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Abstract. Introducing probabilistic constraints leads in general to nonconvex, nonsmooth or even disconti-
nuous optimization models. In this paper, necessary and sufficient conditions for metric regularity of (several
joint) probabilistic constraints are derived using recent results from nonsmooth analysis. The conditions apply
to fairly general constraints and extend earlier work in this direction. Further, a verifiable sufficient condition
for quadratic growth of the objective function in a more specific convex stochastic program is indicated and
applied in order to obtain a new result on quantitative stability of solution sets when the underlying probability
distribution is subjected to perturbations. This is used to derive bounds for the deviation of solution sets when
the probability measure is replaced by empirical estimates.
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1. Introduction

When building stochastic models in decision making under (stochastic) uncertainty,
the two main approaches consist in introducing future costs (e.g. for the compensation
of constraint violations) and in fixing certain reliability levels for constraints. The
latter approach is motivated by many problems in engineering sciences, where system
reliability is an important feature (e.g. inventory control, power generation, structural
design etc. [26], [31], [48]). It leads to stochastic programming problems with (so-called)
probabilistic or chance constraints. To give a mathematical formulation of the model
we study in this paper, letξ be ans-dimensional random vector on some probability
space(�,A, P) and let ξ ∈ Hj (x), j = 1, . . . ,d, described constraints depending
on ξ and on the decision vectorx ∈ IRm. Denoting byg the objective function and
by C the closed subset ofIRm expressing all deterministic constraints, we arrive at the
following model:

min{g(x) | x ∈ C, P(ξ ∈ Hj (x)) ≥ pj , j = 1, . . . ,d}.
Here pj ∈ (0,1) denotes the probability (or reliability) level subject to which the
constraint ’ξ ∈ Hj (x)’ has to be satisfied. Since different reliability requirements might
be fixed for different constraints, the levelspj ∈ (0,1), j = 1, . . . ,d are allowed to
be different. Later we shall prefer the following formulation of the model

P(µ) min{g(x) | x ∈ C, µ(Hj (x)) ≥ pj , j = 1, . . . ,d}, (1)
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whereµ denotes the probability distribution ofξ, i.e., µ = P ◦ ξ−1. In Section 2 the
assumptions on the datag,C, Hj ( j = 1, . . . ,d) are specified, so that the model is
well-defined and enjoys suitable properties.

To illustrate the mathematical challenges of model (1), we look at a special instance
of (1) where the only stochastic constraint is linear and takes the formAx ≥ ξ, i.e.
ξ ∈ Ax+ IRs−, with a (s,m)- matrix A, the deterministic constraint setC is a (convex)
polyhedron and the objective functiong is linear or (convex) quadratic. Since we have
µ({ξ | Ax≥ ξ}) = Fµ(Ax), where Fµ denotes the probability distribution function of
µ (or ξ), the specific model has the form

min{g(x) | x ∈ C, Fµ(Ax) ≥ p} (2)

Chance constrained models of type (2) are met in a number of applied optimization
problems under uncertainty (the reader may consult [12], [36] and above all [31], and
the references therein). Nevertheless, already model (2) exhibits possible nonconvexity,
nondifferentiability and discontinuity properties that are induced by corresponding pe-
cularities of the distribution functionFµ. Conditions that imply convexity of model
(2) are well understood (cf. [31] and Section 2). But, the situation is different as for
differentiability properties of (2). Many multivariate distribution functions having den-
sities are known to be nondifferentiable, e.g., classical ones like Dirichlet, Gamma (for
certain parameter choices) and uniform distribution. Examples 7 and 8 in the Appendix
show that the uniform distribution function of measuresµ over convex and nonconvex
polyhedral supports may fail to be differentiable at solutions to (2). Hence, classical
tools from differentiable or convex analysis and optimization may not apply. Example
9 shows that even the existence of a continuous and bounded density does not im-
ply the distribution function to be locally Lipschitzian (much less to be smooth). This
illuminates that a smooth approach to our analysis of model (1) would significantly
narrow the class of probability distributions. For that reason we will focus our analysis
to nonsmooth probabilistic constraints in order to enlarge the range of applications.

In most practical applications of the stochastic programming methodology only
incomplete information on the probability distributionµ (of ξ) is available. This fact
and the possible need of approximations forµ in solution methods (cf. [31]) motivate
a stability analysisof P(µ) with respect to perturbations ofµ in the spaceP(IRs) of
all Borel probability measures onIRs endowed with a suitable convergence (or metric).
In the context of stochastic programs with probabilistic constraints, this problem was
addressed in several papers, e.g. [1], [11], [12], [19], [20], [35], [36], [37], [38], [39],
[40], [45], [46], [47]. In [11] a nonlinear parametric framework is adapted to study
stability with respect to changes of finite dimensional parameters of the distributionµ.
The convergence theory for measurable multifunctions is utilized in [39] to develop
general approximation results for probabilistically constrained models. This approach
is also used in [45], leading to general, satisfactory results on convergence rates of
estimates for such models. Further results in this direction are given in [20]. Asymptotic
properties of the optimal value based on an extended delta method are studied in [40].
Recently, a new class of nonparametric estimators that preserve convexity properties has
been adapted to chance constrained models in [12]. The asymptotic behaviour of these
estimates and of solution sets to stochastic programs is analysed, too. In the remaining
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papers quoted above, stochastic programs are viewed as parametric programs with
respect to the probability measureµ. [19], [46] and [47] give qualitative stability results
for constraint sets, marginal values and solutions when the measureµ is perturbed
in P(IRs) equipped with the (metrizable) topology of weak convergence ([5]). In [1],
[35], [36], [37], [38] quantitative stability results for marginal values are obtained with
respect to certain metric distances onP(IRs) (the Prokhorov metric in [1] and so-called
discrepancies in the other papers). The papers [35], [36], [37] also contain results on
upper semicontinuity of local solution sets. For the case ofd = 1, C = IRm and
H(x) = {z ∈ IRs | h(x) ≥ z} in problem (1) with continuously differentiableh
and a probability measureµ having a locally Lipschitzian distribution functionFµ,
a particular metric regularity result is given in [35] (Corollary 5.6) using the Clarke
generalized gradient. This has been partially extended by allowing for a general closed
subsetC of IRm (but assumingh to be linear) in [36] (Proposition 2.1) by making use
of Clarke’s nonsmooth calculus. Another type of result for a nonconvex situation (with
d = 1, C convex,h linear, but without assuming thatµ has concavity properties) is
developed in [38] (Theorem 4.6) and [36] (Corollary 2.2) by imposing a local growth
condition on the composite functionFµ(h(·)) near binding feasible points.

The aim of the present paper is to extend the results in [35], [36], [37] intwo
directions: earlier conditions on the stability of probabilistic constraint sets are consi-
derably generalized and a novel result on the Hausdorff Hölder stability of solution sets
is established. We start our analysis by stating a general quantitative stability result for
P(µ) (Theorem 1), which relies on the recent work by Klatte [22] and on techniques
developed in [37], [38]. The crucial conditions in this result are themetric regularityof
the probabilistic constraints and aquadratic growthcondition for the objective function
near nonisolated minima. The growth condition appears in a more general context also
in [2], [6], [41] for instance, and in a slightly different framework in [24]. The aim
of our analysis is to derive verifiable conditions (on the original problemP(µ)) for
metric regularity and quadratic growth. In particular, we focus on conditions that apply
to nonsmooth probabilistic constraints.

In Section 3 we shall study the case ofC ⊆ IRm being closed andHj (x) =
{z ∈ IRs | h j (x) ≥ zj } with h j : IRm → IRsj , j = 1, . . . ,d and

∑d
j=1 sj = s in

(1). Characterizations of metric regularity will be obtained by exploiting the nonconvex
subdifferential calculus by Mordukhovich ([27], [28]). Two types of sufficient conditions
for metric regularity are developed. The first one represents an explicit growth condition
for the composite functionθµ(x) = (µ(H1(x)), . . . , µ(Hd(x))) at a feasible point
(Theorem 4). The second type consists of separate constraint qualifications for the
function h = (h1, . . . ,hd) relative to C and for a function8µ whose components
are certain marginal distribution functions ofµ (Theorem 5). In caseµ has a density,
a more transparent and verifiable condition, which implies the constraint qualification
for 8µ, is established (Theorem 6). This can be achieved even globally if the strict
positivity region of the density contains a so-called infinity path (Theorem 7). The
principal statements are illustrated by examples showing their validity and limitations.
Earlier results are essentially extended.

In Section 4 we consider a convex stochastic program of the form (2) and give
a criterion implying quadratic growth of the objective near the solution set. In this
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respect a local strong concavity property of the measureµ is essential. The methodology
for proving this result (Theorem 8) is shown to extend to establishing the Hausdorff
Hölder continuity for solution sets (Theorem 9). Finally, we outline in Section 5 that our
quantitative stability results have immediate applications for empirical approximations
of P(µ). Making use of recent results in empirical process theory we derive (exponential)
bounds for the distance of original and approximate solution sets (Proposition 5 and 6).

2. Quantitative stability results

In this section, we develop a framework for stability analysis of probabilistic constrained
models and present a general result on the quantitative stability of marginal values and
(local) solution sets. We consider the stochastic programming modelP(µ) formulated
in the introduction

P(µ) min{g(x) | x ∈ C, µ(Hj (x)) ≥ pj , j = 1, . . . ,d},
which involves several (joint) probabilistic constraints. For the data we assume that
g is a continuous mapping fromIRm into IR, C is a nonempty, closed subset of
IRm, Hj is a set-valued mapping fromRm into IRs having a closed graph (for each
j = 1, . . . ,d), pj ∈ (0,1) ( j = 1, . . . ,d) and µ ∈ P(IRs). Making use of the
notations p = (p1, . . . , pd) and Mp(ν) = {x ∈ C | ν(Hj (x)) ≥ pj , j = 1, . . . ,d)}
for eachν ∈ P(IRs), the modelP(µ) takes the form

min{g(x) | x ∈ Mp(µ)}. (3)

We note that, forν ∈ P(IRs), the function ν(Hj (·)) is upper semicontinuous (cf.
Proposition 3.1 in [37]).

The first step to analyse stability of (3) with respect to perturbations ofµ in P(IRs)

is to identify a (suitable) metric distance onP(IRs). Consistently with [38], [37] we
consider the following distance, which is sometimes calledB-discrepancy:

αB(µ, ν) = sup{|µ(B)− ν(B)| | B ∈ B} (4)

Here B is a class of closed subsets ofIRs such that all sets of the formHj (x) (x ∈
C; j = 1, . . . ,d) belong toB and thatB is a determining class (i.e., it has the property
that if any two measures agree onB, then they coincide). Convergence of a sequence
of probability measures with respect to the metricαB means its uniform convergence
on B. Necessary and sufficient conditions onB such that weak convergence of proba-
bility measures implies uniform convergence onB usually refer to certain uniformity
properties of the classB with respect to the limit measure ([4]) or to the sequential
compactness ofB, viewed as a subset of the hyperspace of closed subsets ofIRs equip-
ped with a suitable topology ([25]). In particular, ifB is a subclass of all convex Borel
sets, then the uniform convergence onB to the limit measureµ is implied by its weak
convergence and the conditionµ(∂B) = 0 for all B ∈ B (∂B denoting the topological
boundary ofB). A special classB to be considered in the following is

BK = {×d
j=1Bj | Bj ∈ {IRsj , zj + IR

sj
−}, zj ∈ IRsj }, where

d∑
j=1

sj = s.
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The inducedB- discrepancy is denoted asαK . For d = 1 it reduces to the Kolmogorov
distanceαK (µ, ν) = ‖Fµ− Fν‖∞ = sup

z∈IRs
|Fµ(z)− Fν(z)|, where Fν(z) = ν(z+ IRs−)

is the distribution function ofν.
A special feature of model (3) is that we have to take into account its possible

nonconvexity. Even when the original model is convex (cf. e.g. Corollary 1), perturba-
tions of µ (e.g. by discrete measures) lead to nonconvex perturbed programs. Hence,
an appropriate concept for the stability analysis of (3) has to take into account the per-
turbation of sets of local minimizers. Here we make use of the concepts developed in
[21], [32] and, in particular, of so-called complete minimizing sets (CLM sets). Given
V ⊆ IRm, we put for eachν ∈ P(IRs)

ϕV(ν) = inf{g(x) | x ∈ Mp(ν) ∩ cl V}
9V(ν) = argmin{g(x) | x ∈ Mp(ν) ∩ cl V} = {x ∈ Mp(ν) ∩ cl V | g(x) = ϕV(ν)},

where cl V denotes the closure ofV. For V = IRm we shall briefly writeϕ(ν) and
9(ν) for the resulting global optimal value function and the set of global minimizers.
Givenµ ∈ P(IRs), we call a nonempty subsetX of IRm a CLM set for (3) with respect
to V, if V is an open subset ofIRm containing X and X = 9V(µ). For a discussion
of CLM sets we refer to [32], but mention that nonempty sets of global minimizers,
isolated local minimizers and sets of non-isolated local minimizers around whichg
satisfies a quadratic growth condition (cf. e.g. [6], [41], [22]) are examples of CLM sets.

