
Chapter 7
Stability and Scenario Trees for Multistage
Stochastic Programs

Holger Heitsch and Werner Römisch

7.1 Introduction

Multistage stochastic programs are often used to model practical decision processes
over time and under uncertainty, e.g., in finance, production, energy, and logistics.
We refer to the pioneering work of Dantzig (1955, 1963) and to the recent books by
Ruszczyński and Shapiro (2003) and Wallace and Ziemba (2005), and the mono-
graph by Kall and Mayer (2005) for the state of the art of the theory and solution
methods for multistage models and for a variety of applications.

The inputs of multistage stochastic programs are multivariate stochastic pro-
cesses {ξt }Tt=1 defined on some probability space (�,F ,P) and with ξt taking values
in some R

d . The decision xt at t belonging to R
mt is assumed to be nonanticipative,

i.e., to depend only on (ξ1, . . . , ξt ). This property is equivalent to the measurability
of xt with respect to the σ -field Ft (ξ) ⊆ F which is generated by (ξ1, . . . , ξt ).
Clearly, we have Ft (ξ) ⊆ Ft+1(ξ) for t = 1, . . . , T − 1. Since at time t = 1 the
input is known, we assume that F1 = {∅,�}.

The multistage stochastic program is assumed to be of the form

min

⎧
⎨

⎩E

[
T∑

t=1

〈bt (ξt ), xt 〉
] ∣∣∣∣∣∣

xt ∈ Xt , t = 1, . . . , T, A1,0x1 = h1(ξ1),

xt is Ft (ξ)-measurable, t = 1, . . . , T,
At,0xt + At,1(ξt )xt−1 = ht (ξt ), t = 2, . . . , T

⎫
⎬

⎭ ,

(7.1)

where the sets Xt ⊆ R
mt are polyhedral cones, the cost coefficients bt (ξt ) and right-

hand sides ht (ξt ) belong to R
mt and R

nt , respectively, the fixed recourse matrices
At,0 and the technology matrices At,1(ξt ) are (nt ,mt )- and (nt ,mt−1)-matrices,
respectively. The costs bt (·), technology matrices At,1(·), and right-hand sides ht (·)
are assumed to depend affinely linear on ξt .

While the first and third groups of constraints in (7.1) have to be satisfied
pointwise with probability 1, the second group, the measurability or information
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constraints, are functional and non-pointwise at least if T > 2 and F2 � Ft ⊆ F
for some 2 < t ≤ T . The presence of such qualitatively different constraints consti-
tutes the origin of both the theoretical and computational challenges of multistage
models. Recent results (see Shapiro 2006, 2008) indicate that multistage stochastic
programs have higher computational complexity than two-stage models.

The main computational approach to multistage stochastic programs consists in
approximating the stochastic process ξ = {ξt }Tt=1 by a process having finitely many
scenarios exhibiting tree structure and starting at a fixed element ξ1 of R

d . This
leads to linear programming models that are very large scale in most cases and
can be solved by linear programming techniques, in particular by decomposition
methods that exploit specific structures of the model. We refer to Ruszczyński and
Shapiro (2003, Chapter 3) for a recent survey.

Presently, there exist several approaches to generate scenario trees for mul-
tistage stochastic programs (see Dupačová et al. 2000 for a survey). They are
based on several different principles. We mention here (i) bound-based construc-
tions by Casey and Sen (2005), Edirisinghe (1999), Frauendorfer (1996), and Kuhn
(2005); (ii) Monte Carlo-based schemes by Chiralaksanakul and Morton (2005)
and Shapiro (2003, 2008) or quasi-Monte Carlo-based methods by Pennanen (2005,
2009); (iii) (EVPI-based) sampling within decomposition schemes by Corvera Poiré
(2005), Dempster (2004), Higle et al. (to appear), and Infanger (1994); (iv) the
target/moment-matching principle by Høyland and Wallace (2001) and Høyland
et al. (2003); and (v) probability metric-based approximations by Gröwe-Kuska
et al. (2003), Heitsch and Römisch (2009), Hochreiter (2005), Hochreiter and Pflug
(2007) and Pflug (2001).

We add a few more detailed comments on some of the recent work. The approach
of (i) relies on constructing discrete probability measures that correspond to lower
and upper bounds (under certain assumptions on the model and the stochastic input)
and on refinement strategies. The recent paper/monograph by Casey and Sen (2005)
and Kuhn (2005) belonging to (i) also offers convergence arguments (restricted to
linear models containing only stochasticity in right-hand sides in Casey and Sen
(2005) and to convex models whose stochasticity is assumed to follow some linear
block-diagonal autoregressive process with compact supports in Kuhn 2005). The
Monte Carlo-based methods in (ii) utilize conditional sampling schemes and lead
to a large number of (pseudo) random number generator calls for conditional dis-
tributions. Consistency results are shown in Shapiro (2003), and the complexity is
discussed in Shapiro (2006). The quasi-Monte Carlo-based methods in Pennanen
(2005, 2009) are developed for convex models and for stochastic processes driven
by time series models with uniform innovations. While the general theory on epi-
convergent discretizations in Pennanen (2005) also applies to conditional sampling
procedures, a general procedure for generating scenario trees of such time series-
driven stochastic processes is developed in Pennanen (2009) by approximating each
of the (independent) uniform random variables using quasi-Monte Carlo methods
(see Niederreiter 1992). The motivation of using quasi-Monte Carlo schemes orig-
inates from their remarkable convergence properties and good performance for the
computation of high-dimensional integrals while “generating random samples is
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difficult” (Niederreiter 1992, p. 7). The approach of (v) is based on probability dis-
tances that are relevant for the stability of multistage models. While the papers by
Gröwe-Kuska et al. (2003), Hochreiter and Pflug (2007), and Pflug (2001) employ
Fortet–Mourier or Wasserstein distances, our recent work (Heitsch and Römisch
2009) is based on the rigorous stability result for linear multistage stochastic pro-
grams in Heitsch et al. (2006). Most of the methods for generating scenario trees
require to prescribe (at least partially) the tree structure. Finally, we also mention
the importance of evaluating the quality of scenario trees and of a postoptimality
analysis (Dupačová et al. 2000, Kaut and Wallace 2007).

In the present chapter we extend the theoretical results obtained in Heitsch et al.
(2006) by proving an existence result for solutions of (7.1) (Theorem 7.1), a Lip-
schitz stability result for ε-approximate solution sets, and a (qualitative) stability
result for solutions of multistage models. In addition, we review the forward tech-
nique of Heitsch and Römisch (2009) for generating scenario trees. Its idea is to start
with an initial finite scenario set with given probabilities which represents a “good”
approximation of the underlying stochastic input process ξ . Such a finite set of sce-
narios may be obtained by sampling or resampling techniques based on paramet-
ric or nonparametric stochastic models of ξ or by optimal quantization techniques
(Luschgy 2000). Starting from the initial scenario set, a tree is constructed recur-
sively by scenario reduction (Dupačová et al. 2003; Heitsch and Römisch 2003)
and bundling (Algorithm 7.1). We review an error estimate for Algorithm 7.1 in
terms of the Lr -distance (Theorem 7.6) and a convergence result (Theorem 7.8).
Algorithm 7.1 represents a stability-based heuristic for generating scenario trees. It
has been implemented and tested on real-life data in several practical applications.
Numerical experience was reported in Heitsch and Römisch (2009) on generating
inflow demand scenario trees based on real-life data provided by the French electric-
ity company EdF. Algorithm 7.1 or a modified version was used in Schmöller (2005)
to generate scenario trees in power engineering models and in Möller et al. (2008)
on generating passenger demand scenario trees in airline revenue management.

