to restrict the class of considered measures (for the
original as well as the approximating one). The subsequent analysis relies on general
stability results obtained in [1, 2]results to the setting which will be of interest here:

Theorem 5. (see [2], Th. 4.81) Consider the parametric optimization problem

min{f (x)|G(x, u) ∈ K},

where f : R
m → R, G : R

m × U → R
q , U is a Banach space, K = R

q1− × {0}q2 ,
q1 + q2 = q. Denote by S(u) := arg min{f (x)|G(x, u) ∈ K} the parametric solution
set and fix some parameter u0 ∈ U . Let the following conditions hold true:

1. f and G are C1,1 functions (differentiable with Lipschitz continuous derivative).
2. S(u0) �= ∅ and S is uniformly bounded in a neighbourhood of u0.



Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints 595

3. f satisfies a second order growth condition with respect to S(u0), i.e., there exist a
neighbourhood V of S(u0) and a constant c > 0 such that

f (x) ≥ f0 + cdist2(x, S(u0)) ∀x ∈ V, G(x, u0) ∈ K

(f0 = inf{f (x)|G(x, u0) ∈ K}).
4. For all x ∈ S(u0) it holds that

{∇xGi(x, u0)}i=1,... ,q2 ∪ {∇xGj (x, u0)}j∈I (x)

is a set of linearly independent vectors in R
m, where

I (x) = {j ∈ {1, . . . , q1}|Gj(x, u0) = 0}.
Then, S is upper Lipschitz at u0, i.e., there are constants L, δ > 0 such that

dist(x, S(u0)) ≤ L ‖u − u0‖ ∀x ∈ S(u) ∀u ∈ U, ‖u − u0‖ < δ.

In order to apply Theorem 5 to our parametric problem (Pν), we have to interpret the
parameter u as distribution functions Fν where ν ∈ P(Rs). However, condition 1.
requires to restrict the admissible class of measures to those having C1,1 distribution
function. More precisely, we introduce the following space:

C1,1
b (Rn) := {f ∈ C1(Rn)|f is bounded and has a bounded, Lipschitzian derivative}

With the norm

‖f ‖1,1
b := max

{

sup
x∈Rn

|f (x)| , sup
x∈Rn

‖∇f (x)‖ , sup
x,y∈Rn,x �=y

‖∇f (x) − ∇f (y)‖
‖x − y‖

}

,

C1,1
b (Rn) becomes a Banach space.

In the parametric problem (Pν), let us specify the general convexity assumptions
(BCA) in the following sense:

• The objective function g is convex-quadratic, i.e., g(x) = 〈x, Hx〉 + 〈c, x〉 for some
positive semidefinite (m, m)-matrix H (H = 0 possible) and some c ∈ R

m.
• h(x) = Ax, where A is a matrix of order (s, n).
• X is a polyhedron and has an explicit description

X = {x ∈ R
m| 〈

αj , x
〉 ≤ aj (j = 1, . . . , q̃1); 〈βi, x〉 = bi (i = 1, . . . , q̃2)}.

• For some fixed probability measure µ ∈ P(Rs) it holds that µ is r-concave for some
r < 0.

In this setting, the following result was proved in [6] (Th. 8):

Theorem 6. Let the following conditions be satisfied at µ fixed in the setting above:

1. �(µ) is nonempty and bounded.
2. F r

µ is strongly convex on some convex open neighbourhood U of the compact set
A(�(µ)).
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3. There exists some x̂ ∈ X such that Fµ(Ax̂) > p.
4. �(µ) ∩ argmin{g(x) | x ∈ X} = ∅.

Then, there exist a neighbourhood V of �(µ) and a constant c > 0 such that

g(x) ≥ ϕ(µ) + cdist2(x, �(µ)) ∀x ∈ V ∩ X, Fµ(Ax) ≥ p .

Now, we are in a position to formulate the desired stability result:

Theorem 7. Let the following conditions be satisfied at µ fixed in the setting above:

1. �(µ) is nonempty and bounded.
2. F r

µ is strongly convex on some convex open neighbourhood U of the compact set
A(�(µ)).

3. Fµ ∈ C1,1
b (Rs).

4. For all x ∈ �(µ), the following set is linearly independent, where J (x) = {j ∈
{1, . . . , q̃1}|

〈

αj , x
〉 = aj }:
{∇Fµ(Ax) · A} ∪ {αj }j∈J (x)

∪ {βi}i=1,... ,q2 .

5. �(µ) ∩ argmin{g(x) | x ∈ X} = ∅.

Then, the solution set mapping � is upper Lipschitz continuous at µ in the accord-
ingly restricted class of probability measures, i.e., there are constants L, δ > 0 such
that

dist(x, �(µ)) ≤ L
∥
∥Fµ − Fν

∥
∥1,1

b
∀x ∈ �(ν) ∀ν ∈ P(Rs), Fν ∈ C1,1

b (Rs),
∥
∥Fµ − Fν

∥
∥1,1

b
< δ.

Proof. We are going to apply Theorem 5 with U := C1,1
b (Rs), u0 := Fµ, q1 := q̃1 + 1,

q2 := q̃2, G1(x, u) := p − u(Ax), Gj(x, u) := 〈

αj−1, x
〉

(j = 2, . . . , q̃1 + 1),
Gi(x, u) := 〈βi, x〉 (i = 1, . . . , q̃2). Then, obviously, the constraint sets in Theorems
5 and 7 coincide for all u := Fν ∈ C1,1

b (Rs), ν ∈ P(Rs):

G(x, u) ∈ K ⇐⇒ x ∈ X, u(Ax) ≥ p.