To state our quantitative stability result, we still need a stability property for the
probabilistic constraint in (3). We putθµ : IRm → IRd, θ

j
µ(x) = µ(Hj (x)) for each

x ∈ IRm, j = 1, . . . ,d, and p = (p1, . . . , pd) ∈ IRd. Consistently with the general
definition given in Section 3 we say here that the probabilistic constraint function
θµ(·) − p is metrically regular with respect toC at somex0 ∈ Mp(µ) if there are
constantsa> 0 andε > 0 such that

dist(x,Mp−y(µ)) ≤ a · dist(θµ(x)− p, IRd+ − y) = a‖max{0, p− y− θµ(x)}‖
for all (x, y) ∈ (C ∩ Bε(x0)) × Bε(0). Here (and in all what follows)Bε(x) denotes
the closed ball with radiusε aroundx. The following general stability result will serve
as an orientation for the further development of our analysis.

Theorem 1. In addition to the general conditions, assume that

(i) X is a CLM set forP(µ) with respect to a bounded setV (i.e., X = 9V(µ) and
X is compact),

(ii) g is locally Lipschitz continuous,
(iii) the probabilistic constraint functionθµ(·)− p is metrically regular with respect to

C at eachx0 ∈ X.

Then there are constantsL > 0 and δ > 0 such that the set-valued mapping9V
from (P(IRs), αB) to IRm is upper semicontinuous atµ, 9V(ν) is a CLM set for
P(ν) with respect toV and |ϕV(µ) − ϕV(ν)| ≤ L · αB(µ, ν) holds wheneverν ∈
P(IRs), αB(µ, ν) < δ.
If, moreover, the following quadratic growth condition is satisfied



60 René Henrion, Werner Römisch

(iv) there exists a constantc> 0 such that we have

g(x) ≥ ϕV(µ)+ c · dist(x,9V(µ))
2 ∀x ∈ Mp(µ) ∩ V,

then9V is upper Hölder continuous atµ with rate 1/2, i.e.,

sup
x∈9V(ν)

dist(x,9V(µ)) ≤ L · αB(µ, ν)1/2 wheneverν ∈ P(IRs), αB(µ, ν) < δ.

Proof. The first part of the assertion is proved in Theorem 3.2 of [37]. It remains to note
that condition(iii) is equivalent to the fact that the set-valued mappingq 7→ Mq(µ)

from Rd to IRm is pseudo-Lipschitzian at each pair(x0, p) ∈ X × {p} (cf. [29],
Theorem 1.5). On the other hand, the latter property is equivalent to the local Lipschitz
continuity of the function(x,q) 7→ dist(x,Mq(µ)) from IRm × IRd to IR at each
(x0, p) ∈ X × {p} (see Theorem 2.3 in [34]), which is assumed in [37]. The second
part of the result follows from Theorem 2.2 in [22] by using the same arguments as
by deriving Theorem 3.2 in [37] from Proposition 1 and Theorem 1 in [21] (see also
Theorem 2.5 in [35]).

ut
All assumptions(i)-(iv) in the theorem concern the original (or unperturbed) problem
P(µ). While (i) and(ii) do not require further discussion, the conditions(iii) and(iv)
are decisive and deserve verification.

The following corollaries illustrate the potentials of the approach considered here.
To simplify the presentation, it is assumed in all corollaries that the objective function
g and the setC of deterministic constraints in (1) are convex and that (1) contains one
probabilistic constraint only (i.e.d = 1) and has the form

min{g(x) | x ∈ C, µ(H(x)) ≥ p},
where H is a set-valued mapping fromIRm to IRs having closed graph,p ∈ (0,1)
and µ ∈ P(IRs). The first two corollaries are concerned with the convex case thatH
has convex graph andµ carries a certain concavity property (’r -concavity’) whereas
the last corollary deals with a nonconvex situation whereH and µ do not enjoy
convexity assumptions. To introduce the notion of anr -concave probability measure
(r ∈ [−∞,∞]) we define first the generalized mean functionmr on R+× IR+×[0,1]
as follows:

mr (a,b; λ) =


(λar + (1− λ)br )1/r if r ∈ (0,∞) or r ∈ (−∞,0),ab> 0

0 if ab= 0, r ∈ (−∞,0)
aλb1−λ if r = 0

max{a,b} if r = ∞
min{a,b} if r = −∞

(5)

The measureµ ∈ P(IRs) is called r -concave, r ∈ [−∞,∞] ([7], [31]), if the
inequality µ(λB1 + (1− λ)B2) ≥ mr (µ(B1), µ(B2); λ) holds for all λ ∈ [0,1] and
all convex Borel subsetsB1, B2 of IRs such thatλB1+ (1− λ)B2 is Borel. Forr = 0
and r = −∞, µ is also called logarithmic concave and quasi-concave, respectively
([30]). Sincemr (a,b; λ) is increasing inr if all the other variables are fixed, the sets
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of all r -concave probability measures are increasing ifr is decreasing. It is known (cf.
[7], [9], [30], [31]) that µ ∈ P(IRs) is r -concave for somer ∈ [−∞,1/s] if µ has
a density fµ such that

fµ(λz+ (1− λ)z̃) ≥ mr(s)( fµ(z), fµ(z̃); λ), (6)

where r(s) = r(1 − rs)−1 holds for all λ ∈ [0,1] and z, z̃ ∈ IRs. We mention
that e.g. the uniform distribution (on some bounded convex set), the (nondegenerate)
multivariate normal distribution, the Dirichlet distribution, the multivariate Student and
Pareto distributions arer -concave for somer ∈ (−∞,∞] (see [7], Chapter 4 in [31]).

Corollary 1. Assume thatH has convex graph, thatµ is r -concave for somer ∈
(−∞,∞] and that there exists an elementx̄ ∈ C such that the strict inequality
µ(H(x̄)) > p holds. Let9(µ) be nonempty and bounded,V be an open bounded
neighbourhood of9(µ) and B = {H(x), z+ IRs− | x ∈ C, z ∈ IRs}.

Then there areL > 0, δ > 0 such that the set-valued mapping9V from
(P(IRs), αB) to IRm is upper semicontinuous atµ with 9V(µ) = 9(µ) and 9V(ν)

being a CLM set forP(ν) with respect toV, and |ϕ(µ)− ϕV(ν)| ≤ LαB(µ, ν) holds
wheneverν ∈ P(IRs), αB(µ, ν) ≤ δ.
The result is an immediate consequence of Theorem 1, since the assumptions onH
and µ imply the metric regularity condition(iii) (Corollary 3.7. in [37]). In order to
avoid handling of sets of local solutions and to make the presentation more transparent,
we assume for the remainder of this section thatC is (convex) compact and the open
bounded neighbourhoodV is chosen such thatC ⊆ V, hence9V = 9 and ϕV = ϕ.
The next result states Hölder stability of solution sets for a model with quadratic objective
and linear probabilistic constraints and is proved in Section 4.

Corollary 2. Let g be (linear or) quadratic,C be polyhedral, H have the form
H(x) = Ax+ IRs−, x ∈ IRm with some(s,m)- matrix A andµ be r -concave for some
r ∈ (−∞,∞]. Assume that9(µ) ∩ argmin{g(x) | x ∈ C} = ∅ and that there exists
an x̄ ∈ C with Fµ(Ax̄) > p. Moreover, assume thatFr

µ is strongly convex on some
convex neighbourhood ofA9(µ). Then there are constantsL > 0, δ > 0 such that

dH(9(µ),9(ν)) ≤ L‖Fµ − Fν‖1/2∞ wheneverν ∈ P(IRs), ‖Fµ − Fν‖∞ < δ

(here dH denotes the Hausdorff distance on subsets ofIRm).

The emphasis in the following Corollary is on the nonsmoothness of the measure.

Corollary 3. Let H(x) = h(x)+ IRs−, whereh ∈ C1(IRm, IRs) and assume that for all
global minimizersx0 ∈ 9(µ) the following conditions are satisfied:

(i) ∀λ ∈ IRs+ \ {0} ∃c ∈ C :
s∑

j=1
λ j 〈∇h j (x0), c− x0〉 > 0

(ii) µ has a densityfµ and, if Fµ(h(x0)) = p, then there exists somez ∈ IRs such
that z− h(x0) belongs to the boundary ofIRs− and fµ is bounded below by some
positive number for almost allz′ in some neighborhood ofz.
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Then there are constantsL > 0, δ > 0 such that the set-valued mapping9 from
(P(IRs), αK ) to IRm is upper semicontinuous atµ and |ϕ(ν) − ϕ(µ)| ≤ LαK (µ, ν)

for ν ∈ P(IRs) with αK (µ, ν) < δ.

The proof follows from Theorem 5, Theorem 6 and Proposition 3. Another result
with emphasis on a possible nonsmoothness of the functionh will be given later (cf.
Corollary 5).

3. Metric regularity of probabilistic constraints

The importance of metric regularity as a stability concept in stochastic programming
has been outlined in Section 2 (Theorem 1). In this section we study a specific class of
probabilistic constraints by putting

Hj (x) = {z ∈ IRs | h j (x) ≥ zj } x ∈ IRm; j = 1, . . . ,d

in the general modelP(µ) formulated in Section 1. Here we assume thatzj ∈ IRsj ,h j :
IRm → IRsj , z = (z1, . . . , zd) ∈ IRs = IRs1 × · · · × IRsd . Then the probabilistic
constraint becomes

M = {x ∈ C | µ({z ∈ IRs | h j (x) ≥ zj }) ≥ pj } ( j = 1, . . . ,d), (7)

where C ⊆ IRm is closed,µ ∈ P(IRs) is a probability measure onRs and pj ∈
(0,1) are prescribed probability levels. For the following it will be more convenient to
transform (7) into the equivalent description

M = {x ∈ C | 8µ(h(x)) ≥ p}, (8)

where h = (h1, . . . ,hd) : IRm → IRs and p = (p1, . . . , pd) refer to the entities
introduced above. The mapping8µ = (81

µ, . . . ,8
d
µ) : IRs → IRd comprises the

marginal distribution functions ofµ as its components:

8 j
µ(y) = Fµ(∞, . . . ,∞,

j
↓
yj ,∞, . . . ,∞) ( j = 1, . . . ,d),

where y = (y1, . . . , yd) ∈ IRs, yj ∈ IRsj ( j = 1, . . . ,d). Note that8µ is a non-
decreasing mapping which, in case ofd = 1, reduces to the usual distribution function
Fµ. Since the multifunctionsHj have closed graph, the components8 j

µ are upper
semicontinuous (cf. Section 2).