Section 7.2 presents extensions of the stability result of Heitsch et al. (2006),
which provide the basis of our tree constructions. Section 7.3 reviews some results
of Heitsch and Römisch (2009), in particular, the forward tree construction and
error estimates in terms of the Lr -distances and a convergence result. In Section 7.4
we discuss some numerical experience on generating load-price scenario trees for
an electricity portfolio optimization model based on real-life data of a municipal
German power company.

7.2 Stability of Multistage Models

We assume that the stochastic input process ξ = {ξt }Tt=1 belongs to the linear space
×T

t=1Lr (�,F ,P;Rd) for some r ∈ [1,+∞]. The model (7.1) is regarded as opti-
mization problem in the space ×T

t=1Lr ′(�,F ,P;Rmt ) for some r ′ ∈ [1,∞], where
both linear spaces are Banach spaces when endowed with the norms
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‖ξ‖r :=
(

T∑

t=1

E[|ξt |r ]
) 1

r

for r ∈ [1,∞) and ‖ξ‖∞ := max
t=1,...,T

ess sup |ξt |,

‖x‖r ′ :=
(

T∑

t=1

E[|xt |r ′ ]
) 1

r ′

for r ′ ∈ [1,∞) and ‖x‖∞ := max
t=1,...,T

ess sup |xt |,

respectively. Here, | · | denotes some norm on the relevant Euclidean spaces and r ′
is defined by

r ′ :=

⎧
⎪⎪⎨

⎪⎪⎩

r
r−1 if costs are random,
r if only right-hand sides are random,

r = 2 if only costs and right-hand sides are random,
∞ if all technology matrices are random and r = T .

(7.2)

The definition of r ′ is justified by the proof of Heitsch et al. (2006, Theorem 2.1),
which we record as Theorem 7.2. Since r ′ depends on r and our assumptions will
depend on both r and r ′, we will add some comments on the choice of r and its
interplay with the structure of the underlying stochastic programming model. To
have the stochastic program well defined, the existence of certain moments of ξ
has to be required. This fact is well known for the two-stage situation (see, e.g.,
Chapter 2 in Ruszczyński and Shapiro 2003). If either right-hand sides or costs in a
multistage model (7.1) are random, it is sufficient to require r ≥ 1. The flexibility in
case that the stochastic process ξ has moments of order r > 1 may be used to choose
r ′ as small as possible in order to weaken the condition (A3) (see below) on the
feasible set. If the linear stochastic program is fully random (i.e., costs, right-hand
sides, and technology matrices are random), one needs r ≥ T to have the model
well defined and no flexibility on r ′ remains.

Let us introduce some notation. Let F denote the objective function defined on
Lr (�,F ,P;Rs)× Lr ′(�,F ,P;Rm)→ R by

F(ξ, x) :=
⎧
⎨

⎩
E

[ T∑
t=1
〈bt (ξt ), xt 〉

]
, x ∈ X (ξ),

+∞, otherwise,

where

X (ξ) := {x ∈ Lr ′(�,F ,P;Rm) : x1 ∈ X1(ξ1), xt ∈ Xt (xt−1; ξt ), t = 2, . . . , T }

is the set of feasible elements of (7.1) and

X1(ξ1) := {x1 ∈ X1 : A1,0x1 = h1(ξ1)},
Xt (xt−1; ξt ) := {xt ∈ R

mt : xt ∈ Xt , At,0xt + At,1(ξt )xt−1 = ht (ξt )}
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the t th feasibility set for every t = 2, . . . , T . Denoting by

Nr ′(ξ) := ×T
t=1Lr ′(�,Ft (ξ),P;Rmt )

the nonanticipativity subspace of ξ allows to rewrite the stochastic program (7.1) in
the form

min{F(ξ, x) : x ∈ Nr ′(ξ)}. (7.3)

Let v(ξ) denote the optimal value of (7.3) and, for any α ≥ 0, let

Sα(ξ) := {x ∈ Nr ′(ξ) : F(ξ, x) ≤ v(ξ)+ α}

denote the α-approximate solution set of the stochastic program (7.3). Since, for
α = 0, the set Sα(ξ) coincides with the set solutions to (7.3), we will also use the
notation

S(ξ) := S0(ξ).

The following conditions are imposed on (7.3):
(A1) ξ ∈ Lr (�,F ,P;Rs), i.e.,

∫
�
|ξ(ω)|r dP(ω) <∞.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr (�,F ,P;Rs) with ‖ξ̃−ξ‖r ≤ δ,
any t = 2, . . . , T and any x1 ∈ X1(ξ̃1), xτ ∈ Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, there
exists an Ft (ξ̃ )-measurable xt ∈ Xt (xt−1; ξ̃t ) (relatively complete recourse locally
around ξ ).
(A3) The optimal values v(ξ̃ ) of (7.3) with input ξ̃ are finite for all ξ̃ in a neighbor-
hood of ξ and the objective function F is level-bounded locally uniformly at ξ , i.e.,
for some α > 0 there exists a δ > 0 and a bounded subset B of Lr ′(�,F ,P;Rm)

such that Sα(ξ̃ ) is contained in B for all ξ̃ ∈ Lr (�,F ,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ.
For any ξ̃ ∈ Lr (�,F ,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ, condition (A2) implies the

existence of some feasible x̃ in X (ξ̃ ) and (7.2) implies the finiteness of the objec-
tive F(ξ̃ , ·) at any feasible x̃ . A sufficient condition for (A2) to hold is the complete
recourse condition on every recourse matrix At,0, i.e., At,0 Xt = R

nt , t = 1, . . . , T .
The locally uniform level-boundedness of the objective function F is quite stan-
dard in perturbation results for optimization problems (see, e.g., Rockafellar and
Wets 1998 Theorem 1.17). The finiteness condition on the optimal value v(ξ) is not
implied by the level-boundedness of F for all relevant pairs (r, r ′). In general, the
conditions (A2) and (A3) get weaker for increasing r and decreasing r ′, respectively.

To state our first result on the existence of solutions to (7.3) in full generality, we
need two additional conditions:
(A4) There exists a feasible element z in ×T

t=1Lr̂ (�,F ,P;Rnt ), 1
r + 1

r̂ = 1, of the
dual stochastic program to (7.3), i.e., it holds that

A�t,0zt+A�t+1,1(ξt+1)zt+1−bt (ξt ) ∈ X∗
t , t = 1, . . . , T−1, A�T,0zT−bT (ξT ) ∈ X∗

T ,

(7.4)



144 H. Heitsch and W. Römisch

where X∗
t denotes the polar to the polyhedral cone Xt , t = 1, . . . , T .

(A5) If r ′ = 1 we require that, for each c ≥ 0, there exists g ∈ L1(�,F ,P) such
that

T∑

t=1

〈bt (ξt (ω)), xt 〉 ≥ c|x | − g(ω)

for all x ∈ R
m such that xt ∈ Xt , t = 1, . . . , T , A1,0x1 = h1(ξ1), At,0xt +

At,1(ξt (ω))xt−1 = ht (ξt (ω)), t = 2, . . . , T , and for P-almost all ω ∈ �.
To use Weierstrass’ result on the existence of minimizers, we need a topology

T on Lr ′(�,F ,P;Rm) such that some approximate solution set Sα(ξ) is compact
with respect to T . Since, in general, the norm topology is too strong for infinite-
dimensional optimization models in L p-spaces, we resort to the weak topologies
σ(L p, Lq) on the spaces L p(�,F ,P;Rm), where p ∈ [1,∞] and 1

p + 1
q = 1.