In particular, S(u) = �(ν). The partial derivatives of G are calculated as

∇xG(x, u) =




−∇u(Ax)A

αT
j (j = 1, . . . , q̃1)

βT
i (i = 1, . . . , q̃2



 , ∇uG(x, u) =
(

L

0q̃1+q̃2

)

,

where Lu = −u(Ax). From the definition of C1,1
b (Rs) one easily verifies that G belongs

to the class C1,1, hence, assumption 1. of Theorem 5 is satisfied.
Next, we show:

there is some x̂ ∈ X such that Fµ(Ax̂) > p. (4)

To this aim, choose some x ∈ �(µ) according to condition 1. in our theorem. Then,
x ∈ X and Fµ(Ax) ≥ p. Owing to condition 4., there is a solution v of the linear system

〈∇(Fµ ◦ A)(x), v
〉 = 1,

〈

αj , v
〉 = 〈βi, v〉 = 0 (j ∈ J (x), i = 1, . . . , q̃2).
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Then, for ε > 0 sufficiently small, x̂ := x + εv satisfies (4). Now, (4) along with condi-
tion 1. entails upper semicontinuity of � at µ via Theorem 1, whence assumption 2. of
Theorem 5. The quadratic growth of f required in assumption 3. of Theorem 5 follows
from Theorem 6 together with (4) upon taking into account that f0 = ϕ(µ). Finally,
assumption 4. of Theorem 5 follows immediately from condition 4. in our theorem (recall
that ∇xG1(x, u0) = −∇Fµ(Ax) · A). �
When comparing the last Theorem with Corollary 3 which imposes the same data require-
ments, the stronger Lipschitz result is mainly based on two additional assumptions (leav-
ing apart the condition 4. of linear independence in Theorem 7 which can be understood
as a modification of the Slater type condition in the previous results): firstly, condition
5. requires that the chance constraint Fµ(Ax) ≥ p affects the solution of the problem.
If this condition is violated, no Lipschitz rate can be expected for solutions even when
all remaining assumptions of Theorem 7 hold true. This can be seen from a small modi-
fication of Example 16 upon replacing the uniform distribution there by some bivariate
normal distribution with independent components in order to meet the data requirements
of Theorem 7. In that example, the solution set of the fixed problem with chance con-
straint is the same as the solution set of the unconstrained problem with removed chance
constrained. As a consequence, a Hölder rate of 1/2 results.

Secondly, the probabiliy measures in Theorem 7 are restricted to have distribution
functions in the space C1,1

b (Rs). This applies for the fixed measure µ as well as to its
perturbations ν (see statement of the result in Theorem 7) Again, without such restriction
no Lipschitz rate could be obtained. We refer once more to Example 2.10 in [7] (which
would have to be slightly modified in the same sense as before). In this example, all
assumptions of Theorem 7 are satisfied. However the perturbed measures are just Lips-
chitz continuous and do not belong to C1,1

b (Rs). They are constructed in such a way that
the perturbed solution set �(ν) grows at a Hölder rate of 1/2 away from the unperturbed
solution set �(µ).

Although the result in Theorem 7 is stronger than that of Corollary 3 in that it
improves the Hölder rate towards a Lipschitz rate, it provides only an upper estimate
whereas the estimate of Corollary 3 is two-sided by relying on the Hausdorff distance.
Furthermore, even the upper estimate of Theorem 7 is slightly weaker than its one-sided
counterpart in Corollary 3, since, by definition of ‖·‖1,1

b and of dK , one has

∥
∥Fν1 − Fν2

∥
∥1,1

b
≤ dK(ν1, ν2) for all ν1, ν2 ∈ P(Rs), Fν1 , Fν2 ∈ C1,1

b (Rs).

Of course, imposing new restrictions raises the question of which class of probabil-
ity measures still meets the new assumptions. Theorem 7 requires that both the original
and all the perturbed measures have distribution functions in C1,1

b (Rs). The following
proposition identifies two classes of such measures:

Proposition 8. Let ν ∈ P(Rs).

1. If ν is a nondegenerate multivariate normal distribution, then Fν ∈ C1,1
b (Rs).

2. If ν is the distribution of a random vector with independent components and if the
1-dimensional distributions νi ∈ P(R) of these components have bounded and Lips-
chitzian densities fνi

, then Fν ∈ C1,1
b (Rs).
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Proof. Ad 1.: Without loss of generality, one may consider standard normal distributions
(zero mean and unit variances). It is well known then (e.g. [12], p. 203), that the partial
derivatives of Fν can be calculated as

∂Fν

∂xi

(x) = F̃ν̃ (x̃i ) · f (xi) (i = 1, . . . , s),

where F̃ν̃ is the distribution function of some nondegenerate multiv ν̃ ∈ P(Rs−1),
x̃i ∈ R

s−1 and f is the density of the 1-dimensional standard normal distribution.
Taking into account that Fν, F̃ν̃ and f are bounded (say by some M > 0), it follows
immediately that Fν ∈ C1(Rs) is bounded and has bounded derivative. Since F̃ν̃ (as
a nondegenerate multivariate normal distribution function) and f are Lipschitzian on
R

s−1 and R, respectively, it follows that the partial derivatives of Fν are Lipschitzian
on R

s (as products of functions which are bounded and Lipschitzian on R
s). Hence,

Fν ∈ C1,1
b (Rs).

Ad 2.: Clearly, Fν is bounded as a distribution function. By the assumption of inde-
pendence, Fν = Fν1 · · · Fνs , where Fνi

are the marginal distributions of ν. Since the
marginal densities fνi

were assumed to be Lipschitzian, the Fνi
and, hence, Fν itself are

of class C1. The assumed boundedness of the fνi
yields that the Fνi

are Lipschitzian.
Furthermore,

∂Fν

∂x1
= fν1 · Fν2 · · · Fνs .

