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Abstract The paper provides a condition for differentiability as well as an equivalent crite-
rion for Lipschitz continuity of singular normal distributions. Such distributions are of inter-
est, for instance, in stochastic optimization problems with probabilistic constraints, where
a comparatively small (nondegenerate-) normally distributed random vector induces a large
number of linear inequality constraints (e.g. networks with stochastic demands). The crite-
rion for Lipschitz continuity is established for the class of quasi-concave distributions which
the singular normal distribution belongs to.
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1 Introduction

An m-dimensional random vector η is said to have a singular normal distribution if there
exists some s-dimensional random vector ξ having a nondegenerate normal distribution
such that

η = Aξ + b,

where A is an (m, s)-matrix with rank smaller than m and b is an m-vector. In particular,
one may choose A = 0 to see that the Dirac measure, placing mass one at the point b, has a
singular normal distribution. More generally, singular normal distributions are those normal
distributions whose covariance matrix has a rank strictly smaller than the dimension of the
random vector.
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Such seemingly artificial distributions arise in a natural way in problems of stochastic
optimization, where a relatively small (nondegenerate-) normally distributed random vector
induces a large number of linear inequality constraints. As an example, consider the prob-
lem of optimal capacity expansion in a network with stochastic demands (see Prékopa 1995,
p. 453). Let the random vector ξ represent the demands in the nodes of the network and let x

be a vector of capacities for the arcs in the network. The costs of installing these capacities
are to be minimized as a function of x under the constraint that there exists a flow through
the network which is feasible at high probability, i.e., which satisfies both the capacity re-
strictions along the arcs and the random demands in the nodes (at high probability). Using
the Gale-Hoffman theorem, feasibility can be modeled as a linear relation

Aξ ≤ Bx.

Taking into account the random character of ξ , it makes sense to require feasibility in a
probabilistic sense:

P (Aξ ≤ Bx) ≥ p,

where P denotes probability and p ∈ [0,1] is some chosen level of reliability. In general, the
sizes of A and B can be drastically reduced by eliminating redundancy etc. Nevertheless,
even the reduced systems may contain a number of inequalities which is considerably larger
than the dimension of ξ (number of nodes). Passing to the transformed random vector η =
Aξ , the probabilistic constraint obtained above can be rewritten as

�(Bx) ≥ p,

where � is the distribution function of η. However, since A may have more rows than
columns, we have to expect that η has a singular normal distribution even though ξ had a
regular normal distribution.

The example shows that, in order to cope with certain types of probabilistic constraints,
it is important to be able to calculate values and gradients of singular normal distribution
functions. As the latter need not exist in general, it is of interest to characterize differentia-
bility of such functions. If differentiability fails to hold, one could rely on more general tools
from nonsmooth optimization (both for algorithmic purposes and optimality conditions). In
such constellation, local or global Lipschitz continuity is a favorable property. Whether a
singular normal distribution function is discontinuous or not does not depend on the rank of
the covariance matrix. Figure 1 shows (from the left to the right) the distribution functions
of 2-dimensional normal distributions with zero mean and covariance matrices

(
1 0
0 0

)
,

(
1 1
1 1

)
,

(
1 −1

−1 1

)
,

all of which have rank one. Note that, in the first case, the distribution function is discon-
tinuous whereas it is Lipschitz continuous (piecewise selection of smooth functions of min-
and max-type, respectively) in the remaining cases.

The paper provides a condition for differentiability as well as an equivalent criterion for
Lipschitz continuity of singular normal distribution functions. The criterion for Lipschitz
continuity can be obtained for the general class of quasi-concave distributions which singu-
lar normal distributions belong to.
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Fig. 1 Distribution functions of 2-dimensional singular normal distributions with covariance matrix having
rank one (see text)

2 Lipschitz continuity of quasi-concave distributions

We start this section by introducing the class of quasi-concave probability measures (see
Prékopa 1995). By P(Rs) we denote the set of probability measures on R

s .

Definition 2.1 A probability measure μ ∈ P(Rs) is called quasi-concave whenever

μ(λA + (1 − λ)B) ≥ min{μ(A),μ(B)}
holds true for all convex and Borel measurable subsets A,B ⊆ R

s and all λ ∈ [0,1] such
that λA + (1 − λ)B is Borel measurable.