They are Hausdorff topological spaces and generated by a basis consisting of the
sets

O =
{

x ∈ L p(�,F ,P;Rm) :
∣∣∣E
[ T∑

t=1

〈xt − x0
t , yi

t 〉
]∣∣∣ < ε, i = 1, . . . , n

}

for all x0 ∈ L p(�,F ,P;Rm), n ∈ N, ε > 0, and yi ∈ Lq(�,F ,P;Rm),
i = 1, . . . , n. For p ∈ [1,∞), the weak topology σ(L p, Lq) is of the form
σ(E, E∗) with some Banach space E and its topological dual E∗. For p = ∞, the
weak topology σ(L∞, L1) on the Banach space L∞(�,F ,P;Rm) is sometimes
called weak∗ topology since it is of the form σ(E∗, E). If � is finite, the weak
topologies coincide with the norm topology. If the space L p(�,F ,P;Rm) is infinite
dimensional, its weak topology σ(L p, Lq) is even not metrizable. For p ∈ [1,∞),
subsets of L p(�,F ,P;Rm) are (relatively) weakly compact iff they are (relatively)
weakly sequentially compact due to the Eberlein–Šmulian theorem. For p = ∞ the
latter property is lost in general. However, if a subset B of L p(�,F ,P;Rm) is com-
pact with respect to the weak topology σ(L p, Lq), its restriction to B is metrizable
if Lq(�,F ,P;Rm) is separable. We note that the Banach space L p(�,F ,P;Rm)

with p ∈ [1,∞) is separable if there exists a countable set G of subsets of � such
that F is the smallest σ -field containing G (Zaanen 1953). A σ -field F contains such
a countable generator if it is generated by a R

m-valued random vector. For these and
related results we refer to Fabian et al. (2001, Sections 3 and 4).

Now, we are ready to state our existence result for solutions of (7.3).

Theorem 7.1 Let (A1)–(A5) be satisfied for some pair (r, r ′) satisfying (7.2). Then
the solution set S(ξ) of (7.3) is nonempty, convex, and compact with respect to the
weak topology σ(Lr ′ , Lq) ( 1

r ′ + 1
q = 1). Here, the conditions (A4) and (A5) are only

needed for r ′ ∈ {1,∞}.
Proof We define the integrand f : �× R

m → R
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f (ω, x) :=
⎧
⎨

⎩

T∑
t=1
〈bt (ξt (ω)), xt 〉, x1 ∈ X1(ξ1), xt ∈ Xt (xt−1, ξt (ω)), t = 2, . . . , T,

+∞, otherwise.

Then f is a proper normal convex integrand (cf. Rockafellar 1976, Rockafellar and
Wets 1998, Chapter 14).
Let (ω, x) ∈ �×R

m be such that x1 ∈ X1(ξ1), xt ∈ Xt (xt−1, ξt (ω)), t = 2, . . . , T .
Then we conclude from (A4) the existence of z ∈ ×T

t=1Lr̂ (�,F ,P;Rnt ) such that
(7.4) is satisfied. Hence, for each t = 1, . . . , T , there exists x∗t (ω) ∈ X∗

t such that

bt (ξt (ω)) = A�t,0zt (ω)+ A�t+1,1(ξt+1(ω))zt+1(ω)− x∗t (ω) (t = 1, . . . , T − 1)

bT (ξT (ω)) = A�T,0zT (ω)− x∗T (ω) .

Inserting the latter representation of bt (ξt (ω)) into the integrand f (defining
F(ξ, x) = E[ f (ω, x)]) leads to

f (ω, x) =
T−1∑

t=1

〈A�t,0zt (ω)+ A�t+1,1(ξt+1(ω))zt+1(ω)− x∗t (ω), xt 〉

+〈A�T,0zT (ω)− x∗T (ω), xT 〉

≥
T−1∑

t=1

〈A�t,0zt (ω)+ A�t+1,1(ξt+1(ω))zt+1(ω), xt 〉 + 〈A�T,0zT (ω), xT 〉

=
T∑

t=1

〈zt (ω), At,0xt 〉 +
T−1∑

t=1

〈zt+1(ω), At+1,1(ξt+1(ω))xt 〉

=
T∑

t=1

〈zt (ω), ht (ξt (ω))〉.

Hence, we have

f (ω, x) ≥ g(ω) , where g :=
T∑

t=1

〈zt , ht (ξt )〉 ∈ L1(�,F ,P).

This implies for the conjugate normal convex integrand f ∗ : � × R
m → R given

by

f ∗(ω, y) := sup
x∈Rm

{〈y, x〉 − f (ω, x)}

that the estimate f ∗(ω, 0) ≤ −g(ω) holds. Hence, the assumption of Rockafel-
lar (1976, Corollary 3D) is satisfied and we conclude that the integral functional
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F(ξ, ·) = E[ f (ω, ·)] is lower semicontinuous on Lr ′(�,F ,P;Rm) with respect to
the weak topology σ(Lr ′ , Lq).

The nonanticipativity subspace Nr ′(ξ) is closed with respect to the weak topol-
ogy σ(Lr ′ , Lq) for all r ′ ∈ [1,∞]. For r ′ ∈ [1,∞) this fact is a consequence
of the norm closedness and convexity of Nr ′(ξ). For r ′ = ∞, let (xα)α∈I be
a net in N∞(ξ) with some partially ordered set (I,≤) that converges to some
x∗ ∈ L∞(�,F ,P;Rm). Any neighborhood U (x∗) of x∗ with respect to the weak
topology σ(L∞, L1) is of the form

U (x∗) =
{

x ∈ L∞(�,F ,P;Rm) :
∣∣∣∣∣E
[

T∑

t=1

〈xt − x∗t , yi
t 〉
]∣∣∣∣∣ < εi , i = 1, . . . , n

}
,

where n ∈ N, yi ∈ L1(�,F ,P;Rm), εi > 0, i = 1, . . . , n. Since the net (xα)α∈I

converges to x∗, there exists α0 ∈ I such that xα ∈ U (x∗) whenever α0 ≤ α. If the
elements yi belong to ×T

t=1L1(�,Ft ,P;Rmt ) for each i = 1, . . . , n, we obtain

∣∣∣∣∣E
[

T∑

t=1

〈xα,t − x∗t , yi
t 〉
]∣∣∣∣∣ =

∣∣∣∣∣E
[

T∑

t=1

E[〈xα,t − x∗t , yi
t 〉|Ft ]

]∣∣∣∣∣

=
∣∣∣∣∣E
[

T∑

t=1

〈xα,t − E[x∗t |Ft ], yi
t 〉
]∣∣∣∣∣ < εi

due to the fact that E[xα,t |Ft ] = xα,t for each t = 1, . . . , T and α ∈ I . Hence, we
have in this case,

U (x∗) = U (E[x∗1 |F1], . . . ,E[x∗T |FT ]).

Since the net (xα)α∈I converges to x∗ and the weak topology is Hausdorff, we con-
clude x∗t = E[x∗t |Ft ], t = 1, . . . , T , and, thus, x∗ ∈ N∞(ξ).

It remains to show that, for some α > 0, the α-approximate solution set
Sα(ξ) is compact with respect to the weak topology σ(Lr ′ , Lq). For r ′ ∈ (1,∞)
the Banach space Lr ′(�,F ,P;Rm) is reflexive. Furthermore, any α-approximate
solution set Sα(ξ) is closed and convex. For some α > 0 the level set is also
bounded due to (A3) and, hence, compact with respect to σ(Lr ′ , Lq). For r ′ = 1
the compactness of any α-level set with respect to σ(L1, L∞) follows from
Rockafellar (1976, Theorem 3K) due to condition (A5). For r ′ = ∞, some α-level
set is bounded due to (A3) and, hence, relatively compact with respect to σ(L∞, L1)

due to Alaoglu’s theorem (Fabian et al. 2001, Theorem 3.21). Since the objective
function F(ξ, ·) is lower semicontinuous and N∞(ξ) weakly closed with respect to
σ(L∞, L1), the α-level set is even compact with respect to σ(L∞, L1).