Therefore, ∂Fν

∂x1
is bounded and Lipschitzian according to the assumptions. The same

argumentation applies to the other partial derivatives, whence Fν ∈ C1,1
b (Rs). �

4. Illustration of the Stability Results

In this section we illustrate the obtained stability result for a simple 2-dimensional
example. We consider the problem

min{x1 + x2|P(ξ1 ≤ x1, ξ2 ≤ x2) ≥ 1/2},
where ξ is assumed to have a distribution µ which is normal with independent com-
ponents of mean zero and unit variance. Clearly, this problem satisfies the basic data
assumptions (BCA). The solution set of this problem consists of a singleton �(µ) =
{q, q}, where q ≈ 0.55 is the 1/

√
2-quantile of the 1-dimensional standard normal dis-

tribution. First, we check the assumptions of Theorem 2. Obviously, �(µ) is nonempty
and bounded. Next, a Slater point certainly exists, any x̂ with x̂1 = x̂2 > q satisfies
Fµ(x̂) > Fµ(q, q) = 1/2. Furthermore, as µ is a normal distribution with independent
components, F r

µ is strongly concave for any r < 0 and on any bounded, convex set (see
remarks below Theorem 2). As a consequence, F r

µ is strongly concave on some convex,
open neighbourhood of �(µ). Summarizing, the first three assumptions of Theorem
2 are satisfied. Finally, in our example, g is linear (in particular: convex-quadratic),
X = R

2 is trivially polyhedral and h is linear as the identity. Hence, Corollary 3 guar-
antees the Hausdorff Hölder continuity with rate 1/2 of the solution set mapping � for
any approximation ν ∈ P(Rs) of µ.
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Fig. 1. Illustration of stability results for simulated data

We want to focus now on two specific approximations both of which are based on a
sample Z1, . . . ZN of observations of ξ . The empirical measure derived from this sample
is defined as ν = N−1 ∑N

i=1 δZi
, where δZ is the Dirac measure placing mass one at the

point Z. The empirical measure is a suitable approximation when no information at all
is available about the true measure µ. If, on the other hand, partial information about µ

is given, better adapted approximations may be favorable. For instance, if we know that
µ in our problem is some nondegenerate multivariate normal distribution (but do not
know its parameters), then a parametric approximation defining a normal distribution
with mean and (co-) variances estimated from Z1, . . . ZN may be useful. We want to
symbolize this parametric approximation by ν′. Of course, with increasing sample size
N , dK(ν, µ) and dK(ν′, µ) will tend to zero in a probabilistic sense, and dK(ν′, µ) will
do so even faster than dK(ν, µ). The issue we want to address here is convergence of
the approximating solution sets, i.e., dependence of dH (�(ν), �(µ)) on dK(ν, µ) . To
this aim, several thousand samples of ξ were simulated according to its distribution µ.
The sample size varied up to a few hundred.
Figure 1 a) illustrates the results for the parametric (black dots) and empirical (gray dots)
approximations. Clearly, in both cases the approximating solutions converge to the true
solution when the approximating measure converges to the true measure. Indeed, this
kind of qualitative stability is already ensured by the first two assumptions of Theorem
2 via Theorem 1. From a quantitative point of view, however, the solution sets of para-
metric approximations seem to converge much faster (in the worst case) than those of
empiric approximation. This is particularly obvious in a region close to the origin which
has been magnified in Figure 1 b). According to the diagram, there is no doubt that there
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exists an upper Lipschitz estimation for the parametric approximation, whereas in case
of the empiric estimation increasingly large ratios between the two distances seem to
be possible when dK(ν, µ) tends to zero. This suggests a Non-Lipschitzian relation in
accordance with the observation from Example 17 that discrete approximations may
lead to Hölder rate 1/2 for the stability of solution sets. At least, Corollary 3 guarantees
that the corresponding cloud of points lies below some function α

√
dK(ν, µ), where

α > 0 is sufficiently large.
As far as the parametric approximation is concerned, its Lipschitzian behavior is

supported by Theorem 7. To see this, recall that both the original and the approximat-
ing measures are normal distributions, hence, their distribution functions belong to the
space C1,1

b (Rs) according to Proposition 8. Furthermore, the gradient of a (nondegener-
ate) normal distribution function is always nonzero which yields condition 4. of Theorem
7. Finally, owing to the fact that the objective function in our example is linear, condition
5. of Theorem 7 is trivially fulfilled. It has to be noted, that Theorem 7 provides a Lips-
chitz result with respect to the distance

∥
∥Fµ − Fν

∥
∥1,1

b
, whereas Figure 1 b) even suggests

a Lipschitzian relation with respect to the stronger Kolmogorov distance dK(µ, ν).
As far as optimal values are concerned, Theorem 1 guarantees a Lipschitzian esti-

mation for any approximating measure. This is observed empirically in Figure 1 c) for
the example of empirical approximation (the better behaved parametric case is omitted
here).

Finally, we may reduce our example to a 1-dimensional setting, i.e., to the problem

min{x|P(ξ ≤ x) ≥ 1/2},
where ξ is assumed to have a standard normal distribution µ. In this situation, the depen-
dence of Hausdorff distances between solution sets on Kolmogorov distances between
measures is seen from Figure 1 d) to be of Lipschitzian nature for both types of approx-
imations (black dots on top of gray dots). Again, this observation is supported by our
results via Proposition 4, according to which the Lipschitz rate results for any approxi-
mating measure.

5. Appendix

Lemma 9. For r < 0 and ν ∈ P(Rs) it holds: If Fν(y) ≥ w > 0 for all y ∈ Q ⊆ R
s ,

then there exist constants c, δ > 0 such that
∣
∣F r

ν (y) − F r
ν′(y)

∣
∣ ≤ cdK(ν, ν′) ∀y ∈ Q ∀ν′ ∈ P(Rs), dK(ν, ν′) < δ.

Proof. Note that
∣
∣ur − vr

∣
∣ ≤ |r| max{ur−1, vr−1} |u − v| ∀u, v > 0.

Then, choosing δ := w/2, one has

Fν′(y) ≥ w/2 > 0 ∀y ∈ Q ∀ν′ ∈ P(Rs), dK(ν, ν′) < δ.