It is well known that a large class of prominent multivariate distributions shares the prop-
erty of being quasi-concave. Among those are the multivariate normal distribution (nonde-
generate or singular), the Dirichlet-, Pareto-, Gamma-, Log-normal distributions (possibly
with a restricted range of parameters) as well as uniform distributions over compact, convex
subsets of R

s (see Prékopa 1995; Borell 1975). Consequently, all future statements in this
section apply in particular to singular normal distributions.

For the proof of our Lipschitz criterion, we shall make use of the following three propo-
sitions:

Proposition 2.1 A quasiconcave measure μ ∈ P(R) has either a density or coincides with
some Dirac measure, i.e. μ = δx for some x ∈ R.

Proof Follows immediately from Theorem 3.2 in Borell (1975). �

Proposition 2.2 If for all marginal distributions μi of μ ∈ P(Rs) there exist bounded den-
sities on R, then the distribution function Fμ of μ is Lipschitz continuous.

Proof See Proposition 3.8 in Römisch and Schultz (1993). �

Proposition 2.3 If μ ∈ P(R) is a quasiconcave measure with density fμ, then fμ is
bounded.

Proof According to Theorem 3.2 in Borell (1975), the possibly extended-valued function
1/fμ is convex and the support of μ is a convex subset of R. Assuming that fμ is un-
bounded, there exists a sequence {xn} ⊆ R such that fμ(xn) ≥ n. If {xn} is unbounded, then,
without loss of generality, it is increasing, hence [x1,∞) ⊆ suppμ and {1/fμ(xn)} is de-
creasing. Since 1/fμ is convex, it follows that 1/fμ is decreasing on [x1,∞). Therefore,



118 Ann Oper Res (2010) 177: 115–125

fμ is increasing on [x1,∞) which contradicts the fact that fμ is a density. Now, assume that
{xn} is bounded, hence xn → x̄ upon passing to some subsequence. Then, 1/fμ(x̄) = 0. In-
deed, this follows in case of x̄ ∈ int suppμ from the continuity of the convex function 1/fμ

on the interior of its domain. In case that x̄ belongs to the boundary of suppμ, we may re-
define fμ(x̄) := ∞ without changing the measure μ and without affecting the convexity of
1/fμ (due to 1/fμ(xn) → 0). Now, from 1/fμ ≥ 0 being convex and satisfying 1/fμ(x̄) = 0,
it follows that 1/fμ(x̄ + h) is nondecreasing for h > 0 and that the difference quotients

h �→ h−1(1/fμ(x̄ + h) − 1/fμ(x̄))

are nondecreasing in h. Consequently, one has for h2 ≥ h1 > 0

fμ(x̄ + h1) ≥ fμ(x̄ + h2), (1)

fμ(x̄ + h1)h1 ≥ fμ(x̄ + h2)h2. (2)

We assume that either x̄ ∈ int suppμ or that x̄ belongs to the left boundary of suppμ (the
proof running analogously in case that x̄ belongs to the right boundary of suppμ). In both
cases there exists some δ > 0 such that fμ(x̄ + δ) > 0. It follows for arbitrary n ∈ N that

1 =
∫ ∞

−∞
fμ(x)dx ≥

∫ x̄+δ

x̄+2−nδ

fμ(x)dx =
n−1∑
j=0

∫ x̄+2−j δ

x̄+2−(j+1)δ

fμ(x)dx

≥
n−1∑
j=0

fμ(x̄ + 2−j δ)2−j δ

2
(by (1))

≥
n−1∑
j=0

fμ(x̄ + δ)
δ

2
(by (2))

= n
δ

2
fμ(x̄ + δ).

This, however, is a contradiction to

n
δ

2
fμ(x̄ + δ) →n ∞. �

For the narrower class of log-concave measures, Proposition 2.3 is a (1-dimensional) special
case of a Theorem by Barndorff-Nielsen (1978).

Definition 2.2 We call a subset H ⊆ R
s a canonical hyperplane if there exist t ∈ R and

i ∈ {1, . . . , s} such that

H = 1
R × · · · × i−1

R × i{t}×i+1
R × · · · × s

R.