Altogether, S(ξ) is nonempty due to Weierstrass’ theorem and compact with
respect to σ(Lr ′ , Lq). The convexity of S(ξ) is an immediate consequence of the
convexity of the objective F(ξ, ·) of the stochastic program (7.3).
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Finally, we note that assumptions (A4) and (A5) are not needed for proving that
S(ξ) is nonempty and compact with respect to the topology σ(Lr ′ , Lq) in case r ′ ∈
(1,∞). This fact is an immediate consequence of minimizing a linear continuous
functional on a closed, convex, bounded subset of a reflexive Banach space. �

To state our next result we introduce the functional Df(ξ, ξ̃ ) depending on the
filtrations of ξ and of its perturbation ξ̃ , respectively. It is defined by

Df(ξ, ξ̃ ) := sup
ε∈(0,α]

inf
x∈Sε(ξ)
x̃∈Sε(ξ̃ )

T−1∑

t=2

max{‖xt − E[xt |Ft (ξ̃ )]‖r ′ , ‖x̃t − E[x̃t |Ft (ξ)]‖r ′ }.

(7.5)

In the following, we call the functional Df filtration distance, although it fails to
satisfy the triangle inequality in general. If solutions of (7.3) for the inputs ξ and ξ̃
exist (see Theorem 7.1), the filtration distance is of the simplified form

Df(ξ, ξ̃ ) = inf
x∈S(ξ)
x̃∈S(ξ̃ )

T−1∑

t=2

max{‖xt − E[xt |Ft (ξ̃ )]‖r ′ , ‖x̃t − E[x̃t |Ft (ξ)]‖r ′ }.

We note that the conditional expectations E[xt |Ft (ξ̃ )] and E[x̃t |Ft (ξ)]may be writ-
ten equivalently in the form E[xt |ξ̃1, . . . , ξ̃t ] and E[x̃t |ξ1, . . . , ξt ], respectively.

The following stability result for optimal values of program (7.3) is essentially
(Heitsch et al. 2006, Theorem 2.1).

Theorem 7.2 Let (A1), (A2), and (A3) be satisfied and the sets X1(ξ̃1) be nonempty
and uniformly bounded in R

m1 if |ξ̃1 − ξ1| ≤ δ (where δ > 0 is taken from (A3)).
Then there exist positive constants L and δ such that the estimate

|v(ξ)− v(ξ̃ )| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃ )) (7.6)

holds for all random elements ξ̃ ∈ Lr (�,F ,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ.
The proof of Heitsch et al. (2006, Theorem 2.1) extends easily to constraints for

x1 that depend on ξ1 (via the right-hand side of the equality constraint A1,0x1 =
h(ξ1)). We note that the constant L depends on ‖ξ‖r in all cases.

To prove a stability result for (approximate) solutions of (7.3), we need a stronger
version of the filtration distance Df, namely

D∗
f (ξ, ξ̃ ) = sup

‖x‖r ′≤1

T∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ . (7.7)

Notice that the sum is extended by the additional summand for t = T and that
the former infimum is replaced by a supremum with respect to a sufficiently large
bounded set (the unit ball in Lr ′ ). Clearly, the conditions (A1)–(A3) imply the
estimate
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Df(ξ, ξ̃ ) ≤ sup
x∈B

T−1∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ ≤ C D∗
f (ξ, ξ̃ ) (7.8)

for all ξ and ξ̃ in Lr (�,F ,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ, where δ > 0 and B are
the constant and Lr ′ -bounded set appearing in (A2) and (A3), respectively, and the
constant C > 0 is chosen such ‖x‖r ′ ≤ C for all x ∈ B.

Sometimes, the unit ball in Lr ′ in the definition of D∗
f is too large. It may be

replaced by the smaller set B∞ := {x : � → R
m : x is measurable, |x(ω)| ≤

1 for all ω ∈ �} if the following stronger condition (A3)′ is satisfied.
(A3)′ The optimal values v(ξ̃ ) of (7.3) with input ξ̃ are finite for all ξ̃ in a neigh-
borhood of ξ and for some α > 0 there exist constants δ > 0 and C > 0 such that
|x̃(ω)| ≤ C for P-almost every ω ∈ � and all x̃ ∈ Sα(ξ̃ ) with ξ̃ ∈ Lr (�,F ,P;Rs)

and ‖ξ̃ − ξ‖r ≤ δ.
If (A3)′ is satisfied, we define

D∗
f (ξ, ξ̃ ) := sup

x∈B∞

T∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ (7.9)

and have Df(ξ, ξ̃ ) ≤ C D∗
f (ξ, ξ̃ ). We note that D∗

f always satisfies the triangle
inequality.

In the next result we derive a (local) Lipschitz property of the feasible set-valued
mapping X (·) from Lr (�,F ,P;Rs) into Lr ′(�,F ,P;Rm) in terms of a “trun-
cated” Pompeiu–Hausdorff-type distance

dl̂ρ(B, B̃) = inf
{
η ≥ 0 : B ∩ ρB ⊂ B̃ + ηB, B̃ ∩ ρB ⊂ B + ηB

}

of closed subsets B and B̃ of the space Lr ′(�,F ,P;Rm) with B denoting its unit
ball. The Pompeiu–Hausdorff distance may be defined by

dl∞(B, B̃) = lim
ρ→∞ dl̂ρ(B, B̃)

(see Rockafellar and Wets 1998, Corollary 4.38).

Proposition 7.3 Let (A1), (A2), and (A3) be satisfied with r ′ ∈ [1,∞) and the sets
X1(ξ̃1) be nonempty and uniformly bounded in R

m1 if |ξ̃1 − ξ1| ≤ δ (with δ > 0
from (A3)). Then there exist positive constants L and δ such that the estimate

dl̂ρ(X (ξ),X (ξ̃ )) ≤ L(‖ξ − ξ̃‖r + ρD∗
f (ξ, ξ̃ ))

holds for any ρ > 0 and any ξ̃ ∈ Lr (�,F ,P;Rs) with ‖ξ − ξ̃‖r ≤ δ. If (A3)′
is satisfied instead of (A3), the estimate is valid with dl̂ρ denoting the “truncated”
Pompeiu–Hausdorff distance in L∞(�,F ,P;Rm) and D∗

f defined by (7.9).
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Proof Let ρ > 0, δ > 0 be selected as in (A2) and (A3), x ∈ X (ξ) ∩ ρB and
ξ̃ ∈ Lr (�,F ,P;Rs) be such that ‖ξ̃ − ξ‖r < δ. With the same arguments as in
the proof of Heitsch et al. (2006, Theorem 2.1), there exists x̃ ∈ X (ξ̃ ) such that the
estimate

|E[xt |Ft (ξ̃ )]−x̃t | ≤ L̂ t

⎛

⎝
t∑

τ=1

E[|ξτ − ξ̃τ | |Fτ (ξ̃ )] +
t−1∑

τ=2

E[|xτ − E[xτ |Fτ (ξ̃ )]| |Fτ+1(ξ̃ )]
⎞

⎠

(7.10)

holds P-almost surely with some positive constant L̂ t for t = 1, . . . , T . Note that
r ′ < ∞ means that only costs and/or right-hand sides in (7.3) are random and that
the first sum on the right-hand side of (7.10) disappears if only costs are random.
From the definition of r ′ we know that r �= r ′ may occur only in the latter case.