The aim of this section is to formulate sufficient characterizations of metric regula-
rity in a general nonsmooth framework. As the main tool the subdifferential calculus by
Mordukhovich [28] shall be applied. This offers certain advantages over using the cor-
responding (larger in general) concepts by Clarke [10]. In particular, the Mordukhovich
coderivative yields an equivalent criterion for metric regularity [27]. It turns out that,
for instance in the case of a single locally Lipschitzian inequalityf(x) ≤ 0, which is
binding at some feasible pointx̄, an equivalent characterization of metric regularity by
a relation like 0/∈ ∂ f(x̄) requires the departure of∂ from the framework of convexity.
In fact, it is shown in [13] that Mordukhovich’s subdifferential of Lipschitzian functions
may be homeomorphic to any compact subset ofIRn.
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3.1. Basics from nonsmooth analysis

In this section, some basic concepts for characterizing metric regularity in a nonsmooth
setting shall be recalled. LetX,Y, Z be arbitrary sets. For multifunctions8 : X→→Y,2 :
Y→→ Z put

Ker8 = {x ∈ X | 0 ∈ 8(x)}
Im8 = {y ∈ Y | y ∈ 8(x), x ∈ X}

Gph8 = {(x, y) ∈ X × Y | y ∈ 8(x)}
8−1(y) = {x ∈ X | y ∈ 8(x)}

2 ◦8(x) =
⋃

y∈8(x)
2(y) (x ∈ X), and if X = IRn1,Y = IRn2 :

lim sup
x→x0

8(x) = {y ∈ Y | ∃xn→ x0 ∃yn→ y : yn ∈ 8(xn)}.

Now let X,Y be two normed spaces. A multifunction8 : X→→Y is calledmetrically
regular at some point(x0, y0) ∈ Gph8 if there are constantsa > 0 and ε > 0 such
that

dist(x,8−1(y)) ≤ a · dist(y,8(x)) ∀(x, y) ∈ Bε(x
0)× Bε(y

0).

The abstract form of constraint sets writes asC ∩ F−1(K), whereC ⊆ X and K ⊆ Y
are closed subsets of the respective spaces (K usually being a closed convex cone) and
F : X → Y is the constraint function. Then,F is said to be metrically regular with
respect toC at some feasible pointx0 ∈ C ∩ F−1(K) if the associated multifunction

8(x) =
{−F(x)+ K for x ∈ C

∅ else

is metrically regular at(x0,0). It is easily seen that this is equivalent to the conventional
definition of metric regularity for constrained systems:

∃ε > 0∃a> 0∀(x, y) ∈ (C ∩ Bε(x0))× Bε(0) :
dist(x,C ∩ F−1(K − y)) ≤ a · dist(F(x), K − y)

Note that in this relation only the constraints given byF are subject to perturbationsy
whereasC is considered to be a fixed set of unperturbed constraints.

For some closed subsetS⊆ IRn and x0 ∈ S the following concepts are defined:

T(S; x0) = lim sup
t↓0

t−1(S− {x0}) (contingent cone)

Tc(S; x0) = {h ∈ IRn | ∀xn→ x0 ({xn} ⊆ S) ∀tn ↓ 0 ∃hn→ h : xn + tnhn ∈ S}
(Clarke’s tangent cone)

T0(S; x0) = {x∗ ∈ IRn | 〈x∗,h〉 ≤ 0 ∀h ∈ T(S; x0)} (Fréchet normal cone)

Na(S; x0) = lim sup
x→x0
x∈S

T0(S; x) (approximate normal cone)

Nc(S; x0) = {x∗ ∈ IRn | 〈x∗,h〉 ≤ 0 ∀h ∈ Tc(S; x0)} (Clarke’s normal cone)
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The normal coneNa induces the approximate subdifferential for lower semicontinuous
functions f : IRn→ IR:

∂a f(x0) = {x∗ ∈ IRn | (x∗,−1) ∈ Na(Epi f ; (x0, f(x0)))},
where Epi refers to the epigraph. For locally Lipschitzian functions Clarke’s subdiffe-
rential ∂c relates to∂a as

∂c f(x0) = conv ∂a f(x0). (9)

A closed subsetS ⊆ IRn is called regular atx0 ∈ S in the sense of Clarke, if
T(S; x0) = Tc(S; x0). Similarly, a locally Lipschitzian functionf is called regular at
x0 ∈ IRn in the sense of Clarke, ifT(Epi f ; (x0, f(x0))) = Tc(Epi f ; (x0, f(x0))). In
case of the mentioned kinds of regularity it holds thatNc(S; x0) = Na(S; x0) and
∂c f(x0) = ∂a f(x0).

A multifunction8 : IRn→
→ IRm with closed graph and some point(x0, y0) ∈ Gph8

induces a multifunctionD∗a8(x0, y0) : IRm→
→Rn defined via

D∗a8(x0, y0)(y∗) = {x∗ ∈ IRn | (x∗,−y∗) ∈ Na(Gph8; (x0, y0))},
which is called the approximate coderivative of8 at (x0, y0). For single valued, locally
Lipschitzian functions8 : IRn→ IRm one has (see [16], Proposition 8):

D∗a8(x,8(x))(y∗) = ∂a〈y∗,8〉(x) ∀x ∈ IRn ∀y∗ ∈ IRm (10)

The following results are due to Mordukhovich (compare [27], [28]) and will be sub-
stantially exploited in this section:

Theorem 2. A multifunction8 : IRn→
→ IRm with closed graph is metrically regular at

some point(x0, y0) ∈ Gph8 if and only if Ker D∗a8(x0, y0) = {0}.
Theorem 3. Let the multifunctions8 : IRn→

→ IRm and 2 : IRm→
→ IRk have closed

graph and(x̄, z̄) ∈ Gph(2 ◦8). Suppose that the multifunctionM : IRn× IRk→ IRm

defined by

M(x, z) = 8(x) ∩2−1(z)

is locally bounded around(x̄, z̄) and that the condition

D∗a2(y, z̄)(0) ∩ Ker D∗a8(x̄, y) = {0} ∀y ∈ M(x̄, z̄)

holds. Then one has

D∗a(2 ◦8)(x̄, z̄)(z∗) ⊆
⋃

y∈8(x̄)∩2−1(z̄)

D∗a8(x̄, y) ◦ D∗a2(y, z̄)(z∗) ∀z∗ ∈ IRk

Lemma 1. Let S1, S2 ⊆ IRn be closed sets with̄x ∈ S1 ∩ S2 and Na(S1; x̄) ∩
−Na(S2; x̄) = {0}. Then

Na(S1 ∩ S2; x̄) ⊆ Na(S1; x̄)+ Na(S2; x̄),
where equality holds ifS1, S2 are regular in the sense of Clarke.
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3.2. An explicit growth condition

Before dealing with the chance constraint (8) we start our considerations with general
constraint sets described by finitely many inequalities:

P = {x ∈ C | F(x) ≥ 0} F : IRn→ IRk, C ⊆ IRn (C closed). (11)

Obviously, (8) fits into this type of constraints. For a feasible pointx0 ∈ P denote by

I = {i ∈ {1, . . . , k} | Fi (x
0) = 0}

J = {i ∈ {1, . . . , k} | Fi is not continuous atx0}
the sets of active and noncontinuity indices, respectively, atx0, where theFi refer to
the components ofF. The following definition provides an explicit growth condition
on the components ofF which will imply metric regularity.

Definition 1. We say that the constraint mappingF : IRn→ IRk in (11) is growing at
some feasible pointx0 ∈ P with respect toC if

(i) Fi is upper semicontinuous in a neighbourhood ofx0 for i ∈ {1, . . . , k}
(ii) there exists anρ > 0 such that the following local growth condition is fulfilled:

∃η > 0 ∀x ∈ Bη(x0) ∩ C ∀ε > 0 ∃y ∈ Bε(x) ∩ C :
Fi (y) > Fi (x)+ ρ‖y− x‖ ∀i ∈ I ∪ J.

Note that, for continuousF, this is merely a growth condition imposed on the active
components atx0.

Lemma 2. Let x0 ∈ P be a feasible point of (11). IfF is growing at x0 with respect
to C, then F is metrically regular atx0 with respect toC.

Proof. According to Section 3.1 one has to verify metric regularity of the multifunction

8(x) =
{−F(x)+ IRk+ if x ∈ C

∅ else

at the point(x0,0) ∈ Gph8. Choose a numberγ with 0< γ < η (whereη refers to
Definition 1) which, according to the definition of the index setsI and J, satisfies

Fi (z) > γ ∀i /∈ I ∪ J ∀z ∈ int Bγ (x
0) (12)

For computing Fréchet normal conesT0 in a neighbourhood of(x0,0), fix an arbitrary
(x,b) ∈ (int Bγ (x0)× int Bγ (0)) ∩Gph8. Then x ∈ C and b ≥ −F(x) by definition
of 8.

Let us first consider the caseI ∪ J 6= ∅. By Definition 1 there exists a sequence
yl → x (yl ∈ C), such thatFi (yl) > Fi (x)+ ρ‖yl − x‖ ∀i ∈ I ∪ J. Clearly yl 6= x.
We show that the vector(

x
b

)
+ ‖yl − x‖

(
(yl − x)/‖yl − x‖

−ρ1

)
=
(

yl

b− ρ‖yl − x‖1
)

(13)
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with 1= (1, . . . ,1)T belongs to Gph8 for l large enough. In fact, ifi ∈ I ∪ J, then

[b]i − ρ‖yl − x‖ ≥ −Fi (x)− ρ‖yl − x‖ > −Fi (yl),

where the[b]i denote the corresponding components ofb. On the other hand, taking
for instance the Euclidean norm,b ∈ int Bγ (0) implies [b]i > −γ , hence [b]i −
ρ‖yl − x‖ > −γ for i = 1, . . . , k and largel . In particular, relation (12) makes
also the indicesi /∈ I ∪ J satisfy [b]i − ρ‖yl − x‖ > −Fi (yl ) ( l large enough).
Combining both cases one arrives atb− ρ‖yl − x‖1 ∈ −F(yl )+ IRk+, which together
with yl ∈ C yields (yl ,b − ρ‖yl − x‖1) ∈ Gph8. Without loss of generality, we
assume(yl − x)/‖yl − x‖ → ξ, so (13) shows that(ξ,−ρ1) belongs to the contingent
cone T(Gph8; (x,b)). Consequently,

〈(ξ,−ρ1), (ξ∗, y∗)〉 = 〈ξ, ξ∗〉 − ρ〈1, y∗〉 ≤ 0 ∀(ξ∗, y∗) ∈ T0(Gph8; (x,b))
Due to ‖ξ‖ = 1 this means‖ξ∗‖ ≥ 〈−ξ, ξ∗〉 ≥ −ρ〈1, y∗〉.

Now turn to the caseI ∪ J = ∅. Here (x,b)+ δ(0,−ρ1) ∈ Gph8 for sufficiently
small δ > 0 (compare (12) and recall[b]i > −γ for the components ofb). So
(0,−ρ1) ∈ T(Gph8; (x,b)), and applying an arbitrary normal vector(ξ∗, y∗) to this
provides the inequality−ρ〈1, y∗〉 ≤ 0. Summarizing, one has

−ρ〈1, y∗〉 ≤ ‖ξ∗‖ (14)

∀(ξ∗, y∗) ∈ T0(Gph8; (x,b)) ∀(x,b) ∈ (int Bγ (x0)× int Bγ (0)) ∩Gph8

in any case. Consider anyz∗ ∈ Ker D∗a8(x0,0). Local upper semicontinuity of all
componentsFi together with the closedness ofC imply the closedness (near(x0,0))
of Gph8. By virtue of Theorem 2 the lemma is proved if we can show thatz∗ = 0. By
definition

(0,−z∗) ∈ Na(Gph8; (x0,0)) = lim sup
(x,b)→(x0,0)
(x,b)∈Gph8

T0(Gph8; (x,b))

so there are sequences

(xl ,bl )→ (x0,0), (xl ,bl) ∈ Gph8, (ξ∗l , y∗l )→ (0,−z∗), (ξ∗l , y∗l ) ∈
T0(Gph8; (xl ,bl )).