Now, we are in a position to formulate the desired criterion for Lipschitz continuity of
distribution functions in the considered class of distributions:

Theorem 2.1 A quasiconcave probability measure μ ∈ P(Rs) has a Lipschitz continuous
distribution function Fμ if and only if the support of μ is not contained in a canonical
hyperplane of R

s .
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Proof We denote by μi ∈ P(R) the ith marginal distribution of μ. Clearly, the μi are quasi-
concave on R. With T being the support of μ and δt referring to the one-dimensional Dirac
measure placed at t ∈ R, the following chain of equivalences results:

T is contained in a canonical hyperplane of R
s

⇐⇒ ∃t ∈ R ∃ i ∈ {1, . . . , s} : μ(
1
R × · · · × i−1

R × i{t}×i+1
R × · · · × s

R) = 1

⇐⇒ ∃t ∈ R ∃ i ∈ {1, . . . , s} : μi({t}) = 1

⇐⇒ ∃t ∈ R ∃ i ∈ {1, . . . , s} : μi = δt

⇐⇒ ∃ i ∈ {1, . . . , s} : μi doesn’t have a density.

Here, the last equivalence is implied by Proposition 2.1. Contraposition gives the following
chain of implications with the second and third one following from Propositions 2.3 and 2.2,
respectively.

T is not contained in any canonical hyperplane of R
s

=⇒ μi has a density fμi
for all i ∈ {1, . . . , s}

=⇒ fμi
is bounded for all i ∈ {1, . . . , s}

=⇒ Fμ is globally Lipschitzian.

Now, this chain of implications proves the ‘if’-part of the theorem. For the reverse direc-
tion, assume that T is contained in a canonical hyperplane of R

s . Then, the above chain of
equivalences shows that

μ(
1
R × · · · × i−1

R × i{t} × i+1
R × · · · × s

R) = 1 for some t ∈ R and i ∈ {1, . . . , s}.
Consequently, one may choose some τ ∈ R large enough such that

Fμ(τ, . . . , τ, t, τ, . . . , τ ) > 0.

On the other hand, Fμ(τ, . . . , τ, t ′, τ, . . . , τ ) = 0 for any t ′ < t , hence Fμ is not continuous
(much less it is Lipschitz continuous). �

The last argument in the proof of Theorem 2.1 shows that the failure of Lipschitz conti-
nuity entails the failure of continuity, so we get the following useful observation:

Corollary 2.1 The distribution function of some quasiconcave probability measure is Lip-
schitz continuous if and only if it is continuous. In particular, the distribution function of
some quasiconcave probability measure with density is Lipschitz continuous.

Concerning the second statement of the last corollary, we emphasize that in general even
the existence of a bounded and continuous density does not imply the Lipschitz continuity
of the distribution function (for a counterexample see Henrion and Römisch 1999, Ex. 9).
A slightly more illustrative reformulation of Theorem 2.1 is:

Theorem 2.2 Let ξ be an s-dimensional random vector with quasi-concave distribution
μ ∈ P(Rs). Then, the distribution function of ξ is Lipschitz continuous if and only if none of
the components ξi has zero variance.
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As an application of Theorem 2.2 we come back to the singular normal distributions
with the three covariance matrices mentioned in the introduction. The first covariance matrix
contains a zero diagonal element whereas the second and third ones do not. This explains
why the first distribution function depicted in Fig. 1 is discontinuous whereas the second
and third ones are Lipschitz continuous.

At the end of this section, we consider an application to probability functions

ϕ(x) = P (Aξ ≤ h(x)), (3)

where, ξ is an s-dimensional random vector, A is an (m, s)-matrix, x ∈ R
n and h : R

n → R
m.

Recall that such type of probability functions arises in the context of probabilistic constraints
ϕ(x) ≥ p as presented in the introduction.

Corollary 2.2 In (3), assume that h is locally Lipschitzian and that ξ has a quasi-concave
distribution with some covariance matrix 	. Then, ϕ is locally Lipschitzian under the con-
dition

ai /∈ Ker	, ∀i ∈ {1, . . . ,m}, (4)

where the ai denote the rows of A.

Proof The transformed random vector η := Aξ inherits a quasi-concave distribution from
that of ξ . With Fη being the distribution function of η, one may write ϕ = Fη ◦ h. The ith
component of η has variance aT

i 	ai . Since this variance is larger than zero according to (4),
Theorem 2.2 provides that Fη is Lipschitz continuous. Hence, ϕ is locally Lipschitzian as a
composition of two such mappings. �

3 Differentiability of singular normal distribution functions

Although the 3 examples of singular normal distribution functions presented in the introduc-
tion and depicted in Fig. 1 fail to be differentiable in a global sense, they are differentiable
almost everywhere. In order to establish a condition for differentiability, we shall introduce
some concepts related with systems of linear inequalities. More precisely, let A be an (m, s)-
matrix and b ∈ R

m. We shall briefly speak of the system (A,b) to refer to the system Az ≤ b

of linear inequalities in R
s . For an index set I ⊆ {1, . . . ,m}, we shall denote by AI the sub-

matrix of A which is built up from those rows of A which are indexed by I . Accordingly,
bI will be the subvector of b consisting of the components indexed by I . Furthermore, we
shall use the short-hand notation ‘u < v’ for vectors u,v to mean a strict inequality for all
their components.