Fix c as |r| (w/2)r−1. �
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The next lemma provides a two-level decomposition for solutions and optimal values of
the parametric problem (Pν):

Proposition 10. (see [5], Lemma 1) Under the assumptions of Theorem 1 let V be an
open ball containing �(µ). With the notations introduced in front of Theorem 2 it holds
that

1. YV is convex and compact.
2. π is convex, finite and lower semicontinuous on YV .
3. There is some δ > 0 such that for all ν ∈ P(Rs) with dK(µ, ν) < δ

ϕ(ν) = inf{π(y) | y ∈ YV , Fν(y) ≥ p} (5)

�(ν) = σ(Y (ν)) (6)

4. Y : P(Rs) ⇒ R
s is upper semicontinuous at µ.

The following Proposition allows separately to study quantitative stability of lower and
upper level solution sets, respectively, in order to derive quantitative stability of the
overall solution set:

Proposition 11. In addition to the assumptions of Theorem 1 suppose that

1. Y is Hausdorff Hölder continuous with rate 1/2 at µ, i.e., there are constants ρ, δ > 0
such that

dH (Y (µ), Y (ν)) ≤ ρd
1/2
K (µ, ν) ∀ν ∈ P(Rs), dK(µ, ν) < δ.

2. σ is Hausdorff Hölder continuous with rate κ−1 on YV , i.e., there exists L > 0 such
that

dH (σ(z), σ (y)) ≤ Ldκ−1
(y, z) ∀z, y ∈ YV .

Then, � is Hausdorff Hölder continuous with rate (2κ)−1 at µ. More precisely, it
holds that

dH (�(µ), �(ν)) ≤ Lρκ−1
[dK(µ, ν)](2κ)−1 ∀ν ∈ P(Rs), dK(µ, ν) < δ.

Proof. For a nonempty and closed subset Q ⊆ R
s and y ∈ R

s denote by projQ(y) the
projection of y onto Q. Note that for ν ∈ P(Rs) with dK(µ, ν) < δ and small enough
δ, one has �(ν) �= ∅ (Theorem 1) and Y (ν) �= ∅ by (6). Furthermore, the sets Y (ν) are
closed. Indeed, by definition and by (5), they can be represented as

Y (ν) = {y ∈ YV |Fν(y) ≥ p} ∩ {y ∈ YV |π(y) ≤ ϕ(ν).

The first set on the right is closed due to the upper semicontinuity of distribution func-
tions and by statement 1. of Proposition 10. The second set is closed because of the
lower semicontinuity of π (statement 2. of Proposition 10). Consequently, proj applies
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to these sets Y (ν). Recalling that Y (ν) ⊆ YV , it follows from the assumptions and from
(6), that for ν ∈ P(Rs) with dK(µ, ν) < δ

dH (�(µ), �(ν)) = max{ sup
x∈�(µ)

d(x, �(ν)), sup
x′∈�(ν)

d(x′, �(µ))}

= max{ sup
y∈Y (µ)

sup
α∈σ(y)

d(α, σ (Y (ν))), sup
y′∈Y (ν)

sup
β∈σ(y′)

d(β, σ (Y (µ)))}

≤ max{ sup
y∈Y (µ)

sup
α∈σ(y)

d(α, σ (projY(ν)(y))),

sup
y′∈Y (ν)

sup
β∈σ(y′)

d(β, σ (projY(µ)(y′)))}

≤ L max{ sup
y∈Y (µ)

dκ−1
(y, projY(ν)(y)), sup

y′∈Y (ν)

dκ−1
(y′, projY(µ)(y′))}

≤ L

[

max{ sup
y∈Y (µ)

d(y, Y (ν)), sup
y′∈Y (ν)

d(y′, Y (µ))}
]κ−1

≤ L [dH (Y (µ), Y (ν))]κ
−1

≤ Lρκ−1
[dK(µ, ν)](2κ)−1

.

�
The next proposition, which may be considered as the technical core of our analysis,
provides a verifiable condition for the upper level solution set Y being Hausdorff Hölder
continuous with rate 1/2. The key here is an argument of strong convexity.

Proposition 12. Under the assumptions of Theorem 1 consider the parametric program

(P̃ν) min {π(y) | y ∈ YV , Fν(y) ≥ p} (ν ∈ P(Rs))

near µ ∈ P(Rs), the solution set mapping and optimal value function of which are
given by Y and ϕ, respectively (see Prop. 10). Let the following assumption be satisfied
in addition, where r < 0 refers to the exponent of concavity of µ

• F r
µ is strongly convex on some convex open neighbourhood U of Y (µ).

Then, Y is Hausdorff Hölder continuous with rate 1/2 at µ.

Proof. Setting bν(y) := F r
ν (y) − pr for ν ∈ P(Rs), the original problem (P̃µ) may be

written as

(P̃µ) min {π(y) | y ∈ YV , bµ(y) ≤ 0}.
As a consequence of the r- concavity of µ (where r < 0), F r

µ is a convex (possibly
extended-valued) function. Therefore, bµ is a convex function finite-valued on YV (see
definition of YV ). Then, in view of 1. and 2. in Proposition 10, (P̃µ) is a convex program
which satisfies the Slater condition bµ(ŷ) < 0 for some ŷ ∈ YV . Indeed, we may choose
x∗ ∈ �(µ) �= ∅ (first assumption of Th. 1), hence x∗ ∈ X ∩V and bµ(h(x∗)) ≤ 0. Fur-
thermore, x̂ ∈ X taken from the second assumption of Theorem 1 satisfies bµ(h(x̂)) < 0.
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With Fµ being nondecreasing as a distribution function, the composition F r
µ ◦ h is con-

vex too due to F r
µ being nonincreasing (r < 0) and to h having concave components.

Therefore, bµ ◦ h is convex and, for sufficiently small λ > 0, xλ := λx̂ + (1 − λ)x∗
satisfies bµ(h(xλ)) < 0. Now, one may take ŷ := h(xλ).

Statement 4. in Proposition 10 and Lemma 9 guarantee that for some c, δ′ > 0

Y (ν) ⊆ U,
∣
∣bν(y) − bµ(y)

∣
∣ ≤ c dK(µ, ν) ∀y ∈ YV , ∀ν ∈ P(Rs), dK(µ, ν) < δ′.