Along with (14) this leads to−ρ〈1,−z∗〉 ≤ 0, or, becauseρ is positive, to〈1, z∗〉 ≤ 0.
On the other hand,bl ≥ −F(xl ) implies (0,ej ) ∈ T(Gph8; (xl ,bl )) for arbitrary
standard unit vectorsej ∈ IRk, ( j = 1, . . . , k), hencey∗l ≤ 0. By continuity, z∗ ≥ 0,
so the desired relationz∗ = 0 follows.

ut
The reverse direction of Lemma 2 does not hold in general, as one can see from
the exampleC = IR, F(x) = |x| if x 6= 0 and F(0) = 1. While F is upper
semicontinuous, it fails to be growing at 0. On the other hand one computes

Na(Epi(−F); (0,0)) = {(x, y) ∈ IR2 | y ∈ {0,−|x|}}
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hence, KerD∗a8(0,0) = {0} for the multifunction8 = −F+ IR+, so8 is metrically
regular at(0,0) due to Theorem 2 and, therefore,F is metrically regular at 0. For
the continuous case, however, the growth condition of Definition 1 is an equivalent
characterization of metric regularity in the constraint system (11) (cf. [14]):

Lemma 3. In (11) assume thatF is continuous and thatx0 ∈ P. Then metric regularity
of F at x0 w.r.t. C implies F to be growing atx0 w.r.t. C.

Now we apply the above results to the characterization of metric regularity of the
probabilistic constraint (8).

Theorem 4. In the probabilistic constraint (8) leth be continuous andx0 ∈ M(µ)
some feasible point. Suppose there existρ > 0, η > 0 such that for all components8 j

µ

of 8µ that are not continuous ath(x0) or that are binding (i.e.,8 j
µ(h(x0)) = pj ) the

growth condition

∀x ∈ Bη(x
0) ∩C ∀ε > 0 ∃y ∈ Bε(x) ∩ C : 8 j

µ(h(y)) > 8
j
µ(h(x))+ ρ‖y− x‖

is fulfilled. Then the constraint function8µ(h(·))− p is metrically regular atx0 w.r.t.
C. If, moreover,8µ is continuous, then the growth condition above, imposed on the

binding components8 j
µ, is equivalent with metric regularity of8µ(h(·)) − p at x0

w.r.t. C.

Proof. Recall that the components of8µ are automatically upper semicontinuous,
hence the composition8µ(h(·)) − p enjoys the same property. Apply Lemma 2. For
the second part apply Lemma 3.

ut
Two examples shall illustrate the potential and the limitations of Theorem 4.

Example 1.In the chance constraint (8) letm = 2, s= d = 1, p = 0.5, h(x1, x2) =
x1+ x2. Let µ be the uniform distribution over the interval[−0.5,0.5] and take

C = {(x1, x2) ∈ IR2 | x1 ≥ 0, x3
1 ≤ x2 ≤ x2

1}
Obviously one has8µ(y) = Fµ(y) = y + 0.5 ∀y ∈ (−0.5,0.5). The point of
interest isx0 = (0,0) ∈ C. Then, in a small neighbourhood of this point, it holds that
Fµ(h(x1, x2)) = x1+ x2+ 0.5. In particular, the constraint is binding atx0. Evidently,
the second statement of Theorem 4 applies, so we know that checking metric regularity
is equivalent to verifying the growth condition of Theorem 4. Now, fix anyx ∈ C near
x0. One may find a pointy ∈ C, y 6= x arbitrarily close tox such thaty− x ∈ IR2+.
Then, Fµ(h(y))− Fµ(h(x)) = y1+ y2− (x1+ x2) = ‖y− x‖1, thereforeFµ(h(·))− p
is growing with ρ = 1/2 at x0 w.r.t C, hence metric regularity ofFµ(h(·))− p holds
at x0 w.r.t. C.

In [36] (Corollary 2.2) a sufficient growth condition for metric regularity of the
constraint function8µ(h(·))− p was proposed for the special cased = 1, 8µ = Fµ
continuous,h linear andC convex. Essentially, growth was required along line seg-
ments inC. Note that in Example 1 there are no (nontrivial) line segments emanating
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from x0 and entirely contained inC, so the mentioned condition does not work here
although, apart from nonconvexity ofC, the remaining assumptions are fulfilled. Fur-
thermore, even ifC is convex andFµ continuous, buth violates linearity (e.g. being
piecewise differentiable), this condition does no longer hold true. This illustrates the
extension obtained by Theorem 4.

The next example indicates a situation where metric regularity of chance constraints
cannot be recovered from the growth condition of Theorem 4 (compare Remark 2.5 in
[36]).

Example 2.In (8), let d = 1, C = IRm, h continuous andµ ∈ P(IRs) be a discrete
measure with finite support. Supposep ∈ (0,1) to fulfill inf

z∈IRs
|Fµ(z)− p| > 0. Then

the constraint functionFµ(h(·))− p is metrically regular at all feasiblex0, whereas it
is not growing at allx0 for which Fµ is not continuous ath(x0).

3.3. Separate constraint qualifications

While metric regularity of the probabilistic constraint (8) has been characterized in terms
of the composite function8µ ◦ h so far, we now want to formulate separate constraint
qualifications for the two single functions that are easier to verify and to interpret. First,
an auxiliary result is needed:

Proposition 1. Let F : IRn → IRk have upper semicontinuous components and be
nondecreasing atx0 ∈ IRn. Then the associated multifunctionφ : IRn→

→ IRk defined by
φ(x) = −F(x)+ IRk+ satisfiesIm D∗aφ(x0, y) ⊆ IRn− ∀y ∈ φ(x0).

Proof. First note that Gphφ is closed due to the upper semicontinuity ofF. Consi-
der arbitrary y ∈ φ(x0) and (x∗, y∗) ∈ IRn × IRk such thatx∗ ∈ D∗aφ(x0, y)(y∗).
This means(x∗,−y∗) ∈ Na(Gphφ; (x0, y)) and, by definition, there are sequences
(xl , yl ) → (x0, y), ((xl , yl ) ∈ Gphφ) and (x∗l ,−y∗l ) → (x∗,−y∗) ((x∗l ,−y∗l ) ∈
T0(Gphφ; (xl, yl ))). Since F is nondecreasing atx0, one has (ej ,0) ∈
T (Gphφ; (xl, yl )) for all standard unit vectorsej ∈ IRn and for all l ∈ IN. It fol-
lows that 〈(x∗l ,−y∗l ), (ej ,0)〉 = (x∗l ) j ≤ 0 for j = 1, . . . ,n, hencex∗l ≤ 0 and
x∗ ∈ IRn−, as desired.

ut
It is interesting to note that, as a consequence of the last proposition, one has the
equivalence (see [14])

0 ∈ ∂aF(x) ⇐⇒ 0 ∈ ∂cF(x)

for any nondecreasingF : IRn→ IR. In particular, this holds for distribution functions.
Now, with the constraint functions8µ andh from the definition of the probabilistic

constraint in (8) we associate the following two multifunctions01 : IRs→
→ IRd and

02 : IRm→
→ IRs via

01(z) = p−8µ(z)+ IRd+ and 02(x) =
{

h(x) x ∈ C
∅ else
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Then, their composition is0 = 01 ◦ 02 : IRm→
→ IRd with

0(x) =
{

p−8µ(h(x))+ IRd+ x ∈ C
∅ else

Proposition 2. In (8), assumeh to be continuous and consider some feasible point
x̄ ∈ M. Then the two constraint qualifications

Ker D∗a01(h(x̄),0) = {0} (15)

Ker D∗a02(x̄,h(x̄)) ∩ IRs− = {0} (16)

imply Ker D∗a0(x̄,0) = {0}.

Proof. All of the three multifunctions02, 01 and 0 have a closed graph (due to the
closedness ofC, continuity of h and upper semicontinuity of8µ). Let us assume
for a moment that the application of Theorem 3 is justified. Then the relation 0∈
D∗a0(x̄,0)(z∗) (for arbitrary z∗) along with the fact that02 is single-valued (02(x̄) =
h(x̄)) yield the existence of somey∗ ∈ IRs such that

y∗ ∈ D∗a01(h(x̄),0)(z∗) and 0∈ D∗a02(x̄,h(x̄))(y
∗).

From Proposition 1 we know that ImD∗a01(h(x̄),0) ⊆ IRs−. This leads to

y∗ ∈ Ker D∗a02(x̄,h(x̄)) ∩ IRs− = {0}

by (16) and toz∗ ∈ Ker D∗a01(h(x̄),0) = {0} by (15). Consequently, KerD∗a0(x̄,0) =
{0}, as desired.

To check the assumptions of Theorem 3 first note that the multifunctionM(x, z) =
02(x)∩0−1

1 (z) fulfills either M(x, z) = ∅ or M(x, z) = {h(x)}, so it is locally bounded
by continuity of h. In particular, M(x̄,0) = {h(x̄)}, and again from Proposition 1 and
(16) we have

D∗a01(h(x̄),0)(0) ∩ Ker D∗a02(x̄,h(x̄)) ⊆ IRs− ∩ Ker D∗a02(x̄,h(x̄)) = {0}.

ut
The result of this proposition can now be restated in terms of the ingredients of the
probabilistic constraint (8) itself.

Theorem 5. The constraint function8µ(h(·))− p in (8) is metrically regular at some
feasible pointx̄ ∈ M w.r.t. C if the following two conditions are fulfilled:

(i) The function8µ(·)− p is metrically regular ath(x̄) in the constraint8µ(z) ≥ p.
(ii) h is continuous,Na(Gphh; (x̄,h(x̄))) ∩ (−Na(C; x̄)× {0}) = {0} and

D∗ah(x̄,h(x̄))(y∗) ∩ −Na(C; x̄) = ∅ ∀y∗ ∈ IRs− \ {0}
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Proof. Obviously, condition(i) is equivalent to (15) by Theorem 2. Concerning(ii) one
has Gph02 = Gphh ∩ (C × IRs) for the multifunction02 introduced above. The
first part of (ii) corresponds to the assumption of Lemma 1 (withS1 = Gphh and
S2 = C× IRs), so the lemma yields

Na(Gph02; (x̄,h(x̄))) ⊆ Na(Gphh; (x̄,h(x̄)))+ Na(C; x̄)× {0}

Choose anyy∗ ∈ Ker D∗a02(x̄,h(x̄)) ∩ IRs−. In particular, (0,−y∗) ∈ Na(Gph02;
(x̄,h(x̄))) and we have(0,−y∗) = (ξ,a)+ (π,0) according to the decomposition just
stated. Thenξ = −π ∈ −Na(C; x̄) and (ξ,−y∗) = (ξ,a) ∈ Na(Gphh; (x̄,h(x̄))). It
follows ξ ∈ D∗ah(x̄,h(x̄))(y∗)∩−Na(C; x̄), hencey∗ = 0 due to the second part in(ii)
and toy∗ ∈ IRs−. However, this is (16), so Proposition 2 guarantees KerD∗a0(x̄,0) = {0}
and, Theorem 2 implies metric regularity of8µ(h(·))− p at x̄ w.r.t C.

ut
Theorem 5 offers the possibility to check properties of the measureµ and of the
function h in (8) separately. Yet the conditions imposed are rather abstract. In the
following we develop criteria that are better to verify. First we turn to condition(i) and
try to reformulate it in terms of assumptions concerning the density of the measureµ.
If µ has a density, then, denoting

y = (y1
1, . . . , ys1

1 , . . . , y1
d, . . . , ysd

d ) (y ∈ IRs; s= s1 + · · · + sd),

one recognizes that the components of8µ may be written as

8 j
µ(y) =

∞∫
−∞
· · ·

∞∫
−∞

y1
j∫

−∞
· · ·

y
sj
j∫

−∞

∞∫
−∞
· · ·

∞∫
−∞

fµ(y) dysd
d · · ·dy1

j+1dy
sj
j · · ·dy1

j dy
sj−1
j−1 · · ·dy1

1.