With the system (A,b) we associate a family of index sets defined by

I (A,b) := {I ⊆ {1, . . . ,m}|∃z ∈ R
s : AIz = bI ,A{1,...,m}\I z < b{1,...,m}\I }.

The system (A,b) is said to be nondegenerate, if rankAI = #I for all I ∈ I (A,b). In the
language of optimization theory, the system (A,b) is nondegenerate if and only if it satisfies
the Linear Independence Constraint Qualification (LICQ). We shall need a rather obvious
result of technical nature:

Proposition 3.1 Suppose that the system (A,b) is nondegenerate. Then, there exists a
neighborhood U of b such that for all b′ ∈ U the systems (A,b′) are nondegenerate too
and I (A,b′) = I (A,b).
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Proof According to the definition of nondegeneracy, the first assertion is an immediate con-
sequence of the second one. We show first that there is a neighborhood U of b such that
I (A,b) ⊆ I (A,b′) for all b′ ∈ U. Let I ∈ I (A,b) be arbitrary. By definition, there is some
z ∈ R

s with AIz = bI and A{1,...,m}\I z < b{1,...,m}\I . Let U,V be neighborhoods of b and z,
respectively, such that A{1,...,m}\I z′ < (b′){1,...,m}\I for all z′ ∈ V and b′ ∈ U . Due to the non-
degeneracy of the system (A,b), AI has full rank. Hence, choosing U small enough, for all
b′ ∈ U there are z′ ∈ V with AIz′ = (b′)I . Consequently, for all b′ ∈ U , there exists some
z′ satisfying AIz′ = (b′)I and A{1,...,m}\I z′ < (b′){1,...,m}\I . This amounts to I ∈ I (A,b′),
whence the desired inclusion. Now, we show that there is a neighborhood U of b such
that

I (A,b′) ⊆ I (A,b), ∀b′ ∈ U. (5)

Choosing the intersection of this neighborhood U with the one found above for the re-
verse inclusion will prove the assertion of the proposition. It is well-known (see, e.g., Bank
et al. 1982, Theorem 3.4.1) that the multifunction M which assigns to each b′ the so-
lution of the system (A,b′), can be decomposed as M(b′) = K(b′) + U , where K is a
Hausdorff-continuous multifunction such that the K(b′) are convex, compact polyhedra for
all b′, and where U = {u|Au ≤ 0}. Now, negating (5) and using a subsequence argument,
one would derive the existence of sequences xk and b(k) → b as well as of an index set
I ⊆ {1, . . . ,m} with I /∈ I (A,b) such that AIxk = (b(k))I and A{1,...,m}\I xk < (b(k)){1,...,m}\I .
Clearly, xk ∈ M(b(k)), hence there are sequences yk ∈ K(b(k)) and uk ∈ U with yk = xk −uk .
By the Hausdorff continuity of K and the compactness of K(b) it follows that yk is bounded.
Therefore, without loss of generality, we may assume that yk → ȳ for some ȳ ∈ K(b) (again
by Hausdorff continuity of K). Consequently,

AI ȳ = lim
k

(
AIxk − AIuk

) ≥ lim
k

(
b(k)

)I = bI .

On the other hand, since 0 ∈ U , we know that ȳ ∈ M(b), whence AI ȳ ≤ bI . Summariz-
ing, AI ȳ = bI . Since ȳ solves the system (A,b), there is some index set I ′ ⊇ I such that
AI ′

ȳ = bI ′
and A{1,...,m}\I ′

ȳ < b{1,...,m}\I ′
. In other words, I ′ ∈ I (A,b). Invoking once more

the nondegeneracy of the system (A,b), we see that AI ′
has full rank. As a consequence,

there exists some h such that AIh = 0 and AI ′\I h = −1, where 1 := (1, . . . ,1). Now, for
small enough t > 0, one gets that

AI (ȳ + th) = bI ,

AI ′\I (ȳ + th) = bI ′\I − t1 < bI ′\I ,

A{1,...,m}\I ′
(ȳ + th) < b{1,...,m}\I ′

.