(7)

Finally, the additional assumption on strong convexity of F r
µ on U means in particular

that

bµ(y1/2 + y2/2) ≤ bµ(y1)/2 + bµ(y2)/2 − ρ ‖y1 − y2‖2 ∀y1, y2 ∈ U (8)

for some ρ > 0. We proceed by case distinction with respect to the relation between
Y (µ) and the solution set Q := arg min{π(y) | y ∈ YV } of the relaxed problem (P̃µ)

where the chance constraint bµ(y) ≤ 0 is omitted.

Case 1. Y (µ)∩ Q = ∅.

Choose some y∗ ∈ Y (µ) (recall that Y (µ) �= ∅ due to �(µ) �= ∅ and to (6)). Since
π and bµ are finite-valued on YV (statement 2. of Prop. 10 and ϕ(µ) = π(y∗) > −∞
(see (5)), the Slater condition shown above for problem (P̃µ) ensures the existence of a
Lagrange multiplier λ∗ ≥ 0 such that (cf. [13], Cor. 28.2.1)

π(y∗) = min {π(y) + λ∗bµ(y) | y ∈ YV } and λ∗bµ(y∗) = 0. (9)

By the case 1- assumption, one has λ∗ > 0 and so π + λ∗bµ is strongly convex on
YV ∩ U due to the additional assumption in this lemma. This implies

ρ̃
∥
∥y − y∗∥∥2 ≤ π(y) + λ∗bµ(y) − π(y∗) for all y ∈ YV ∩ U. (10)

for some ρ̃ > 0 (due to λ∗bµ(y∗) = 0 and y∗ being a minimizer in (9)). In particular,
y∗ is the unique minimizer of (P̃µ), i.e., Y (µ) = {y∗}. For an arbitrary ν taken from
(7), (10) applies. Using the results of Proposition 10 and the fact that bν(y) ≤ 0 for all
y ∈ Y (ν) one arrives at the asserted Hölder continuity with respect to the Hausdorff
distance:

dH (Y (µ), Y (ν)) = sup
y∈Y (ν)

d(y, y∗)≤ ρ̃−1/2 sup
y∈Y (ν)

[

π(y) − π(y∗) + λ∗(F r
µ(y) − pr)

]1/2

≤ ρ̃−1/2 sup
y∈Y (ν)

[

ϕ(ν) − ϕ(µ) + λ∗(bµ(y) − bν(y))
]1/2

≤ ρ̃−1/2 [

LdK(µ, ν) + λ∗cdK(µ, ν)
]1/2

≤ ρ̃−1/2(L + λ∗c)1/2dK(µ, ν)1/2

for all ν ∈ P(Rs), dK(µ, ν) < min{δ′, δ} and with L, δ > 0 from Theorem 1.

Case 2. Y (µ) ∩ Q �= ∅. In this case, Y (µ) has the simple representation

Y (µ) = {y ∈ Q | bµ(y) ≤ 0}. (11)

Note that Q is closed and convex by the properties of π and YV stated in Proposition 10.
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Case 2.1. ∃ ȳ ∈ Y (µ) , bµ(ȳ) < 0. Then, ȳ is a Slater point of the constraint
bµ(y) ≤ 0 with respect to Q. Then, by the Robinson-Ursescu Theorem (cf. [14]), the
inverse H−1 of the multifunction

H(t) := {y ∈ Q|bµ(y) ≤ t}.

is metrically regular at all points (y, 0) with y ∈ Y (µ). This amounts to the existence of
neighbourhoods Uy and constants εy, Ly > 0 such that

d(y′, H(t)) ≤ Ly max{bµ(y′) − t, 0} ∀t, t ′ ∈ (−εy, εy) ∀y′ ∈ Q ∩ Uy (12)

Now, let ν ∈ P(Rs) be arbitrary such that dK(µ, ν) < δ′ with δ′ from (7). If y′ ∈
H(−cdK(µ, ν)) (where c refers to (7)), then y′ ∈ Q and

bµ(y′) ≤ −cdK(µ, ν) ≤ min{0, bµ(y′) − bν(y
′)}

by definition of H and of dK(µ, ν). It follows that

H(−cdK(µ, ν)) ⊆ Y (µ) ∩ Y (ν). (13)

Combining (12) with (13), we obtain for all ν ∈ P(Rs) with dK(µ, ν) < min{δ′, c−1εy}:

max{d(y′, Y (µ)), d(y′, Y (ν))} ≤ d(y′, H(−cdK(µ, ν)))

≤ Ly max{bµ(y′) + cdK(µ, ν), 0}
≤

{

LycdK(µ, ν) ∀y′ ∈ Y (µ) ∩ Uy

2LycdK(µ, ν) ∀y′ ∈ Y (ν) ∩ Uy
,

where in the second estimation the relation bµ(y′) ≤ bµ(y′) − bν(y
′) ≤ cdK(µ, ν) was

used (see 7). Summarizing, each y ∈ Y (µ) is supplied with neighbourhoods Uy of y

and constants ε̃y , L̃y > 0 such that

d(y′, Y (ν)) ≤ L̃ydK(µ, ν) ∀y′ ∈ Y (µ) ∩ Uy ∀ν ∈ P(Rs), dK(µ, ν) < ε̃y

d(y′, Y (µ)) ≤ L̃ydK(µ, ν) ∀y′ ∈ Y (ν) ∩ Uy ∀ν ∈ P(Rs), dK(µ, ν) < ε̃y .

The compactness of Y (µ) ⊆ YV (statement 1. of Prop. 10) then allows to extract con-
stants ε∗, L > 0 and an open set Ũ containing Y (µ) such that for all ν ∈ P(Rs) with
dK(µ, ν) < ε∗ one has

d(y, Y (ν)) ≤ LdK(µ, ν) ∀y ∈ Y (µ)

d(y, Y (µ)) ≤ LdK(µ, ν) ∀y ∈ Y (ν) ∩ Ũ .