Hence, together with the estimate

|xt − x̃t | ≤ |xt − E[xt |Ft (ξ̃ )]| + |E[xt |Ft (ξ̃ )] − x̃t |

P-almost surely and for all t = 1, . . . , T , (7.10) implies for all pairs (r, r ′) with
r ′ ∈ [1,∞) that

E[|xt − x̃t |r ′ ] ≤ Lt

(
t∑

τ=1

E[|ξτ − ξ̃τ |r ] +
t∑

τ=2

E[|xτ − E[xτ |Fτ (ξ̃ )]|r ′ ]
)

holds with certain constants Lt , t = 1, . . . , T . We conclude

‖x − x̃‖r ′ ≤ L(‖ξ − ξ̃‖r + ρD∗
f (ξ, ξ̃ )),

with some constant L > 0. The second estimate follows by interchanging the role
of the pairs (x, ξ̃ ) and (x̃, ξ). If (A3)′ is satisfied instead of (A3), the changes are
obvious. �

Now, we are ready to establish a Lipschitz property of approximate solution sets.

Theorem 7.4 Let (A1), (A2), and (A3) be satisfied with r ′ ∈ [1,∞) and the sets
X1(ξ̃1) be nonempty and uniformly bounded in R

m1 if |ξ̃1 − ξ1| ≤ δ. Assume that
the solution sets S(ξ) and S(ξ̃ ) are nonempty for some ξ̃ ∈ Lr (�,F ,P;Rs) with
‖ξ − ξ̃‖r ≤ δ (with δ > 0 from (A3)). Then there exist L̄ > 0 and ε̄ > 0 such that

dl∞(Sε(ξ), Sε(ξ̃ )) ≤ L̄

ε
(‖ξ − ξ̃‖r + D∗

f (ξ, ξ̃ )) (7.11)

holds for any ε ∈ (0, ε̄).
Proof Let ρ0 ≥ 1 be chosen such that the Lr ′ -bounded set B in (A3) is contained in
ρ0B (with B denoting the unit ball in Lr ′ ) and min{v(ξ), v(ξ̃ )} ≥ −ρ0. Let ρ > ρ0,
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ε̄ = min{α, ρ − ρ0}, and 0 < ε < ε̄. Let ξ̃ ∈ Lr (�,F ,P;Rs) with ‖ξ − ξ̃‖r ≤ δ.
Then the assumptions of Theorem 7.69 in Rockafellar and Wets (1998) are satisfied
for the functions F(ξ, ·) and F(ξ̃ , ·). We note that most of the results in Rockafel-
lar and Wets (1998) are stated in finite-dimensional spaces. However, the proof of
Rockafellar and Wets (1998, Theorem 7.69) carries over to linear normed spaces
(see also Attouch and Wets 1993 Theorem 4.3). We obtain from the proof the inclu-
sion

Sε(ξ) = Sε(ξ) ∩ ρB ⊆ Sε(ξ̃ )+ 2η

ε + 2η
2ρB ⊆ Sε(ξ̃ )+ 4ρ

ε
ηB, (7.12)

for all η > dl̂+ρ+ε(F(ξ, ·), F(ξ̃ , ·)), where the auxiliary epi-distance dl̂+ρ(F(ξ, ·),
F(ξ̃ , ·)) is defined as the infimum of all η ≥ 0 such that for all x, x̃ ∈ ρB,

min
ỹ∈B(x,η)

F(ξ̃ , ỹ) ≤ max{F(ξ, x),−ρ} + η (7.13)

min
y∈B(x̃,η)

F(ξ, y) ≤ max{F(ξ̃ , x̃),−ρ} + η. (7.14)

The estimate (7.12) implies

Sε(ξ) ⊆ Sε(ξ̃ )+ 4ρ

ε
dl̂+ρ+ε(F(ξ, ·), F(ξ̃ , ·))B.

Since the same argument works with ξ and ξ̃ interchanged, we obtain

dl∞(Sε(ξ), Sε(ξ̃ )) ≤ 4ρ

ε
dl̂+ρ+ε(F(ξ, ·), F(ξ̃ , ·))

and it remains to estimate dl̂+ρ+ε(F(ξ, ·), F(ξ̃ , ·)). Let η > dl̂+ρ+ε(F(ξ, ·), F(ξ̃ , ·))
and x ∈ X (ξ). Proposition 7.3 implies the existence of x̃ ∈ X (ξ̃ ) such that

‖x − x̃‖r ′ ≤ L(‖ξ − ξ̃‖r + ‖x‖r ′ D
∗
f (ξ, ξ̃ )).

In order to check condition (7.13), we have to distinguish three cases, namely that
randomness appears in costs and right-hand sides, only in costs, and only in right-
hand sides. Next we consider the first case, i.e., r = r ′ = 2, and obtain as in the
proof of Heitsch et al. (2006, Theorem 2.1) the estimate
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F(ξ̃ , x̃) ≤ F(ξ, x)+ |F(ξ̃ , x̃)− F(ξ̃ , x)| + |F(ξ̃ , x)− F(ξ, x)|

≤ F(ξ, x)+
∣∣∣∣∣E
[

T∑

t=1

〈bt (ξ̃t ), x̃t − E[xt |Ft (ξ̃ )]〉
]∣∣∣∣∣

+
∣∣∣∣∣E
[

T∑

t=1

〈bt (ξ̃t )− bt (ξt ), xt 〉
]∣∣∣∣∣

≤ F(ξ, x)+ K̂

⎛

⎜⎝

(
T∑

t=1

(1+ E[|ξ̃t |2])
) 1

2
(

T∑

t=1

E[|x̃t − E[xt |Ft (ξ̃ )]|2]
) 1

2

+ ‖ξ̃ − ξ‖2‖x‖2

⎞

⎟⎠

≤ F(ξ, x)+ L̂

(
ρ‖ξ̃ − ξ‖2 +

T−1∑

t=2

‖xt − E[xt |Ft (ξ̃ )]‖2

)

≤ F(ξ, x)+ Lρ(‖ξ̃ − ξ‖2 + D∗
f (ξ, ξ̃ ))

with certain constants K̂ , L̂ , and L (depending on ‖ξ‖2), where the Cauchy–
Schwarz inequality, (A3), and the estimate (7.10) are used. Hence, condition (7.13)
is satisfied if

η = Lρ(‖ξ̃ − ξ‖2 + D∗
f (ξ, ξ̃ ))

holds with certain constant L > 0. The same estimate holds in the remaining two
cases and when checking condition (7.14) (possibly with different constants). Tak-
ing the maximal constant L > 0 we conclude

dl̂+ρ+ε(F(ξ, ·), F(ξ̃ , ·)) ≤ Lρ(‖ξ̃ − ξ‖r + D∗
f (ξ, ξ̃ ))

and, hence,

dl∞(Sε(ξ), Sε(ξ̃ )) ≤ 4Lρ2

ε
(‖ξ̃ − ξ‖r + D∗

f (ξ, ξ̃ )).

Setting L̄ = 4Lρ2 completes the proof. �
For solution sets the situation is less comfortable. Stability of solutions can only

be derived with respect to the weak topology σ(Lr ′ , Lr ).