This amounts to the contradiction I ∈ I (A,b). �

Our differentiability result will basically rely on the following inclusion-exclusion for-
mula for the probability of polyhedra proved in Naiman and Wynn (1997) by means of
the so-called abstract-tube theory (a recent proof based on more elementary arguments like
duality of linear programming can be found in Bukszár et al. 2004):

Theorem 3.1 Let ξ be an s-dimensional random vector. If the system (A,b) is nondegener-
ate, then the probability of the polyhedron induced by (A,b) equals

P (Aξ ≤ b) =
∑

I∈I (A,b)

(−1)#I P
(
AIξ > bI

)
.
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We note that the assumed nondegeneracy implies ∅ ∈ I (A,b). In this case, the corre-
sponding term in the sum above is equal to one just by formal argumentation:

(−1)#∅ P (〈ai, ξ 〉 > bi (i ∈ ∅)) = P (Rs) = 1.

Recall from the introduction that a singular normal distribution can always be obtained as a
linear transformation of some nondegenerate normal distribution. If this linear transforma-
tion is not explicitly given but just the covariance matrix 
 and the mean vector γ of the
singular normal distribution are known, this transformation can be found as follows: First
decompose the (possibly degenerate) covariance matrix 
 as 
 = AAT such that A has full
rank. Let ξ be a random vector whose dimension coincides with the number of columns of
A and which has independent normally distributed components with zero mean. Then, the
transformation Aξ + γ generates a random vector with covariance matrix AAT = 
 and
mean γ , i.e., A and γ define the desired linear transformation. Now, we state the main result
of this section.

Theorem 3.2 Let ξ have an s-dimensional nondegenerate normal distribution. Denote by
�η the distribution function of the linearly transformed random vector η = Aξ + b, where
A is an (m, s)-matrix and b ∈ R

m. Then, �η is smooth (infinitely many times differentiable)
at any point x̄ ∈ R

m for which the system (A, x̄ − b) is nondegenerate.

Proof By Proposition 3.1, there exists a neibhborhood U of x̄ such that the system
(A,x − b) is nondegenerate for all x ∈ U . By definition, one has that

�η (x) = P (η ≤ x) = P (Aξ ≤ x − b).

Application of Theorem 3.1 to the systems (A,x − b) yields that, for all x ∈ U :

�η (x) =
∑

I∈I (A,x−b)

(−1)#I P (AI ξ > xI − bI ).

We note that in the last relation, one may pass to a non-strict inequality. Indeed, since all
the AI have full rank by nondegeneracy, the set of ξ satisfying AIξ ≥ xI − bI but violating
AIξ > xI − bI has Lebesgue measure zero. Since ξ has a density, passing to non-strict
inequalities will not change the probability:

�η (x) =
∑

I∈I (A,x−b)

(−1)#I P (AI ξ ≥ xI − bI ).

For each I ⊆ {1, . . . ,m}, define random vectors ηI := −AIξ . Then, one has for all x ∈ U

that

�η (x) =
∑

I∈I (A,x−b)

(−1)#I P
(
ηI ≤ bI − xI

) =
∑

I∈I (A,x−b)

(−1)#I F I
(
bI − xI

)
. (6)

Here, F I refers to the distribution function of ηI . Obviously, ηI has a normal distribution
with covariance matrix AI	(AI )T , where 	 denotes the positive definite (by assumption)
covariance matrix of ξ . Due to nondegeneracy of the systems (A,x − b), we know that
AI has full rank for all I ∈ I (A,x − b) and all x ∈ U . Consequently, AI	(AI )T is positive
definite too, which means that all the ηI have nondegenerate normal distributions. Therefore,
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all distribution functions F I are (globally) smooth. We are tempted now, to differentiate the
sum in (6) all terms of which are differentiable. This would imply the desired smoothness
of �η at x̄. However, care has to be taken since the number of terms in the sum, which is
given by the cardinality of I (A,x − b), does formally depend on x. Hence, certain terms
could suddenly disappear or appear, when moving away from x̄. Fortunately, we know from
Proposition 3.1 that I (A,x −b) = I (A, x̄ −b) for all x ∈ U . This allows to write �η locally
around x̄ as a sum of a fixed number of smooth functions:

�η (x) =
∑

I∈I (A,x̄−b)

(−1)#I F I
(
bI − xI

)
, ∀x ∈ U. (7)

This implies smoothness of �η at x̄. �

Note that Theorem 3.2 does not just make a theoretical statement on smoothness of sin-
gular normal distribution functions, but even provides a formula how to calculate their deriv-
atives. Indeed, one may use (7) in order to calculate the gradient (or higher order derivatives)
of �η on the basis of the same objects for nondegenerate (!) normal distribution functions
(the F I ). As first and higher order derivatives of nondegenerate normal distribution func-
tions can be analytically reduced to functional values themselves (see, e.g., Prékopa 1995),
everything boils down to the mere calculation of nondegenerate normal distribution func-
tions. This can be carried out by several existing algorithms (see, e.g., Gassmann et al. 2002;
Genz 1992; Szántai 2000).

We want to illustrate Theorem 3.2 by applying it to the singular normal distribution with
zero mean vector and covariance matrix

(
1 1
1 1

)
= AAT with A =

(
1
1

)

(see second picture in Fig. 1). Such distribution is realized by a random vector η = Aξ ,
where ξ has a one-dimensional standard normal distribution (compare remark in front of
Theorem 3.2). We have to check, for which vectors x ∈ R

2 the system (A,x) is nondegen-
erate. Concerning the calculation of the index family I (A,x), one has to distinguish three
cases:

x1 < x2 =⇒ I (A,x) = {∅, {1}},
x1 > x2 =⇒ I (A,x) = {∅, {2}},
x1 = x2 =⇒ I (A,x) = {∅, {1,2}}.

Obviously, nondegeneracy holds true in the first two cases since both ‘rows’ of A (which
reduce to real numbers here) are different from zero. Consequently, Theorem 3.2 guaran-
tees differentiability of the distribution function of η whenever x1 �= x2 (this can be verified
from Fig. 1). On the other hand, the two ‘rows’ of A cannot be linearly independent, hence
nondegeneracy is lost in case of x1 = x2. This harmonizes with the fact that the distrib-
ution function of η is not differentiable on the bisectrix x1 = x2 (see Fig. 1). Now, using
formula (7), we may also calculate the gradient of �η at points x where it exists, e.g., where
x1 < x2. We obtain:

�η (x) = F ∅(−x∅) − F {1}(−x{1}) = 1 − F {1}(−x{1}), ∀x ∈ U,
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where we used that the first probability term referring to the empty index set is equal to
one by formal reasons (see remark below Theorem 3.1). Moreover, by definition, F {1} is
the distribution function of η{1} = A{1}ξ = ξ , hence F {1}coincides with the one-dimensional
standard normal distribution function �, whence

�η (x) = 1 − �(−x1) = �(x1), ∀x ∈ U.

Derivation at x̄ now yields ∇�η(x̄) = (�′(x̄1),0). Similarly, for x1 > x2, one obtains that
∇�η(x̄) = (0,�′(x̄2)).

Finally, we note, that the smoothness result of Theorem 3.2 allows to calculate derivatives
of probability functions

ϕ(x) = P (Aξ ≤ h(x))

as they occured in (3), with the additional assumption that h be smooth (a particular instance
is given by the case h(x) = Bx considered in the introduction). More precisely, under the
assumption that the system (A, x̄) is nondegenerate, one arrives at

∇ϕ(x̄) =
∑

I∈I (A,x̄)

(−1)#I+1 ∇F I
(
(−h(x̄))I

)
(Dh(x̄))I .

Of course, for many practical applications, it would be interesting to derive analogous results
in the case that not only the righ-hand side but also the matrix depends on the decision x,
i.e.:

ϕ(x) = P (A(x)ξ ≤ h(x)).

In this situation, by using a slight generalization of Proposition 3.1, which takes into ac-
count perturbations of A as well, one could still derive the representation formula (7), but
now the random vector η would no longer be fixed but depend on x: η(x) = A(x)ξ . As a
consequence, the nondegenerate multivariate normal distribution functions F I in (7) would
also depend on x in that their covariance matrices A(x)I (AI (x))T depend on x. Therefore,
calculating the desired gradients of F I requires to compute the partial derivatives the F I

with respect to the entries of the covariance matrix, which may be very difficult, although
the differentiability result itself might hold true.
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