By upper semicontinuity of Y (statement 4. of Prop. 10), one has Y (ν) ⊆ Ũ for all
ν ∈ P(Rs), dK(µ, ν) < ε′ with some ε′ > 0. Hence, even Hausdorff Lipschitz conti-
nuity of Y at µ follows from the above inequalities: dH (Y (µ), Y (ν)) ≤ LdK(µ, ν) for
all ν ∈ P(Rs), dK(µ, ν) < min{ε∗, ε′}. This, of course, implies the asserted Hölder
continuity with rate 1/2.
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Case 2.2. bµ(y) = 0 ∀y ∈ Y (µ).
The convexity of Y (µ) along with (8) yield that Y (µ) reduces to a singleton, say Y (µ) =
{y∗}. Then, bµ(y∗) = 0 and y∗ ∈ Q ⊆ YV by (11). For any ν satisfying (7), let
y ∈ Y (ν) ⊆ U be arbitrary, hence y ∈ YV and bν(y) ≤ 0. Put

λ′ := inf{λ ≥ 0 | bµ(λy∗ + (1 − λ)y) ≤ 0}.
Then, λ′ ∈ [0, 1]. Define y′ := λ′y∗ + (1 − λ′)y. Assume first that λ′ > 0. Since the
convex function α(λ) = bµ(λy∗ + (1 − λ)y) is upper semicontinuous on [0, 1] and
continuous on (0, 1), it follows that bµ(y′) = 0. Since, for λ′ > 0, bµ(y) > 0, one has
y′ �= y and bµ(y/2+y′/2) > 0 according to the definition of y′. Then, (7) and (8) yield

cdK(µ, ν) ≥ bµ(y) − bν(y) ≥ bµ(y)/2 + bµ(y′)/2 ≥ bµ(y/2 + y′/2) + ρ
∥
∥y − y′∥∥2

≥ ρ
∥
∥y − y′∥∥2

,

whence
∥
∥y − y′∥∥ ≤

√

c/ρ
√

dK(µ, ν). (14)

In the excluded case of λ′ = 0, the same inequality follows trivially from y′ = y. Now,
we want to estimate the distance between y′ and y∗, hence, without loss of generality,
we may assume that y′ �= y∗. Then, λ′ < 1 and y′ /∈ Q (if y′ ∈ Q, then y′ ∈ Y (µ)

due to bµ(y′) = 0 and (11), whence a contradiction to Y (µ) = {y∗}). Now, y /∈ Q

since y∗ ∈ Q and Q is convex (otherwise the contradiction y′ ∈ Q). Consequently,
π(y) > π(y∗). Put, y′′ := y∗/2+ y′/2, hence y′′ = λ′+1

2 y∗ + 1−λ′
2 y, which is a convex

combination of y∗ and y. Then, y′′ ∈ YV ∩ U due to convexity of YV ∩ U . It follows
that

π(y′′) ≤ λ′ + 1

2
π(y∗) + 1 − λ′

2
π(y) < π(y).

If bν(y
′′) ≤ 0, then a contradiction to y ∈ �(ν) results, hence bν(y

′′) > 0. Again
referring to (7) and (8), it follows that

cdK(µ, ν) ≥ bν(y
′′) − bµ(y′′) ≥ −bµ(y∗/2 + y′/2) ≥ −(bµ(y∗) + bµ(y′))/2

+ ρ
∥
∥y∗ − y′∥∥2 = ρ

∥
∥y∗ − y′∥∥2

.

Combining this with (14), one arrives at the desired estimation

dH (Y (µ), Y (ν)) = sup
y∈Y (ν)

∥
∥y − y∗∥∥ ≤ 2

√

c/ρ
√

dK(µ, ν). �

Collecting the previous results allows to prove our main theorem on Hölder rates:

Proof of Theorem 2. The first two assumptions of the Theorem serve to apply Theorem
1 in Propositions 10, 11 and 12. By virtue of the third assumption, Proposition 12 guar-
antees Hausdorff Hölder continuity of Y (upper level solution set) at µ with rate 1/2.
Combining this with the last assumption of the Theorem (Hölder rate for the lower level
solution set), Proposition 11 provides the stated result. �
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In the case of a 1-dimensional random variable, the assertion of Proposition 12 can be
sharpened even without the strong convexity assumption made there:

Proposition 13. If s = 1 then, under the assumptions of Theorem 1, Y is Hausdorff
Lipschitz continuous (i.e., Hausdorff Hölder continuous with rate κ = 1) at µ.

Proof. We consider the parametric program from Proposition 12 which Y is the solution
mapping of:

(P̃ν) min {π(y) | y ∈ YV , Fν(y) ≥ p} (ν ∈ P(R))

We have YV = [a, b] for some a, b ∈ R (see 1. in Prop. 10). Choosing some x∗ ∈
�(µ) ⊆ X according to the assumption of Theorem 1 , it follows that h(x∗) ∈ YV �= ∅,
hence a ≤ b. Since Fν is upper semicontinuous and nondecreasing as a distribution
function, one gets

{y ∈ R | Fν(y) ≥ p} = [α(ν), ∞), α(ν) := min{y ∈ R | Fν(y) ≥ p}.
Clearly, {α(ν)} is the solution set of a parametric program of type (Pν) (see introduc-
tion) which at the fixed measure µ satisfies the basic data assumptions (BCA) (with
g(x) = h(x) = x and X = R). Since p ∈ (0, 1) and Fµ is a distribution function, there
exists some ȳ ∈ R with Fµ(ȳ) > p. Now, Theorem 1 allows to derive the existence of
L, δ > 0 such that

|α(ν) − α(µ)| = |ϕ(ν) − ϕ(µ)| ≤ LdK(µ, ν) ∀ν ∈ P(R), dK(µ, ν) < δ,

where ϕ(ν) refers to the optimal value function of the parametric problem defining α(ν).
Summarizing, we may rewrite (P̃ν) as

(P̃ν) min {π(y) | y ∈ [b(ν), b]} (ν ∈ P(R)),

where b(ν) := max{α(ν), a} satisfies

|b(ν) − b(µ)| ≤ LdK(µ, ν) ∀ν ∈ P(R), dK(µ, ν) < δ. (15)

We argue that b(ν) ≤ b for all ν ∈ P(R) with dK(µ, ν) < δ̃ and some δ̃ > 0. This
is obvious from (15) if b(µ) < b. If b(µ) = b, then we refer to some ŷ ∈ YV with
Fµ(ŷ) > p (see proof of Prop. 12). Consequently, a = b = ŷ and Fµ(b) > p. Then,
Fν(b) ≥ p and, hence, b(ν) ≤ b for all ν ∈ P(R) with dK(µ, ν) < δ̃ := Fµ(b) − p.