Theorem 7.5 Let (A1), (A2), and (A3) be satisfied with r ′ ∈ (1,∞) and the sets
X1(ξ̃1) be nonempty and uniformly bounded in R

m1 if |ξ̃1 − ξ1| ≤ δ (with δ > 0
from (A3)). If (ξ (n)) is a sequence in Lr (�,F ,P;Rs) converging to ξ in Lr and
with respect to D∗

f and if (x (n)) is a sequence of solutions of the approximate
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problems, i.e., x (n) ∈ S(ξ (n)), then there exists a subsequence (x (nk )) of (x (n)) that
converges with respect to the weak topology σ(Lr ′ , Lr ) to some element of S(ξ). If
S(ξ) is a singleton, the sequence (x (n)) converges with respect to the weak topology
σ(Lr ′ , Lr ) to the unique solution of (7.3).

Proof Let (ξ (n)) and (x (n)) be selected as above. Since there exists n0 ∈ N such that
‖ξ (n) − ξ‖r ≤ δ and x (n) ∈ Sα(ξ (n)) for any n ≥ n0, where α > 0 and δ > 0 are
chosen as in (A3), the sequence (x (n)) is contained in a bounded set of the reflexive
Banach space Lr ′(�,F ,P;Rm). Hence, there exists a subsequence (x (nk )) of (x (n))
that converges with respect to the weak topology σ(Lr ′ , Lr ) to some element x∗ in
Lr ′(�,F ,P;Rm). Theorem 7.2 implies

v(ξ (nk)) = F(ξ (nk), x (nk )) = E

[
T∑

t=1

〈bt (ξ
(nk)
t ), x (nk )

t 〉
]
→ v(ξ).

Due to the norm convergence of (ξ (nk)) and the weak convergence of (x (nk )), we
also obtain

E

[
T∑

t=1

〈bt (ξ
(nk)
t ), x (nk )

t 〉
]
→ E

[
T∑

t=1

〈bt (ξt ), x∗t 〉
]
.

Hence, it remains to show that x∗ is feasible for (7.3), i.e., x∗ ∈ X (ξ) and x∗ ∈
Nr ′(ξ).

In the present situation, the set X (ξ) is of the form

X (ξ) = {x ∈ Lr ′(�,F ,P;Rm) : x ∈ X, Ax = h(ξ)}, (7.15)

where X := ×T
t=1 Xt , h(ξ) := (h1(ξ1), . . . , hT (ξT )} and

A :=

⎛

⎜⎜⎜⎝

A1,0 0 0 · · · 0 0 0
A2,1 A2,0 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 AT,1 AT,0

⎞

⎟⎟⎟⎠ .

The graph of X , i.e., graphX = {(x, ξ) ∈ Lr ′(�,F ,P;Rm)×Lr (�,F ,P;Rs)|x ∈
X (ξ)} is closed and convex. Since (ξ (nk)) norm converges in Lr (�,F ,P;Rs) to ξ
and (x (nk )) weakly converges to x∗, the sequence ((x (nk ), ξ (nk ))) of pairs in graphX
converges weakly to (x∗, ξ). Due to the closedness and convexity of graphX ,
Mazur’s theorem (Fabian et al. 2001 Theorem 3.19) implies that graphX is weakly
closed and, thus, (x∗, ξ) ∈ graphX or x∗ ∈ X (ξ).

Finally, we have to show that x∗ belongs to Nr ′(ξ). For any y ∈ Lr (�,F ,P;Rm)

we obtain the estimate
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∣∣∣∣∣E
[

T∑

t=1

〈yt , x∗t − E[x∗t |Ft (ξ)]〉
]∣∣∣∣∣≤

∣∣∣∣∣

T∑

t=1

E[〈yt , x∗t − x (nk )
t 〉]

∣∣∣∣∣

+
∣∣∣∣∣

T∑

t=1

E[〈yt , x (nk )
t − E[x (nk )

t |Ft (ξ)]〉]
∣∣∣∣∣

+
∣∣∣∣∣

T∑

t=1

E[〈yt ,E[x (nk )
t − x∗t |Ft (ξ)]〉]

∣∣∣∣∣

≤2

∣∣∣∣∣

T∑

t=1

E[〈yt , x∗t − x (nk )
t 〉]

∣∣∣∣∣

+ max
t=1,...,T

‖yt‖r

T∑

t=2

‖x (nk )
t − E[x (nk )

t |Ft (ξ)]‖r ′ .

The first term on the right-hand side converges to 0 for k tending to ∞ as the
sequence (x (nk )) converges weakly to x∗. The second term converges to 0 due to
the estimate (7.8) since (D∗

f (ξ, ξ
(nk))) also converges to 0. We conclude that

E

[
T∑

t=1

〈yt , x∗t − E[x∗t |Ft (ξ)]〉
]
= 0

holds for any y ∈ Lr (�,F ,P;Rm) and, hence, that x∗t = E[x∗t |Ft (ξ)] for each
t = 1, . . . , T . This means x∗ ∈ Nr ′(ξ). �
Remark 7.1 Theorem 7.5 remains true if the filtration distance D∗

f is replaced by the
weaker distance

D̂f(ξ, ξ̃ ) = sup
x̃∈S(ξ̃ )

T∑

t=2

‖x̃t − E[x̃t |Ft (ξ)]‖r ′ .

Furthermore, if the solutions x (n) ∈ S(ξ (n)) are adapted to the filtration Ft (ξ),
t = 1, . . . , T , of the original process ξ (as in Heitsch and Römisch 2009 Proposi-
tion 5.5), the convergence of (ξ (n)) to ξ in Lr is sufficient for the weak convergence
of some subsequence of (x (n)) to some element of S(ξ) (in the sense of σ(Lr ′ , Lr )).

Remark 7.2 The stability analysis of (linear) two-stage stochastic programs (see,
e.g., Rachev and Römisch 2002 Section 3.1, Römisch and Wets 2007) mostly stud-
ied the continuity behavior of first-stage (approximate) solution sets. Hence, for the
specific case T = 2, our stability results in Theorems 7.4 and 7.5 extend earlier
work because they concern first- and second-stage solutions. The new important
assumption is (A3), i.e., the level-boundedness of the objective (locally uniformly
at ξ ) with respect to both first- and second-stage variables.



154 H. Heitsch and W. Römisch

Remark 7.3 In many applications of stochastic programming it is of interest to
develop risk-averse models (e.g., in electricity risk management and in finance).
For example, this can be achieved if the expectation in the objective of (7.1) is
replaced by a (convex) risk functional (measure). Typically, risk functionals are
inherently nonlinear. If, however, a multiperiod polyhedral risk functional (Eich-
horn and Römisch 2005) replaces the expectation in (7.1), the resulting risk-averse
stochastic program may be reformulated as a linear multistage stochastic program
of the form (7.1) by introducing new state variables and (linear) constraints (see
Eichhorn and Römisch 2005 Section 4). Moreover, it is shown in Eichhorn (2008)
that the stability behavior of the reformulation does not change (when compared
with the original problem with expectation objective) if the multiperiod polyhedral
(convex) risk functional has bounded L1-level sets. The latter property is shared
by the conditional or average value-at-risk and several of its multiperiod extensions
(Eichhorn 2008 Section 4).

7.3 Generating Scenario Trees

Let ξ be the original stochastic process on a probability space (�,F ,P)with param-
eter set {1, . . . , T } and state space R

d . We aim at generating a scenario tree ξtr such
that the distances

‖ξ − ξtr‖r and D∗
f (ξ, ξtr) (7.16)

are small and, hence, the optimal values v(ξ) and v(ξtr) and the approximate solu-
tion sets Sε(ξ) and Sε(ξtr) are close to each other according to Theorems 7.2 and
7.4, respectively.