Next we introduce the set where this density is locally bounded below by a positive
number:

D+ = {y ∈ IRs | ∃ε > 0 : fµ(ỹ) ≥ ε for almost all ỹ ∈ Bε(y)}.

For continuousfµ, of course, this set reduces toD+ = {y ∈ IRs | fµ(y) > 0}. Finally,
for any subsetI ⊆ {1, . . . ,d} put

�I = C1 × · · · ×Cd, whereCi =
{

IRsi i /∈ I
∂IRsi− i ∈ I

The following theorem provides a density condition guaranteeing sufficient growth of
8µ to arrive at the desired property of metric regularity.

Theorem 6. For x̄ ∈ M in (8), denote the set of active indices byI(x̄) = {i ∈
{1, . . . ,d} | 8i

µ(h(x̄)) = pi }. If µ has a density and(h(x̄)+�I(x̄)) ∩ D+ 6= ∅, then
condition (i) of Theorem 5 is satisfied.
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Proof. By assumption, there exists someȳ ∈ D+ such that for all j ∈ I(x̄)

ȳk
j ≤ [h(x̄)]kj k = 1, . . . , sj and ∃k( j) ∈ {1, . . . , sj } : ȳk( j)

j = [h(x̄)]k( j)
j

Here, lower and upper indices refer to the partition of vectors inIRs = IRs1×· · ·× IRsd

introduced above. By definition, one hasfµ(y) ≥ ε for almost all y ∈ Bε(ȳ). Choose
any z ∈ Bε/2(h(x̄)). Without loss of generality we consider the balls with respect to the
maximum norm‖ · ‖∞. As a consequence, we have for all indicesj ∈ I(x̄)

zk
j ≥ ȳk

j − ε/2 k = 1, . . . , sj .

Next define some vectore∈ IRs via

ek
j =

{
1 j ∈ I(x̄) andk = k( j)
0 else

and putz(t) = z+ te for t ∈ (0, ε/2). Clearly, for all indicesj ∈ I(x̄) it holds

[z(t)]k( j)
j = zk( j)

j + t and [z(t)]kj = zk
j if k 6= k( j).

In particular,‖z(t)− z‖∞ = t and for c ∈ [zk( j)
j , zk( j)

j + t] one has

|c− ȳk( j)
j | ≤ |c− zk( j)

j | + |zk( j)
j − [h(x̄)]k( j)

j | ≤ ε/2+ ε/2= ε.
Now, the following estimation can be made for the active indicesj ∈ I(x̄):

8 j
µ(z(t))−8 j

µ(z) =
∞∫
−∞
· · ·

∞∫
−∞

[z(t)]1j∫
−∞
· · ·
[z(t)]k( j)

j∫
−∞

· · ·
[z(t)]sj

j∫
−∞

∞∫
−∞
· · ·

∞∫
−∞

fµ(y) dy

−
∞∫
−∞
· · ·

∞∫
−∞

z1
j∫

−∞
· · ·

zk( j)
j∫

−∞
· · ·

z
sj
j∫

−∞

∞∫
−∞
· · ·

∞∫
−∞

fµ(y) dy

=
∞∫
−∞
· · ·

∞∫
−∞

z1
j∫

−∞
· · ·

zk( j)
j +t∫

zk( j)
j

· · ·
z
sj
j∫

−∞

∞∫
−∞
· · ·

∞∫
−∞

fµ(y) dy

≥
ȳ1

1∫
ȳ1

1−ε
· · ·

ȳ
sj−1
j−1∫

ȳ
sj−1
j−1 −ε

ȳ1
j−ε/2∫

ȳ1
j−ε
· · ·

zk( j)
j +t∫

zk( j)
j

· · ·
ȳ

sj
j −ε/2∫

ȳ
sj
j −ε

ȳ1
j+1∫

ȳ1
j+1−ε

· · ·
ȳ

sd
d∫

ȳ
sd
d −ε

ε dy

= εs−sj · (ε/2)sj−1 · ε · ‖z(t)− z‖∞
But, having in mind, that8µ is continuous due to the assumption thatµ possesses
a density, the above estimation implies that8µ(·)− p is growing ath(x̄) (w.r.t. IRs) in
the sense of Definition 1 (putρ = (ε/2)s, η = ε/2 and recall that the above estimation
is valid for all t ∈ (0, ε/2)). According to Lemma 28µ(·) − p (considered with the
≥ 0 constraint) is metrically regular ath(x̄). This is condition(i) of Theorem 5.

ut
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h(x)
- +

+D

h(x)-

+

D+

Fig. 1. Illustration of Theorem 6 for the cased = 2, s= 3: the left picture refers to the situations1 = 2, s2 =
1, I = {1}, and the right one tos1 = 1, s2 = 2, I = {1}. In both cases, the two-dimensional manifolds
h(x̄) + �I intersect the positivity regionD+ of the density (illustrated as cuboids in the pictures). Hence,
condition(i) of Theorem 5 is satisfied

Since, by definition, 0∈ �I(x̄) for an arbitrary index setI(x̄), one concludes

Corollary 4. If h(x̄) ∈ D+, then condition (i) of Theorem 5 is satisfied.

This density conditionh(x̄) ∈ D+ was used in [36] (Lemma 2.1) in order to derive
a corresponding stability result for a specific probabilistic constraint (d = 1 and h
linear in (8)). For continuous densities one simply would have to requirefµ(h(x̄)) > 0.
Note, however, that this relation is far from being necessary in order to ensure condition
(i) of Theorem 5, as can be seen from the following example:

Example 3.In (8), we taked = 1, s = m = 2, h(x) = x, p = 0.5,C = IR2. In
particular,8µ coincides with the distribution function of the measureµ, which we
assume to be induced by the following density onIR2:

fµ(y) =


a y∈ B1(0)
(2− ‖y‖)a y∈ B2(0) \ B1(0)
0 y ∈ IR2 \ B2(0)

where the balls of the corresponding distances refer to the Euclidean norm and the
number a > 0 is suitably chosen to guarantee

∫
IR2 fµ(y) dy = 1. Obviously, fµ is

continuous andD+ = int B2(0). For x̄ = (0,3) we deduce from the symmetry offµ
around the origin that

8µ(h(x̄)) = 8µ((0,3)) = 0.5= p,

hence, we have the binding caseI(x̄) = {1}. Of course, fµ(h(x̄)) = fµ((0,3)) = 0,
so the strong condition of Corollary 4 does not apply. Nevertheless, one may derive
condition (i) of Theorem 5 because[(0,3) + ∂IR2−] ∩ D+ 6= ∅ (take, for instance
(0,−3) ∈ ∂IR2−), hence, the weaker condition in Theorem 6 is satisfied.

Frequently, the property of metric regularity is required at points that are not given
explicitly, e.g. the set of local minimizers. Therefore, it might sometimes be useful to
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know conditions under which metric regularity holds everywhere. For instance, as a part
of this question, one could ask when condition(i) of Theorem 5 is satisfied everywhere,
i.e., 8µ(·) − p is metrically regular at allh(x̄) with x̄ ∈ M. Using Corollary 4 one
gets an immediate criterion for such a global behaviour, namelyD+ = IRs, which
is fulfilled for some of the conventional distributions (like multivariate normal). The
situation becomes more interesting for densities whose support is not all ofRs. To
investigate this problem in more detail we introduce the following definition:

Definition 2. A subsetQ ⊆ IRn is called an infinity path inIRn if there exists some
continuous functionπ : IR→ IRn such thatImπ = Q and

lim
t→−∞ max

i=1,... ,n
πi (t) = −∞, lim

t→∞ max
i=1,... ,n

πi (t) =∞

Roughly speaking, one part ofQ must tend to−∞ with all its coordinates simulta-
neously, while for the other part it suffices that at least one coordinate tends to+∞. Of
course, any infinity path is a connected subset ofIRn. This concept allows an appropriate
characterization in the case of8µ having only one component, i.e.,d = 1.

Theorem 7. If d = 1, µ has a density andD+ contains an infinity pathQ in Rs,
then condition (i) in Theorem 5 holds globally, i.e.,8µ(·)− p is metrically regular at
h(x̄) for all x̄ ∈ M.

Proof. Consider anyx̄ ∈ M and put z = h(x̄). With reference to Definition 2 there
exist t1, t2 ∈ IR, such that

max
i=1,... ,s

πi (t1) < min
i=1,... ,s

zi , max
i=1,... ,s

πi (t2) > max
i=1,... ,s

zi

Hence, for q1 = π(t1),q2 = π(t2) one hasq1 ∈ Q ∩ int (z + IRs−) and q2 ∈
Q ∩ (IRs \ (z+ IRs−)). Now

IRs = [int (z+ IRs−)] ∪ [IRs \ (z+ IRs−)] ∪ [z+ ∂IRs−]
is a disjoint decomposition ofIRs, where the first two sets are open. ThereforeQ∩ (z+
∂IRs−) 6= ∅ because otherwise

Q = [Q ∩ int (z+ IRs−)] ∪ [Q ∩ (IRs \ (z+ IRs−))]
would be a decomposition ofQ into two open (in the relative topology ofQ), disjoint
and nonempty subsets in contradiction to the connectedness ofQ. Taking account of
Q ⊆ D+, we arrive at

∅ 6= D+ ∩ (z+ ∂IRs−) ⊆ D+ ∩ (h(x̄)+�I(x̄))

Since x̄ ∈ M was arbitrary, the assertion follows from Theorem 6.
ut

It is noted here, that the assertion of the theorem is not restricted to the fixed probability
level p, in fact, this value does not enter the proof at any point. Consequently, under
the indicated assumptions,8µ(·) − p′ is metrically regular ath(x̄) not only for all
x̄ ∈ M but even for all p′ ∈ (0,1). The following example shall illustrate the meaning
of Theorem 7.
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No Infinity Path

Infinity Path

Fig. 2. Probability densities with and without infinity path contained in the positivity region of the density
(shaded)

Example 4.Adopt the setting of Example 3, but with the density onIR2 replaced by

fµ(y) =
{

ae−y2
1/2 if y1 ≥ 0, |y2| < 1/2 or y1 < 0, |y2− y1| < 1/2

0 else

(a such that
∫

fµ(y)dy= 1). Obviously, here the setD+ coincides with the one which
the first line in the definition offµ relates to, soD+ 6= IR2. Nevertheless, condition
(i) of Theorem 5 is satisfied globally. In fact, the continuous functionπ : IR → IR2

defined byπ(t) = (t, t) if t ≤ 0 andπ(t) = (t,0) if t > 0 generates an infinity path
Q = Imπ that is contained inD+, so Theorem 7 applies (see Fig. 2 top).

Now, reflect the density w.r.t. the origin, i.e., takefµ′ (y) = fµ(−y). Then, the set
D+′ does not contain any infinity path (see Fig. 2 bottom). For instance, the canonical
candidateQ′ ⊆ D+′ , which is defined byQ′ = Imπ ′, whereπ ′(t) = (t,0) for t ≤ 0
and π ′(t) = (t, t) for t > 0, fails to satisfy the first limiting condition in Definition 2
(while the second one holds true).