Now, π is a lower semicontinuous, convex and finite function on the nonempty
intervals [b(ν), b] ⊆ YV (see Prop. 10). In particular, Y (ν) �= ∅ for all ν ∈ P(R) with
dK(µ, ν) < δ̃. Elementary calculus shows that

dH (Y (ν), Y (µ)) ≤ |b(ν) − b(µ)| ∀ν ∈ P(R), dK(µ, ν) < δ̃.

Along with (15), this yields the assertion of the Lemma. �
Proof of Proposition 4. Proposition 13 yields the Hausdorff Lipschitz continuity of Y

at µ. This means that the Hölder rate equals 1, so Proposition 11 provides the stated
result. �
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Proposition 14. Let µ have an s-dimensional normal distribution with independent
components. Then, the logarithm of the distribution function Fµ of µ is strongly con-
cave on any bounded, convex subset C ⊆ R

s . As a consequence, for any r < 0, F r
µ is

strongly convex on C.

Proof. We assume first the case of a 1-dimensional standard normal distribution hav-
ing the distribution function � and the density ϕ(x) = (2π)−1/2 exp(−x2/2). With
� := log �, one has that � ′ = ϕ/� and

� ′′ = −ϕ(x)θ(x)

�2(x)
with θ(x) = ϕ(x) + x�(x). (16)

We argue that θ(x) > 0 for all x. Evidently, this is true for x > 0, and, for x < 0, one
gets

θ(x) = ϕ(x) + x

∫ x

−∞
ϕ(ξ)dξ = ϕ(x) +

∫ x

−∞
ξϕ(ξ)dξ +

∫ x

−∞
(x − ξ)ϕ(ξ)dξ

=
∫ x

−∞
(x − ξ)ϕ(ξ)dξ ≥

∫ 2x

−∞
(−x)ϕ(ξ)dξ = −x�(2x) > 0.

From (16), it follows that � ′′(x) < 0 for all x. Now, let Fµ be the distribution function
of a 1-dimensional normal distribution with mean m and variance σ 2. Then, for

�̃ := log Fµ = log �(σ−1(x − m)) = �(σ−1(x − m))

one has that �̃ ′′(x) = σ−2� ′′(x) < 0 for all x. Therefore, on each compact interval
I ⊆ R, �̃ ′′ is bounded above by some negative constant, which implies that log Fµ is
strongly concave on I with some modulus κ(I ) > 0 : for all x, y ∈ I and all λ ∈ [0, 1],
one has

log Fµ(λx + (1 − λ)y) ≥ λ log Fµ(x) + (1 − λ) log Fµ(y) + κ(I )λ(1 − λ)(x − y)2.

Finally, let Fµ be the distribution function of an s-dimensional normal distribution with
independent components. Assume that m is the mean vector and � is the diagonal
covariance matrix of this distribution with nonzero variances σ 2

i . Then,

Fµ(x) = Fµ1(x1) · · · Fµs (xs) ∀x ∈ R
s ,

where the Fµi
are the distribution functions of 1-dimensional normal distributions with

mean mi and variance σ 2
i . Let C ⊆ R

s be any bounded convex subset and choose I ⊆
R large enough that C ⊆ I s . It follows that for all x, y ∈ C and all λ ∈ [0, 1]

log Fµ(λx + (1 − λ)y) =
s

∑

i=1

log Fµi
(λxi + (1 − λ)yi)

≥
s

∑

i=1

(λ log Fµi
(xi) + (1 − λ) log Fµi

(yi)

+κ(I )λ(1 − λ)(xi − yi)
2)

= λ log Fµ(x) + (1 − λ) log Fµ(y) + κ(I )λ(1 − λ) ‖x − y‖2 ,
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which is the asserted strong concavity of log Fµ on C. The last statement of the prop-
osition follows from the fact that continuity and strong concavity of log Fµ on some
compact convex subset of {x|Fµ(x) > 0} implies F r

µ to be strongly convex on that same
subset for each r < 0 (see [6], Prop. 4). �
Example 15. Let m = 2, s = 2 and

min{x2 − x1|(x1, x2)∈X, P(ξ1 ≤ x1, ξ2 ≤x2) ≥ 1/4}, X = {(x1, x2)|x1 + x2 ≤ 3/2},
where ξ = (ξ1, ξ2) is assumed to have a uniform distribution µ over the triangle

conv{(1, 0), (0, 1), (1, 1)}.
Clearly, our basic convexity assumptions (BCA) are satisfied. The distribution function
of ξ is easily calculated as

Fµ(x1, x2) =
{

min{1, min{x2
1 , x2

2 , (x1 + x2 − 1)2}} if x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1
0 else

.

Accordingly, the constraint set becomes

{x ∈ X|Fµ(x) ≥ 1/4} = {(x1, x2)|x1 + x2 ≤3/2, x1 ≥1/2, x2 ≥1/2, x1 + x2 ≥ 3/2}
= {(x1, x2)|x1 + x2 = 3/2, x1 ∈ [1/2, 1]},

and the (unique) solution of this problem is (1, 1/2). Now, consider a sequence of per-
turbed measures νn defined by uniform distributions over the (shifted) triangles

conv{(1 + n−1, n−1), (n−1, 1 + n−1), (1 + n−1, 1 + n−1)}.
Then, Fνn calculates much like Fµ but with the shifted arguments x1 − n−1, x2 − n−1.
It follows that νn → µ in the sense of Kolmogorov distance. However, the feasible set
becomes empty:

{(x1, x2)|x1 + x2 ≤3/2, x1 ≥1/2 + n−1, x2 ≥1/2 + n−1, x1 + x2 ≥ 3/2 + n−1} = ∅.