The idea is to start with a good initial approximation ξ̂ of ξ having a finite number
of scenarios ξ i = (ξ i

1, . . . , ξ
i
T ) ∈ R

T d with probabilities pi > 0, i = 1, . . . , N , and
common root, i.e., ξ1

1 = · · · = ξ N
1 =: ξ∗1 . These scenarios might be obtained by

quantization techniques (Luschgy 2000) or by sampling or resampling techniques
based on parametric or nonparametric stochastic models of ξ .

In the following we assume that

‖ξ − ξ̂‖r + D∗
f (ξ, ξ̂ ) ≤ ε (7.17)

holds for some given (initial) tolerance ε > 0. For example, condition (7.17) may
be satisfied for D∗

f given by (7.9) and for any tolerance ε > 0 if ξ̂ is obtained
by sampling from a finite set with sufficiently large sample size (see Heitsch and
Römisch 2009 Example 5.3).

Next we describe an algorithmic procedure that starts from ξ̂ and ends up with
a scenario tree process ξtr having the same root node ξ∗1 , less nodes than ξ̂ , and
allowing for constructive estimates of

‖ξ̂ − ξtr‖r .
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The idea of the algorithm consists in forming clusters of scenarios based on scenario
reduction on the time horizon {1, . . . , t} recursively for increasing time t .

To this end, the Lr -seminorm ‖ · ‖r,t on Lr (�,F ,P;Rs) (with s = T d) given
by

‖ξ‖r,t :=
(
E[|ξ |rt ]

) 1
r (7.18)

is used at step t , where | · |t is a seminorm on R
s which, for each ξ = (ξ1, . . . , ξT ) ∈

R
s , is given by |ξ |t := |(ξ1, . . . , ξt , 0, . . . , 0)|.
The following procedure determines recursively stochastic processes ξ̂ t having

scenarios ξ̂ t,i endowed with probabilities pi , i ∈ I := {1, . . . , N }, and, in addition,
partitions Ct = {C1

t , . . . ,C Kt
t } of the index set I , i.e.,

Ck
t ∩ Ck′

t = ∅ (k �= k′) and
Kt⋃

k=1

Ck
t = I. (7.19)

The index sets Ck
t ∈ Ct , k = 1, . . . , Kt , characterize clusters of scenarios. The

initialization of the procedure consists in setting ξ̂1 := ξ̂ , i.e., ξ̂1,i = ξ i , i ∈ I , and
C1 = {I }. At step t (with t > 1) we consider each cluster Ck

t−1, i.e., each scenario

subset {ξ̂ t−1,i }i∈Ck
t−1

, separately and delete scenarios {ξ̂ t−1, j } j∈J k
t

by the forward

selection algorithm of Heitsch and Römisch (2003) such that

⎛

⎝
Kt−1∑

k=1

∑

j∈J k
t

p j min
i∈I k

t

|ξ̂ t−1,i − ξ̂ t−1, j |rt
⎞

⎠

1
r

is bounded from above by some prescribed tolerance. Here, the index set I k
t of

remaining scenarios is given by

I k
t = Ck

t−1 \ J k
t .

As in the general scenario reduction procedure in Heitsch and Römisch (2003), the
index set J k

t is subdivided into index sets J k
t,i , i ∈ I k

t , such that

J k
t =

⋃

i∈I k
t

J k
t,i , J k

t,i := { j ∈ J k
t : i = i k

t ( j)}, and i k
t ( j) ∈ arg min

i∈I k
t

|ξ̂ t−1,i−ξ̂ t−1, j |rt .

Next we define a mapping αt : I → I such that

αt ( j) =
{

i k
t ( j), j ∈ J k

t , k = 1, . . . , Kt−1
j, otherwise.

(7.20)
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Then the scenarios of the stochastic process ξ̂ t = {ξ̂ t
τ }Tτ=1 are defined by

ξ̂ t,i
τ =

{
ξ
ατ (i)
τ , τ ≤ t
ξ i
τ , otherwise,

(7.21)

with probabilities pi for each i ∈ I . The processes ξ̂ t are illustrated in Fig. 7.1,
where ξ̂ t corresponds to the t th picture for t = 1, . . . , T . The partition Ct at t is
defined by

Ct = {α−1
t (i) : i ∈ I k

t , k = 1, . . . , Kt−1}, (7.22)

i.e., each element of the index sets I k
t defines a new cluster and the new partition Ct

is a refinement of the former partition Ct−1.
The scenarios and their probabilities of the final scenario tree ξtr := ξ̂ T are given

by the structure of the final partition CT , i.e., they have the form

ξ k
tr = (ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt (i)
t , . . . , ξ

αT (i)
T ) and πk

T =
∑

j∈Ck
T

p j if i ∈ Ck
T

(7.23)
for each k = 1, . . . , KT . The index set It of realizations of ξ tr

t is given by

It :=
Kt−1⋃

k=1

I k
t .

For each t ∈ {1, . . . , T } and each i ∈ I there exists an unique index kt (i) ∈
{1, . . . , Kt } such that i ∈ Ckt (i)

t . Moreover, we have Ckt (i)
t = {i} ∪ J kt−1(i)

t,i for

each i ∈ It . The probability of the i th realization of ξ tr
t is π i

t =
∑

j∈Ckt (i)
t

p j . The

branching degree of scenario i ∈ It−1 coincides with the cardinality of I kt (i)
t .

The next result quantifies the relative error of the t th construction step and is
proved in Heitsch and Römisch (2009 Theorem 3.4).

Theorem 7.6 Let the stochastic process ξ̂ with fixed initial node ξ∗1 , scenarios ξ i ,
and probabilities pi , i = 1, . . . , N, be given. Let ξtr be the stochastic process with
scenarios ξ k

tr = (ξ∗1 , ξ
α2(i)
2 , . . . , ξ

αt (i)
t , . . . , ξ

αT (i)
T ) and probabilities πk

T if i ∈ Ck
T ,

k = 1, . . . , KT . Then we have

‖ξ̂ − ξtr‖r ≤
T∑

t=2

⎛

⎝
Kt−1∑

k=1

∑

j∈J k
t

p j min
i∈I k

t

|ξ i
t − ξ j

t |r
⎞

⎠

1
r

. (7.24)

Next, we provide a flexible algorithm that allows to generate a variety of scenario
trees satisfying a given approximation tolerance with respect to the Lr -distance.
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

Fig. 7.1 Illustration of the tree construction for an example with T = 5 time periods

Algorithm 7.1 (Forward tree construction) Let N scenarios ξ i with probabilities
pi , i = 1, . . . , N, fixed root ξ∗1 ∈ R

d , and probability distribution P, r ≥ 1, and

tolerances εr , εt , t = 2, . . . , T , be given such that
∑T

t=2 εt ≤ εr .

Step 1: Set ξ̂1 := ξ̂ and C1 = {{1, . . . , N }}.
Step t: Let Ct−1 = {C1

t−1, . . . ,C Kt−1
t−1 }. Determine disjoint index sets I k

t and J k
t such

that I k
t ∪ J k

t = Ck
t−1, the mapping αt (·) according to (7.20) and a stochastic
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process ξ̂ t having N scenarios ξ̂ t,i with probabilities pi according to (7.21) and
such that

‖ξ̂ t − ξ̂ t−1‖r
r,t =

Kt−1∑

k=1

∑

j∈J k
t

p j min
i∈I k

t

|ξ i
t − ξ j

t |r ≤ εr
t .

Set Ct = {α−1
t (i) : i ∈ I k

t , k = 1 . . . , Kt−1}.
Step T+1: Let CT = {C1

T , . . . ,C KT
T }. Construct a stochastic process ξtr having KT

scenarios ξ k
tr such that ξ k

tr,t := ξ
αt (i)
t , t = 1, . . . , T , if i ∈ Ck

T with probabilities
πk

T according to (7.23), k = 1, . . . , KT .