Now we turn to the second constraint qualification in Theorem 5. As will be seen below,
this can be viewed as some kind of Mangasarian-Fromovitz Constraint Qualification for
continuous inequality constraints. The first part of this condition (relating the approxi-
mate normal cones of the Graph ofh and of the setC) is always fulfilled, for instance,
if C = IRm or if h is locally Lipschitzian. In order to gain more insight, we consider
the cases of locally Lipschitzian or evenC1- mappingsh.
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Proposition 3. If h is locally Lipschitzian in (8), then condition (ii) of Theorem 5
reduces to

∂a〈y∗,h〉(x̄) ∩ −Na(C; x̄) = ∅ ∀y∗ ∈ IRs− \ {0}. (17)

If h ∈ C1(IRm, IRs) with JacobianDh, then the corresponding relation reads

[Dh(x̄)]T y∗ /∈ Na(C; x̄) ∀y∗ ∈ IRs+ \ {0} (18)

Proof. For locally Lipschitzianh the first part of condition(ii) in Theorem 5 is auto-
matically fulfilled. In fact, if k is a Lipschitz modulus ofh near x̄, then‖a∗‖ ≤ k‖b∗‖
for all (a∗,b∗) ∈ T0(Gphh; (x,h(x))) and all x near x̄ (compare [18], Lemma 3.8).
Now, the same relation must hold true for all(a∗,b∗) ∈ Na((Gphh; (x̄,h(x̄))) too. In
particular,b∗ = 0 implies a∗ = 0.

Finally, the second part of condition(ii) is nothing else but (17) as a consequence of
(10). Now (18) follows from the fact that the approximate subdifferential and the usual
derivative coincide in theC1- case.

ut

In caseC = IRm (i.e., Na(C; x̄) = {0}), Gordan’s theorem shows the equivalence of
(18) with the condition

∃ξ ∈ IRm : ∇hi (x̄) · ξ > 0 i = 1, . . . , s,

where now, in contrast to the derivations above, we return to the conventional labelling
of the components ofh. Restricting this relation to the active indices only (which have
no meaning forh in our present context) this would be the well-known Mangasarian-
Fromovitz Constraint Qualification (in the absence of equations). Replacing the sets in
(17) by the corresponding (bigger) concepts of Clarke’s subdifferential calculus, one
gets the stronger requirement

∂c〈y∗,h〉(x̄) ∩ Nc(C; x̄) = ∅ ∀y∗ ∈ IRs+ \ {0}, (19)

which is closely related to well-known constraint qualifications in the locally Lipschit-
zian setting (e.g. [34], [8], [3], [17]). However, let us emphasize once more that, in (8),
the mappingh does not appear itself as a constraint, but as the inner part of a composite
constraint. In particular, there is no active index set to be considered. Furthermore,
the application of (17) according to Mordukhovich’s calculus promises advantages over
(19) for certain classes of mappings. This is confirmed by the following corollary, which
illustrates the verification of condition (iii ) in Theorem 1 by the criteria obtained so far,
and where the ’production function’h is assumed to have a specific structure of nons-
moothness. In this lemma, with a compact setK we associate the set of exposed points
exK = {x ∈ K | ∃z : 〈z, x〉 < 〈z, y〉 ∀y ∈ K \ {x}} and exploit the relation (cf. [14])

∂a(min
y∈K
〈·, y〉)(x) ⊆ cl (exK) (20)
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Corollary 5. Let C be convex,d = 1 and assume thathi (x) = maxy∈Ki 〈x, y〉, where
Ki ⊆ IRm (i = 1, . . . , s) are compact (e.g. finite) subsets. Furthermore, assume that
µ ∈ P(IRs) has a continuous density which is strictly positive overh(C). Then, the
condition

∀x∗ ∈ T ∃c ∈ C : 〈x∗, c− x̄〉 < 0, (21)

where T = ∪{conv{a1, . . . ,as} | ai ∈ cl (ex(−Ki )) (i = 1, . . . , s)}, is sufficient to
guarantee metric regularity of the functionFµ(h(·))− p at some feasiblēx ∈ Mp(µ).

Proof. According to Theorem 5, Theorem 6, and Proposition 3, it is sufficient to verify
the following two conditions:

(h(x̄)+ ∂IRs−) ∩D+ 6= ∅ and ∂a〈y∗,h〉(x̄) ∩ −N(C; x̄) = ∅ ∀y∗ ∈ IRs− \ {0}
(22)

(N = normal cone to convex sets). By assumption,h(C) ⊆ D+, so the first relation
of (22) is trivially fulfilled. Concerning the second relation, we apply (20) to obtain for
y∗ ∈ IRs− \ {0}:

∂a〈y∗,h〉(x̄) = ∂a(

s∑
i=1

y∗i hi )(x̄) ⊆
s∑

i=1

(−y∗i )∂a(−hi )(x̄) ⊆
s∑

i=1

(−y∗i ) cl (ex(−Ki )),

(23)

For any x∗ ∈ −N(C; x), one has〈x∗, c− x̄〉 ≥ 0 ∀c ∈ C. In order to prove the second
relation in (22), it suffices by (23) to lead to a contradiction the existence of some
λ ≥ 0, λ 6= 0 with x∗ ∈ ∑s

i=1 λi cl (ex(−Ki )). In fact, if there were suchλ, then
t−1x∗ ∈ T with t =∑ λi , hence〈x∗, c− x̄〉 < 0 for somec ∈ C by (21).

ut
In order to illustrate Corollary 5 as well as the difference to using the Clarke subdif-
ferential calculus here, consider the following one-dimensional example for problem
P(µ):

Example 5.In (1), let

d = s= 1, H(x) = {z ∈ IR | ‖x‖ ≥ z}, C = B(0,1), p= 0.5, µ ∼ N (0,1), x̄ = 0.

Then, in the setting of Corollary 5, one hash(x) = ‖x‖ = max{〈x, y〉 | y ∈ K}, where
K = B(0,1). Clearly, all assumptions of the corollary are satisfied. To see this for (21),
note thatµ(H(x)) ≥ 0.5 ∀x ∈ IRm, henceMp(µ) = C and x̄ ∈ Mp(µ). Furthermore,
ex(−K) equals the unit sphereSm−1, so T = ∪{conv{a} | a ∈ Sm−1} = Sm−1. Then
(21) is satisfied by choosingc := −x∗. The advantage of using (21) which relies on
the application of Mordukhovich’s subdifferential, over a characterization via Clarke’s
subdifferential∂c is seen in the example from the violation of the second relation in
(22) when replacing∂a by ∂c: ∂c(−1 · h)(0) ∩ −N(C; 0) = B(0,1) ∩ {0} = {0} 6= ∅.
Similar to the considerations with respect to condition(i) in Theorem 5 one may ask
under which circumstances condition(ii) of the same theorem holds globally, i.e., for
all x̄ ∈ M. An answer may be deduced from the following corollary to Proposition 3:
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Corollary 6. In (8), let all components ofh be concave and the setC be convex. If,
for x̄ ∈ M, there exists somex∗ ∈ C such thath(x∗) > h(x̄) (componentwise), then
condition (ii) of Theorem 5 is satisfied.

Proof. Due to concavity,h is locally Lipschitzian, so we have to check (17). If this
relation does not hold, then there exist somey∗ ∈ IRs+ \ {0} and ξ ∈ IRm such that
ξ ∈ ∂〈y∗,−h〉(x̄) ∩ −N(C; x̄) (note that 〈y∗,−h〉 is convex and that∂a and Na

coincide with the subdifferential∂ and the normal coneN of convex analysis). Since
both x̄ and x∗ belong to the convex setC, we derive〈ξ, x∗ − x̄〉 ≥ 0. On the other
hand, by the sum rule of the convex subdifferential, there areξi ∈ ∂(−hi )(x̄) with
ξ = ∑s

i=1 y∗i ξi . In particular, by the definition of the convex subdifferential, one has
〈ξi , x∗ − x̄〉 ≤ hi (x̄)− hi (x∗). Summarizing, one obtains the contradiction

0≤ 〈ξ, x∗ − x̄〉 =
s∑

i=1

y∗i 〈ξi , x∗ − x̄〉 ≤
s∑

i=1

y∗i (hi (x̄)− hi (x
∗)) < 0

from the strict inequality in the assumption.
ut

The corollary corrects an error in [36] Lemma 2.1., where, in the context of linear
mappingsh and convex setsC, the existence of somex∗ ∈ C with h(x∗) ≥ h(x̄) was
required instead of the strict inequality.

Now, the desired global property may be formulated as follows: If, in (8),h is
concave (e.g. linear) andC is convex, then condition(ii) of Theorem 5 is fulfilled on

M(µ) ∩
[⋃

x∗∈C

s⋂
i=1

h−1
i (−∞,hi (x

∗))
]

which in general may be expected to be a big subset of the chance constraintMp(µ).
At the end of this section we reexamine Example 1 using the tools related to Theorem

5. In contrast to the previously given verification of metric regularity by means of the
composite function8µ ◦h, the corresponding result shall be obtained now via separate
considerations of the measure and the functionh.

Example 6 (Example 1 revisited).Due to Na(C; (0,0)) = {(ξ1, ξ2) ∈ IR2 | ξ1 ≤ 0}
one has[Dh(0,0)]T y∗ = (y∗, y∗)T /∈ Na(C; (0,0)) ∀y∗ > 0. Consequently, (18)
applies. On the other handD+ = (−0.5,0.5) for the given uniform distribution over
[−0.5,0.5]. So h(0,0) = 0 ∈ D+ and we are in the situation of Corollary 4. Summari-
zing, both conditions of Theorem 5 are satisfied and the desired metric regularity result
follows.

4. Quadratic growth condition and quantitative stability

In order to obtain quantitative stability results for solution sets, a certain growth condition
for the objective function in a neighbourhoodof the optimal set has to be verified. This is
studied next for more specific (convex) stochastic programs with one joint probabilistic
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constraint and polyhedral deterministic constraints. More precisely, we consider the
problem

P(µ) min{g(x) | x ∈ C, Fµ(Ax) ≥ p}, (24)

where g : IRm → IR is convex quadratic,C ⊆ IRm is convex polyhedral,A is an
(s,m)- matrix, p ∈ (0,1) and Fµ is the distribution function of a probability measure
µ ∈ P(IRs), which is assumed to ber -concave for somer ∈ (−∞,0). Due to ther -
concavity ofµ, P(µ) represents a convex program. In the following,9(µ) refers again
to the set of (global) solutions to (24) and9V(ν) denotes the localized solution set to
P(ν), whereν ∈ P(IRs) is a perturbation ofµ and V ⊆ IRm an open neighbourhood
of 9(µ).

In the first step of our analysis a reduction argument is used to decompose the original
problemP(µ) into two auxiliary problems. The first one is a stochastic program under
probabilistic constraints, again with decisions taken inRs, whereas the second one
represents a parametric quadratic program with polyhedral constraints. The reduction
argument also provides insight into the structure of the solution set9(µ).

Lemma 4. In addition to the general assumptions, letν ∈ P(IRs) and suppose the
closure cl V of V ⊆ IRm to be a polytope. Then we have

ϕV(ν) = inf {πV(y) | y ∈ A(CV), Fν(y) ≥ p} and 9V(ν) = σV(YV(ν)),

where

YV(ν) = argmin{πV(y) | y ∈ A(CV), Fν(y) ≥ p}
CV = C ∩ cl V

πV(y) = inf {g(x) | Ax= y, x ∈ CV}
σV(y) = argmin{g(x) | Ax= y, x ∈ CV} (y ∈ A(CV)).

Here, πV is convex onA(CV), σV is Hausdorff Lipschitzian onA(CV) and there
exists anη > 0 such that

g(x) ≥ πV(Ax)+ ηdist (x, σV(Ax))2 ∀x ∈ CV .