Hence, there are no solutions at all for this special sequence of approxiamting prob-
lems. Finally, consider a different sequence of perturbed measures. To this aim, let ν

be the uniform distribution over the square [1/2, 1]2 and define the sequence νn :=
(1 − n−1)µ + n−1ν of probability measures. The induced distribution functions calcu-
late as Fνn = (1 − n−1)Fµ + n−1Fν , where Fµ has the explicit representation given
above and

Fν(x1, x2) = 4 ∗ (max{min{x1, 1}, 1/2} − 1/2) ∗ (max{min{x2, 1}, 1/2} − 1/2).

We claim that (3/4, 3/4) is the only feasible point in the perturbed constraint set

Mn = {x ∈ X|Fνn(x) ≥ 1/4}.
Indeed, one easily checks that Fµ(x), Fν(x) ≤ 1/4 for all x ∈ X. Since Fνn is a
strict convex combination of Fµ and Fν , any point x of Mn must satisfy x ∈ X and
Fµ(x) = Fν(x) = 1/4. However, the only x ∈ X with Fν(x) = 1/4 is evidently
x̄ = (3/4, 3/4), which at the same time fulfills Fµ(x̄) = 1/4. As the only feasible point,
x̄ trivially coincides with the solution set �n of all the approximating problems. Con-
sequently, the approximating solutions do not converge towards the solution (1, 1/2) of
the original problem.
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Example 16. In problem (P), let m = s = 2, X = R
2, h(x) = x, g(x) = (x1 + x2 −√

2)2, p = 0.5 and µ = uniform distribution over the unit square [0, 1]2. Evidently,
these data satisfy all the basic assumptions formulated in the introduction (in partic-
ular, µ is log-concave, hence r-concave for any r < 0). Next we verify the assump-
tions of Theorem 2: since the distribution function of µ satisfies Fµ(x) = x1x2 for all
(x1, x2) ∈ [0, 1]2, it follows that �(µ) = {(√1/2,

√
1/2)} which entails 1. in Theorem

2. It is elementary to verify that one may assume Y (µ) ⊆ [0, 1]2 (after shrinking the
open ball V ⊇ �(µ) used in Prop. 10). Evidently, F r

µ is strongly convex for any r < 0,
whence 3. With x̂ := (1, 1), one has Fµ(x̂) = 1 > p, which is 2. Finally, since g is con-
vex-quadratic, X is trivially a polyhedral set and h is linear, it follows that σ is Hausdorff
Lipschitz continuous (see remarks above Corollary 3). This provides 4. with κ = 1, and,
thus, Theorem 2 ensures that � is Hausdorff Hölder continuous with rate 1/2 at µ. This
rate is sharp. Indeed, considering the perturbed measures νε ∈ P(Rs) defined for ε > 0
as uniform distributions over the squares [−ε, 1 − ε]2, a straightforward calculation
shows that

�(νε) = conv{(aε, bε), (bε, aε)} and dK(µ, νε) = ε(1 + ε),

where aε/bε = √
1/2 ±

√

ε(
√

2 + ε). Consequently,

dH (�(µ), �(νε)) =
√

2
√

ε(
√

2 + ε) ≥
√

ε(1 + ε) =
√

dK(µ, νε),

which shows that the Hölder rate 1/2 cannot be improved in this example.

Example 17. In the previous example, we fix an ε > 0 and consider the associated
measure νε which is a uniform distribution over the square [−ε, 1 − ε]2. Certainly, νε

can be approximated by a discrete measure ν̃ε (by placing an increasing number of
uniformly distributed atoms in the square). In particular, ν̃ε may be chosen such that
dK(νε, ν̃ε) ≤ dK(µ, νε)/3. It follows that, due to dK(µ, νε) = ε(1 + ε) → 0 (for
ε → 0), one also has that dK(µ, ν̃ε), i.e., ν̃ε approximates µ for ε → 0. Applying the
triangle inequality yields that

dK(νε, ν̃ε) ≤ dK(µ, ν̃ε)/3 + dK(νε, ν̃ε)/3,

whence dK(νε, ν̃ε) ≤ dK(µ, ν̃ε)/2. Furthermore, one easily checks from the data in
Example 16 that all the perturbed problems

(Pε) min{g(x)|Fνε (x) ≥ 0.5}
continue to satisfy the assumptions of Corollary 3: the basic data assumptions remain
valid (νε is a uniform distribution over a square similar to µ), the point x̂ := (1, 1)

satisfies Fνε (x̂) = 1 > p and the solution set �(νε) is nonempty and bounded. Finally,
similar to F r

µ, it holds that F r
νε

is strongly convex for any r < 0. Now, Corollary 3 applies
to νε as the original measure and ν̃ε as the perturbed measure. Since ν̃ε may be choosen
arbitrarily close to νε, we may assume that

dK(νε, ν̃ε) ≤ (2L)−2d2
H (�(µ), �(νε)),
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where L refers to the constant from Corollary 3. Now, the corollary provides

dH (�(ν̃ε), �(νε)) ≤ L
√

dK(ν̃ε, νε) ≤dH (�(µ), �(νε))/2.

Summarizing, one may invoke the estimation from Example 16 and exploit the triangle
inequality for the Hausdorff distance to arrive at

dH (�(µ), �(ν̃ε)) ≥ dH (�(µ), �(νε)) − dH (�(ν̃ε), �(νε))

≥ dH (�(µ), �(νε))/2 ≥
√

dK(µ, νε)/2

≥
√

dK(µ, ν̃ε) − dK(νε, ν̃ε)/2 ≥
√

dK(µ, ν̃ε)/2/2

=
√

dK(µ, ν̃ε)/(2
√

2).

From Example 16 we know that dK(µ, νε) = ε(1 + ε) → 0 (for ε → 0). Since
dK(νε, ν̃ε) ≤ dK(µ, νε)/3, it follows that ν̃ε is a discrete approximation of µ. Now, the
above chain of inequalities confirms, that discrete approximations may reslut in a Hölder
rate 1/2 for stability of solutions of program (P) under the assumptions of Corollary 3.
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