While the first picture in Fig. 7.1 illustrates the process ξ̂ , the t th picture corre-
sponds to the situation after Step t , t = 2, 3, 4, 5, of the algorithm. The final picture
corresponds to Step 6 and illustrates the final scenario tree ξtr. The proof of the
following corollary is also given in Heitsch and Römisch (2009).

Corollary 7.7 Let a stochastic process ξ̂ with fixed initial node ξ∗1 , scenarios ξ i ,
and probabilities pi , i = 1, . . . , N, be given. If ξtr is constructed by Algorithm 7.1,
we have

‖ξ̂ − ξtr‖r ≤
T∑

t=2

εt ≤ εr .

The next results state that the distance |v(ξ)−v(ξtr)| of optimal values gets small
if the initial tolerance ε in (7.17) as well as εr is small.

Theorem 7.8 Let (A1), (A2), and (A3) be satisfied with r ′ ∈ [1,∞) and the sets
X1(ξ̃1) be nonempty and uniformly bounded in R

m1 if |ξ̃1 − ξ1| ≤ δ. Let L > 0,
δ > 0, and C > 0 be the constants appearing in Theorem 7.2 and (7.8). If (ε(n)r ) is a
sequence tending to 0 such that the corresponding tolerances ε(n)t in Algorithm 7.1
are nonincreasing for all t = 2, . . . , T , the corresponding sequence (ξ (n)tr ) has the
property

lim sup
n→∞

|v(ξ)− v(ξ (n)tr )| ≤ L max{1,C}ε, (7.25)

where ε > 0 is the initial tolerance in (7.17).

Proof It is shown in Heitsch and Römisch (2009 Proposition 5.2) that the estimate

|v(ξ)− v(ξ (n)tr )| ≤ L(ε(n)r + ‖ξ − ξ̂‖r + C D∗
f (ξ, ξ̂ )+ C D∗

f (ξ̂ , ξ
(n)
tr )) (7.26)

is valid and that D∗
f (ξ̂ , ξ

(n)
tr ) tends to 0 as n → ∞. We conclude that the estimate

(7.26) implies (7.25). �
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7.4 Numerical Experience

We consider a mean-risk optimization model for electricity portfolios of a German
municipal electricity company which consist of own (thermal) electricity produc-
tion, the spot market contracts, supply contracts, and electricity futures. Stochastic-
ity enters the model via the electricity demand, heat demand, spot prices, and future
prices (cf. Eichhorn et al. 2005). Our approach of generating input scenarios in the
form of a scenario tree consists in developing a statistical model for all stochastic
components and in using Algorithm 7.1 started with a finite number of scenarios
which are simulated from the statistical model.

150

200

250

300

350

 0 1000 2000 3000 4000 5000 6000 7000 8000

LO
A

D
 [M

W
]

TIME [h]

Fig. 7.2 Time plot of load profile for 1 year

7.4.1 Adapting a Statistical Model

For the stochastic input data of the optimization model (namely electricity demand,
heat demand, and electricity spot prices), we had access to historical data (from a
yearly period of hourly observations, cf. Figure 7.3). Due to climatic influences the
demands are characterized by typical yearly cycles with high (low) demand during
winter (summer) time. Furthermore, the demands contain weekly cycles due to vary-
ing consumption behavior of private and industrial customers on working days and
weekends. The intraday profiles reflect a characteristic consumption behavior of the
customers with seasonal differences. Outliers can be observed on public holidays,
on days between holidays, and on days with extreme climatic conditions. Spot prices
are affected by climatic conditions, economic activities, local power producers, cus-
tomer behavior, etc. An all-embracing modeling is hardly possible. However, spot
prices are also characterized by typical yearly cycles with high (lower) prices during
winter (summer) time, and they show weekly and daily cycles, too. Hence, the (price



160 H. Heitsch and W. Römisch

0

50

100

150

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
P

O
T

 P
R

IC
E

 [E
U

R
]

TIME [h]

Fig. 7.3 Time plot of spot price profile for 1 year

and demand) data were decomposed into intraday profiles and daily average values.
While the intraday profiles are modeled by a distribution-free resampling procedure
based on standard clustering algorithms, a three-dimensional time series model was
developed for the daily average values. The latter consists of deterministic trend
functions and a trivariate autoregressive moving average (ARMA) model for the
(stationary) residual time series (see Eichhorn et al. 2005, for details). Then an arbi-
trary number of three-dimensional scenarios can easily be obtained by simulating
white noise processes for the ARMA model and by adding on afterward the trend
functions, the matched intraday profiles from the clusters, and extreme price outliers
modeled by a discrete jump diffusion process with time-varying jump parameters.
Future price scenarios are directly derived from those for the spot prices.

7.4.2 Construction of Input Scenario Trees

The three-dimensional (electricity demand, heat demand, spot price) scenarios
form the initial scenario set and serve as inputs for the forward tree construction
(Algorithm 7.1). In our test series we started with a total number of 100 sample
scenarios for a 1-year time horizon with hourly discretization. Table 7.1 displays
the dimension of the simulated input scenarios. Due to the fact that electricity future

Table 7.1 Dimension of simulated input scenarios

Components Horizon Scenarios Time steps Nodes

3 (trivariate) 1 year 100 8,760 875,901
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products can only be traded monthly, branching was allowed only at the end of each
month. Scenario trees were generated by Algorithm 7.1 for r = r ′ = 2 and different
relative reduction levels εrel. The relative levels are given by

εrel := ε

εmax
and εrel,t := εt

εmax
,

where εmax is given as the maximum of the best possible Lr -distance of ξ̂ and of one
of its scenarios endowed with unit mass. The individual tolerances εt at branching
points were chosen such that

εr
t =

εr

T

[
1+ q

(
1

2
− t

T

)]
, t = 2, . . . , T, r = 2, (7.27)

where q ∈ [0, 1] is a parameter that affects the branching structure of the constructed
trees. For the test runs we used q = 0.2 which results in a slightly decreasing
sequence εt . All test runs were performed on a PC with a 3 GHz Intel Pentium CPU
and 1 GByte main memory.

Table 7.2 displays the results of our test runs with different relative reduction
levels. As expected, for very small reduction levels, the reduction affects only a few
scenarios. Furthermore, the number of nodes decreases considerably if the reduction
level is increased. The computing times of less than 30 s already include approx-
imately 20 s for computing distances of all scenario pairs that are needed in all
calculations. Figure 7.4 illustrates the scenario trees obtained for reduction levels of
40% and 55%.

Table 7.2 Numerical results of Algorithm 7.1 for yearly demand–price scenario trees

Scenarios Nodes

εrel Initial Tree Initial Tree Stages Time (s)

0.20 100 100 875, 901 775, 992 4 24.53
0.25 100 100 875, 901 752, 136 5 24.54
0.30 100 100 875, 901 719, 472 7 24.55
0.35 100 97 875, 901 676, 416 8 24.61
0.40 100 98 875, 901 645, 672 10 24.64
0.45 100 96 875, 901 598, 704 10 24.75
0.50 100 95 875, 901 565, 800 9 24.74
0.55 100 88 875, 901 452, 184 10 24.75
0.60 100 87 875, 901 337, 728 11 25.89
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Fig. 7.4 Yearly demand–price scenario trees obtained by Algorithm 7.1. (a) Forward constructed
scenario tree with reduction level εrel = 0.4. (b) Forward constructed scenario tree with reduction
level εrel = 0.55
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