Proof. Since the constraint set{x ∈ CV | Fν(Ax) ≥ p} is compact,9V(ν) is no-
nempty. Letx ∈ 9V(ν). Then x ∈ CV, Fν(Ax) ≥ p, and

ϕV(ν) = g(x) ≥ πV(Ax) ≥ inf {πV(y) | y ∈ A(CV), Fν(y) ≥ p}.
Conversely, lety ∈ A(CV) with Fν(y) ≥ p. Then there exists anx ∈ σV(y) with
πV(y) = g(x) ≥ ϕV(ν). Hence

ϕV(ν) = inf {πV(y) | y ∈ A(CV), Fν(y) ≥ p} and g(x) = πV(Ax) ∀x ∈ 9V(ν).

This implies9V(ν) = σV(YV(ν)). The convexity ofπV is immediate and the Lipschitz
property ofσV is shown in [23], Theorem 4.2.

Finally, we turn to the last statement in the lemma and assume a descriptiong(x) =
〈x, Hx〉 + 〈c, x〉 for the objective function with some symmetric, positive semidefinite
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matrix H . For eachy ∈ A(CV) fix a correspondingz(y) ∈ σV(y). As an elementary
characterization of solution sets to quadratic programs one has

σV(y) = {x ∈ CV ∩ A−1(y) | Hx = Hz(y), 〈c, x〉 = 〈c, z(y)〉}
By Hoffman’s theorem [15] there exists someL > 0 such that

dist(x, σV(y)) ≤ L(‖Hx− Hz(y)‖ + |〈c, x〉 − 〈c, z(y)〉|)
∀y ∈ A(CV) ∀x ∈ CV ∩ A−1(y)

With the decompositionH = H1/2H1/2 one arrives at〈c, x〉 − 〈c, z(y)〉 = g(x) −
πV(y)− ‖H1/2x‖2 + ‖H1/2z(y)‖2, hence

dist(x, σV(y)) ≤ L(‖H1/2‖‖H1/2(x− z(y))‖ + (‖H1/2z(y)‖
−‖H1/2x‖)(‖H1/2z(y)‖ + ‖H1/2x‖)+ g(x)− πV(y))

≤ L([‖H1/2‖ + ‖H1/2z(y)‖ + ‖H1/2x‖]‖H1/2(x− z(y))‖
+g(x)− πV(y))

≤ L((2κ + 1)‖H1/2‖‖H1/2(x− z(y))‖ + g(x)− πV(y))

for all y ∈ A(CV) and all x ∈ CV ∩ A−1(y), where κ = max{‖x̃‖ | x̃ ∈ CV}.
Consequently,

dist(x, σV(y))2 ≤ L̃(‖H1/2(x− z(y))‖2+ (g(x)− πV(y))2)

∀y ∈ A(CV) ∀x ∈ CV ∩ A−1(y)

for some L̃ > 0. Furthermore, the equality

g((x+ z(y))/2) = g(x)/2+ g(z(y))/2− ‖H1/2(x− z(y))‖2/4
implies

‖H1/2(x− z(y))‖2/2≤ g(x)− πV(y) ∀y ∈ A(CV) ∀x ∈ CV ∩ A−1(y)

Summarizing, one gets

dist(x, σV(y))2 ≤ L̃[2(g(x)− πV(y))+ π̃V(g(x)− πV(y))]
≤ L̃(2+ π̃V)(g(x)− πV(y))

for all y ∈ A(CV) and all x ∈ CV ∩ A−1(y), where

π̃V = max{g(x̃) | x̃ ∈ CV} −min{g(x̃) | x̃ ∈ CV}
Inserting anyx ∈ CV along with y = Ax ∈ A(CV) yields

g(x) ≥ πV(Ax)+ ηdist (x, σV(Ax))2 ∀x ∈ CV .

ut
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The preceding result enables us first to study the growth behaviour of the objective
function in the auxiliary problem

min{πV(y) | y ∈ A(CV), Fν(y) ≥ p},
where V is some suitably chosen subset ofIRm. In a second step, the formula for9V

in the above proposition and the properties ofσV may be exploited. This two-stage
procedure forms the basis of the proof of the following results.

Theorem 8. In addition to the general assumptions in this section, suppose that

(i) 9(µ) is nonempty and bounded;
(ii) 9(µ) ∩ argmin{g(x) | x ∈ C} = ∅;

(iii) ∃x̄ ∈ C : Fµ(Ax̄) > p (Slater condition);
(iv) Fr

µ is strongly convex on some open convex neighbourhoodU of A(9(µ)).

Then the following quadratic growth condition is satisfied:

∃c> 0∃V ⊇ 9(µ) (V open) : g(x) ≥ ϕ(µ)+ cd(x,9(µ))2

∀x ∈ C ∩ V, Fµ(Ax) ≥ p.

Proof. Let V0 ⊆ IRm be an open convex set such that9(µ) ⊆ V0 and A(V0) ⊆ U.
For eachx ∈ 9(µ) selectε(x) > 0 such that the closed ball (w.r.t. the norm‖ · ‖∞)
B∞(x, ε(x)) aroundx with radius ε(x) is contained inV0. Since9(µ) is compact,
a finite number of these balls cover9(µ). The closed convex hull̄V of their union is
a polyhedron with9(µ) ⊆ V ⊂ V̄ ⊆ V0, where V = intV̄. With the notations from
Lemma 4 consider now the problem

min {πV(y) | y ∈ SV , Fµ(y) ≥ p}, with SV = A(CV)

or, equivalently,

min{πV(y) | y ∈ SV,h(y) ≤ 0} where h(y) = Fr
µ(y)− pr .

According to Lemma 4 the solution setYV(µ) of this problem fulfills9(µ) = 9V(µ) =
σV(YV(µ)). Let y∗ ∈ YV(µ) and ȳ = Ax̄ with x̄ ∈ C from (iii) . Then r -concavity of
µ implies for anyλ ∈ (0,1]:

h(λȳ+ (1− λ)y∗) = Fr
µ(λȳ+ (1− λ)y∗)− pr ≤ λFr

µ(ȳ)+ (1− λ)Fr
µ(y∗)− pr

≤ λ(Fr
µ(ȳ)− pr ) < 0.

Thus, we may select̂λ ∈ (0,1] such thatŷ = λ̂ȳ+(1− λ̂)y∗ belongs toSV and has the
propertyh(ŷ) < 0. This constraint qualification implies the existence of a Kuhn-Tucker
coefficientλ∗ ≥ 0 such that

πV(y∗) = min{πV(y)+ λ∗h(y) | y ∈ SV} and λ∗h(y∗) = 0

In caseλ∗ = 0, this would imply y∗ ∈ argmin{πV(y) | y ∈ SV} and, hence, the
existence of somex∗ ∈ 9(µ) with g(x∗) = πV(Ax∗) = min{g(x) | Ax = y∗, x ∈
CV}. Then, in contradiction to condition(ii) , x∗ would minimize g w.r.t. C due to
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x∗ ∈ int V. Thus λ∗ > 0 andπV + λ∗h is strongly convex onSV . Hence,y∗ is the
unique minimizer ofπV + λ∗h and the growth property

∃ρ > 0 ρ‖y− y∗‖2 ≤ πV(y)+ λ∗h(y)− πV(y
∗) ∀y ∈ SV (25)

is valid (recall thatSV ⊆ U). From Lemma 4 we conclude9(µ) = 9V(µ) = σV(y∗)
and

‖Ax− y∗‖2 ≤ ρ−1(πV(Ax)− ϕ(µ)) ∀x ∈ CV, Fµ(Ax) ≥ p. (26)

Now, choose anyx ∈ C ∩ V such thatFµ(Ax) ≥ p. Obviously

dist(x,9(µ)) = dist(x, σV(y
∗)) ≤ dist (x, σV(Ax))+ dH(σV(Ax), σV(y

∗)),

where dH refers to the Hausdorff distance on bounded subsets ofIRm. Using the last
two statements of Lemma 4 (with some Hausdorff Lipschitz modulusL > 0) along
with (26) we continue by

dist(x,9(µ))2 ≤ 2(dist(x, σV(Ax))2+ dH(σV(Ax), σV(y
∗))2)

≤ 2(η−1(g(x)− πV(Ax))+ L2‖Ax− y∗‖2)
≤ 2(η−1(g(x)− πV(Ax))+ L2ρ−1(πV(Ax)− ϕ(µ)))
≤ 2 max{η−1, L2ρ−1}(g(x)− ϕ(µ))

ut
Together with Theorem 1 the preceding result leads to upper Hölder continuity of the
localized solution set mapping9V at µ (with rate 1/2) immediately. Using the special
structure of problemP(µ) we are able to show even the Hausdorff Hölder continuity
of 9V at µ.

Theorem 9. Adopt the setting of Theorem 8. Then there existL > 0, δ > 0 and
a neighbourhoodV of 9(µ) with

dH(9(µ),9V(ν)) ≤ L‖Fµ − Fν‖1/2∞ whenever ν ∈ P(IRs), ‖Fµ − Fν‖∞ < δ.

Here, again,dH denotes the Hausdorff distance and‖Fµ− Fν‖∞ = supz∈IRs |Fµ(z)−
Fν(z)|.
Proof. As in the proof of Theorem 8 we construct a polyhedronV̄ ⊆ IRm such that
9(µ) is contained in the interiorV of V̄. Since the assumptions of Corollary 1 are
satisfied, the localized solution-set mapping9V is upper semicontinuous atµ and
9V(ν) 6= ∅ is a complete local minimizing set forP(ν) if αK (µ, ν) is sufficiently
small. Hence, there exists aδ > 0 such that∅ 6= 9V(ν) ⊆ V for all ν ∈ P(IRs)

with ‖Fµ − Fν‖∞ < δ. With the notations from Lemma 4 and using the fact that
YV(µ) = {y∗} and9(µ) = 9V(µ) = σV(y∗) we obtain

dH(9(µ),9V(ν)) = dH(σV(y∗), σV(YV(ν))) ≤ L̂ sup
y∈YV(ν)

‖y− y∗‖,
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where L̂ > 0 is the Hausdorff Lipschitz constant ofσV (cf. Lemma 4). Using (25), the
above chain of inequalities extends to (due toYV(ν) ⊆ SV )

dH(9(µ),9V(ν)) ≤ L̂ρ−1/2 sup
y∈YV (ν)

[πV(y)+ λ∗h(y)− πV(y∗)]1/2

= L̂ρ−1/2[ϕV(ν)− ϕ(µ)+ λ∗(Fr
µ(y)− pr )]1/2

≤ L̂ρ−1/2[ϕV(ν)− ϕ(µ)+ λ∗(Fr
µ(y)− Fr

ν (y))]1/2
≤ L̂ρ−1/2[|ϕV(ν)− ϕ(µ)| + λ∗|r |(p− δ)r−1|Fr

µ(y)− Fr
ν (y)|]1/2

≤ L̂ρ−1/2[(L + λ∗|r |(p− δ)r−1)dK (µ, ν)]1/2,
whereL > 0 is the constant from Theorem 1 and we used thatFr

ν (y) ≤ pr for any
y ∈ YV(ν) and that the inequality

|ur − vr | ≤ |r |max{ur−1, vr−1}|u− v|
holds for anyu, v ∈ (0,1]. This completes the proof.

ut
The assumptions(i)-(iv) imposed in the Theorems 8 and 9 all concern the original
problem P(µ). Condition (i) is basic for our stability analysis and is satisfied, for
example, ifC is a polytope. The conditions(ii) and(iii) mean that the probability level
p is not chosen too low and too high, respectively.(ii) expresses the fact that the presence
of the probabilistic constraintFµ(Ax) ≥ p moves the solution set9(µ) away from
that obtained without imposing the reliability constraint for ’Ax≥ ξ ’. From a modelling
point of view, both conditions show the significance of the choice of the reliability level
p. Assumption(iv) is decisive for the desired growth condition of the objective function
around9(µ). In contrast to the (global)r -concavity ofµ, (iv) requires strong convexity
of Fr

µ as a local property aroundA(9(µ)) (in addition to the convexity ofFr
µ on IRs

with values in the extended real numbers). Although no general sufficient criterion for
(iv) is available so far,(iv) seems to be satisfied in many cases whenA(9(µ)) belongs
to the interior of the support ofµ.

Proposition 4. Let µ ∈ P(IRs) be logarithmic concave and, hence,Fµ have the form
Fµ(z) = exp(− f(z)), z ∈ IRs, where f : IRs→ IR∪ {∞} is convex. Assume thatf
is continuous and strongly convex on some convex compact setU ⊆ int dom f . Then
Fr
µ is strongly convex onU for each r < 0.

Proof. Let r < 0 and z, z̃ ∈ U, λ ∈ [0,1]. Denoting byc > 0 the strong convexity
constant of f on U, we obtain

Fr
µ(λz+ (1− λ)z̃) = exp(−r f(λz+ (1− λ)z̃))

≤ exp(−r [λ f(z)+ (1− λ) f(z̃)− cλ(1− λ)‖z− z̃‖2])
≤ (λFr

µ(z)+ (1− λ)Fr
µ(z̃)) exp(rcλ(1− λ)‖z− z̃‖2),

where we used the monotonicity and convexity of exp. Let

K := max
z∈U Fr

µ(z), k := min
z∈U Fr

µ(z), ā := max
z,z̃∈U
{−rc

4
‖z− z̃‖2}.
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Then there exists a constantκ > 0 such thatt exp(−a) ≤ t − κa for all a ∈ [0, ā]
and t ∈ [k, K ], and we can continue to

Fr
µ(λz+ (1− λ)z̃) ≤ λFr

µ(z)+ (1− λ)Fr
µ(z̃)− κ(−r)cλ(1− λ)‖z− z̃‖2,

which is the desired inequality.
ut

Note that for the uniform distributionµ on some rectangleD = ×s
i=1[ai ,bi ] the

function f has the form f(z) = −∑s
i=1 log(zi − ai ), z ∈ D, and the proposition

applies to each convex compact subsetU of int D.

5. Exponential bounds for empirical solution estimates

Finally, we show how our quantitative stability results can be employed to derive
(asymptotic) properties of solutions toP(µ) when estimating the (unknown) probabi-
lity distribution µ by empirical measures. Consider independentIRs- valued random
variablesξ1, ξ2, . . . , ξn, . . . on some probability space(�,A, P) having common law
µ. The empirical measureµn is a discrete random measure putting massn−1 at each

of the pointsξ1(ω), . . . , ξn(ω), i.e., µn = n−1
n∑

i=1
δξi (n ∈ IN), whereδz is the dirac

measure placing mass one atz ∈ IRs.
The relevant term in our stability analysis is theB- discrepancy evaluated atµ and

µn,

αB(µn, µ) = sup{|n−1
n∑

i=1

1B(ξi )− E[1B]| | B ∈ B},

whereB is some collection of closed sets inIRs, 1B denotes the characteristic func-

tion of B and E denotes expectation. Thus, the empirical process{n−1
n∑

i=1
1B(ξi ) −

E[1B]}B∈B indexed by sets and its uniform convergence properties are of interest. We
refer to [44] for a recent exposition of the modern empirical process theory. When stu-
dying empirical measures, measurability complications arise. Here, we have to take care
of possibly nonmeasurable suprema over uncountable sets of measurable functions . To
simplify matters, we call a collectionB of closed subsets ofIRs permissibleif there
exists a countable subclassB0 such that each characteristic function 1B with B ∈ B
is the pointwise limit of a sequence(1Bk) with Bk belonging toB0. Clearly, if B is
permissible we haveαB(µn, µ) = αB0(µn, µ), i.e., the further analysis is reduced to
countable classes and, in particular,αB(µn, µ) is measurable.

An important family of classes of (Borel) measurable sets are the Vapnik-ervonenkis
(VC) classes. Recall thatB is called aVC classof index v ∈ IN if it does not shatter any
subset ofIRs of cardinality v+ 1, but does shatter at least a subset of cardinalityv. B
is said to shatter{x1, . . . , xk} if each of its 2k subsets is of the formB∩ {x1, . . . , xk}
for some B ∈ B. The role of VC classes for empirical processes indexed by sets is
enlightened by the following result which is proved in the recent paper [43].
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Lemma 5. Let B be a permissible VC class of indexv. Then there exists a constant
K > 0 (not depending onv) such that we have for alln ∈ IN and λ > 0,

P(αB(µn, µ) ≥ λ) ≤ K

λ
√

n

(
Kλ2n

v

)v
ex p(−2λ2n).

Examples of permissible VC classes are the collection of cells{z+ IRs− | z ∈ IRs} (with
v = s), the collections of all closed balls inIRs (with v = s+ 1), all half-spaces inIRs

(with v = s+ 1) and all polyhedra with at mostk faces. Note that the collection of
all closed convex subsets ofIRs is permissible, but too large for being a VC class (cf.
[42]).

We return to the setting of Section 2 and show next that the bound in Lemma 5 leads
in a straightforward way to exponential bounds for the deviation of the sets of local
solutions toP(µn) andP(µ), respectively, if the collection{Hj (x) | j = 1, . . . ,d; x ∈
C} is contained in a permissible VC class.

Proposition 5. Adopt the setting of Section 2 and assume the conditions (i)-(iv) of
Theorem 1 to be satisfied and that the collection{Hj (x) | j = 1, . . . ,d; x ∈ C} is
contained in a permissible VC clasŝB. Then there exist constantsK > 0, v ∈ IN such
that we have for alln ∈ IN and ε > 0,

P( sup
x∈9V (µn)

dist(x,9V(µ)) ≥ ε) ≤ K

λ
√

n

(
Kλ2n

v

)v
ex p(−2λ2n),

whereλ = min{δ, ε2L−2}, L and δ denote the constants andV the bounded open set
arising in Theorem 1.

Proof. Let ε > 0 and n ∈ IN, and let L, δ and V be as in Theorem 1. First we
notice that sup{dist(x,9V(µ)) | x ∈ 9V(µn)} is a (possibly extended real-valued)
measurable mapping (Theorem 2.K in [33]). Next we define the classB as the union of
B̂ and of the collection{z+ IRs− | z ∈ IRs}. ThenB is a determining class as well as
a permissible VC class. Letv be its (VC) index. Now we setAδ := {ω | αB(µn, µ) <

δ} ∈ A and Āδ = � \ Aδ, and obtain the following inclusion from Theorem 1:

{ω | sup
x∈9V (µn)

dist (x,9V(µ)) ≥ ε} ⊆ Āδ ∪ {ω | ε ≤ LαB(µn, µ)
1/2}

⊆ {ω | αB(µn, µ) ≥ min{δ, ε2L−2}}.
Settingλ = min{δ, ε2L−2}, the result follows from Lemma 5.

ut
An immediate consequence of the preceding bound is the following large deviation
result:

lim sup
n→∞

n−1 log P( sup
x∈9V (µn)

dist(x,9V(µ)) ≥ ε) ≤ −2 min{δ2, ε4L−4}.

All of this applies to the particular caseHj (x) = {z ∈ IRs | h j (x) ≥ zj } with
h j : IRm→ IRsj , j = 1, . . . ,d, which is considered in Section 3 and for which various
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verifiable sufficient conditions for the metric regularity condition (iii) are established
there (e.g. Theorems 4, 5 and 6). In this case we chooseB̂ = BK . For the special case
d = 1, s1 = s in Section 4 we havev = s and a slightly modified bound in Lemma
5 (cf. the discussion in [43] after Theorem 1). The corresponding conclusion takes the
form:

Proposition 6. Adopt the setting of Theorem 9. Then there exists a constantK > 0
such that it holds for alln ∈ IN and ε > 0,

P(dH(9(µ),9V(µn)) ≥ ε) ≤ K(λ2n)s−
1
2 ex p(−2λ2n),

whereλ = min{δ, ε2L−2}, L and δ denote the constants andV the bounded open set
arising in Theorem 9.

6. Appendix

In this appendix, a few examples shall illustrate how nonsmoothness may enter the
model (2) of stochastic programming with chance constraints in a natural way and thus
requires more general tools for the characterization of stability than the classical ones
from differentiable or convex analysis. The impact of a nonsmooth distribution function
on the characterization of stability in (2) is easily seen from the following example:

Example 7.In (2), let m = s = 2, g(x1, x2) = x1, C = [0,2] × [0,2], A := I
(=identity matrix),p = 1/4 andµ = uniform distribution over[0,1] × [0,1]. Then,
the solution set becomes the line segment joining the points(1/4,1) and (1/4,2).
According to Theorem 1, one has to check metric regularity w.r.t.C of the constraint
function Fµ(x1, x2) − p at all these points. Around(1/4,1) ∈ int C, this function
equals min{x1x2, x1} − p, hence no criterion based on differentiablity applies.

Of course, in this example, one may compensate the lacking differentiability by a con-
vexity argument: the measureµ is logarithmic concave and(1,1) is the kind of Slater
point required in Theorem 8. Also, one might object that the point discussed is located
on the boundary of the support of the underlying density, where non-differentiabilities
are expected to occur. A modification of the first example towards a uniform distribu-
tion over a nonconvex but still connected and even polyhedral set along with a (convex)
quadratic objective answers these objections:

Example 8.In (2), let m= s= 2, g(x1, x2) = (x1−3/4)2+(x2−1/2)2, C = [0,2]×
[0,2], A := I, p= 1/6 andµ = uniform distribution over([0,1]×[0,1])\([0,1/2]×
[0,1/2]). Then, the pointx0 = (3/4,1/2) is feasible (the probability level is binding at
x0), hence the solution set reduces exactly to{x0}. Around x0, the constraint function
equalsFµ(Ax)−p= Fµ(x)−p= 4/3 max{x2(x1−1/2), x1(x2−1/2), x1x2−1/4}−p,
and it is non-differentiable atx0, althoughx0 lies in the interior of the support of the
underlying constant density (see left part of Fig. 3). Also, the measure is not quasi-
concave since the support ofµ is non-convex. Consequently, neither differentiable nor
convex criteria apply in this case.
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Fig. 3. Left: Illustration of the distribution functionFµ for the uniform distribution on three quarters of
a square. The (nonsmooth) level lineFµ(x) = p as well as the solution point (lifted to the graph ofFµ) are
indicated. Right: Plot of the density defined in Example 9 and of the corresponding marginal densities

Starting from dimension two, there may occur unexpected relations between the
qualities of densities and corresponding distribution functions. For instance, the last
example has shown, that the distribution function may become non-differentiable even
at points in a neighborhood of which the underlying density is the nicest possible
(constant). The next example (communicated to us bei A. Wakolbinger) highlights
another aspect of this dimensionality phenomenon but now focusing on the Lipschitzian
property of the distribution function.

Example 9.Consider the following probability density in two variables:

f(x1, x2) =


0 x1 < 0

cx1/4
1 e−x1x2

2 x1 ∈ [0,1]
ce−x4

1x2
2 x1 > 1

(c such that

∞∫
−∞

∞∫
−∞

f(x1, x2)dx1dx2 = 1)

This density is bounded and continuous. Yet, the distribution function is not locally
Lipschitzian, since the marginal densities are not locally bounded (see right part of Fig.
3).

Consequently, even in the class of random variables with bounded and continuous
density one may be led to renounce tools relying on Lipschitzian properties (like Clarke’s
subdifferential in its original definition) in the study of problem (2). Then, Theorem 4
still provides a tool for checking stability.
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