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Abstract
The vastmajority of stochastic optimization problems require the approximation of the
underlying probability measure, e.g., by sampling or using observations. It is therefore
crucial to understand the dependence of the optimal value and optimal solutions on
these approximations as the sample size increases or more data becomes available.
Due to the weak convergence properties of sequences of probability measures, there
is no guarantee that these quantities will exhibit favorable asymptotic properties. We
consider a class of infinite-dimensional stochastic optimization problems inspired by
recent work on PDE-constrained optimization as well as functional data analysis. For
this class of problems, we provide both qualitative and quantitative stability results on
the optimal value and optimal solutions. In both cases, we make use of the method
of probability metrics. The optimal values are shown to be Lipschitz continuous with
respect to a minimal information metric and consequently, under further regularity
assumptions, with respect to certain Fortet-Mourier andWassersteinmetrics.We prove
that even in the most favorable setting, the solutions are at best Hölder continuous
with respect to changes in the underlying measure. The theoretical results are tested
in the context of Monte Carlo approximation for a numerical example involving PDE-
constrained optimization under uncertainty.
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1 Introduction

In stochastic optimization, stability usually refers to the continuity properties of opti-
mal values and solution sets as mappings from a set of probability measures, endowed
with a suitable distance, into the extended reals and solution space, respectively, see
[22]. The distance on the space of probability measures must be selected in order
to allow the estimation of differences of the relevant functions, which depend on
probability measures. There exists a wide variety of possible distances of probability
measures based on various constructions [19,27]. In the present context, distances
with ζ -structure introduced first in [27] appear as a natural choice. For a given metric
space Ω such a distance is of the form

dF(P,Q) = sup
f ∈F

∣
∣
∣
∣

∫

Ω

f (ω) dP(ω) −
∫

Ω

f (ω) dQ(ω)

∣
∣
∣
∣
, (1)

where F is a family of Borel measurable functions from Ω to R and P, Q are Borel
probability measures on Ω . Note that the distance dF is non-negative, symmetric and
satisfies the triangle inequality. It also satisfies dF(P,P) = 0 and is, thus, a probability
metric in the sense of [27]. However, dF(P,Q) = 0 only implies P = Q, when the
familyF is rich enough.Hence, dF is a semi-metric in the usual terminology, in general.

The smallest relevant familyF of Borel measurable functions in our stability studies
contains only those functions which appear in the stochastic optimization problem
under consideration. In this case, dF may be called the minimal information (m.i.)
distance. Stability results with respect to such m.i. distances serve as the starting point
(i) to study stability with respect to the weak convergence of probability measures and
(ii) to enlarge the familyF properly by functions sharing essential analytical properties
with the original ones. The latter strategy may lead to probability metrics that enjoy
desirable properties like dual representations and convergence characterizations.

This method of probability metrics provides quantitative statements on the stability
of solutions and optimal values of stochastic programming problems.Nevertheless, the
existing theory has not been developed for optimization problems in which the design
or decision variables may be infinite-dimensional, as is the case in PDE-constrained
optimization under uncertainty. By including infinite-dimensional feasible sets, we
introduce a number of complications; in particular, the loss of norm compactness of
the feasible set, even in the case of convex, closed, and bounded feasible sets.

After fixing some essential notation in Sect. 2, we state the class of infinite-
dimensional stochastic optimization problems for which we study stability in the
subsequent sections in Sect. 3. Section 4 contains qualitative results by providing
conditions that imply convergence of optimal values and solutions if the underlying
sequence of probability distribution converges to a limit distribution in some sense.
In Sect. 5 we show that optimal values and solutions even allow Lipschitz or Hölder
estimates in terms of the ζ -distance. In Sect. 6 we argue that the stability analysis
of the preceding sections applies to certain stochastic PDE-constrained optimization
problems. Finally, in Sect. 7, we provide a study of the results in Sect. 6 for the case
when Monte Carlo approximations are used.
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Stability in infinite-dimensional stochastic optimization 2735

2 Notation and preliminary results

We assume throughout that Ω is a complete separable metric space, i.e., Polish space,
andF the associated Borel σ -algebra. In addition, wewill work exclusively with Borel
probability measures P : F → [0, 1]. that ensure (Ω,F ,P) is a complete probability
space. In particular, if Ω is finite, then F must be the power set of Ω . For the abstract
portion of our results, we will always assume that Θ is a real separable Hilbert space
and Θad ⊂ Θ is a nonempty, closed, and convex set. Given an appropriately chosen
integrand f : Θ × Ω → R, we will consider the potentially infinite dimensional
stochastic optimization problems:

ν(P) := inf
θ∈Θad

∫

Ω

f (θ, ω) dP(ω). (2)

Here, we also introduce the notion of optimal value function ν as a function from the
space of all Borel probability measures P(Ω) into R. This potentially extended real-
valued function will play a key role in our discussions. If necessary, we will denote
the expectation by either E or if it is not clear in context EP to denote the dependence
on the measures P.

Given a complete probability space (Ω,F ,P) and a real Banach space W , we
recall the definition of the Bochner space L p(Ω,F ,P;W ) p ∈ [1,∞) as the space
of (equivalence classes) of strongly measurable functions v, which map Ω into W
and satisfy

∫

Ω
‖v(ω)‖p

W dP(ω) < +∞, cf. [13]. If p = ∞, then L∞(Ω,F ,P;W )

consists of essentially boundedW -valued stronglymeasurable functions. In both cases
L p(Ω,F ,P;W ) is a Banach space with the natural norm(s)

‖v‖L p(Ω,F ,P;W ) =
{[

E‖v‖p
W

]1/p
, for p ∈ [1,∞),

ess supω∈Ω ‖v(ω)‖W , for p = ∞.

In the special case when W = R, we simply write L p(Ω,F ,P). As usual norm
convergence will be typically denote by →, whereas ⇀ signifies weak convergence

and
∗
⇀ weak-star convergence.

In our stability analysis, wemake use of distances with ζ -structure onP(Ω) having
the form (1). We will refer to these objects as ζ -distances for brevity. Given a family F
of Borel measurable functions fromΩ intoR, the ζ -distance dF on (Ω,F) is a highly
flexible structure that allows us to define so-called minimal information distances and
Fortet-Mourier metrics; each defined in the text below. Properties of ζ -distances like
a characterization of its maximal generator and its relation to weak convergence of
probability measures can be found in [18,23]. Recall that a sequence of probability
measures {PN } on (Ω,F) is said to narrowly/weakly converge to the probability
measure P provided

EPN [ f ] → EP[ f ] ∀ f ∈ C0
b (Ω),
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2736 M. Hoffhues et al.

where C0
b (Ω) is the space of all bounded continuous functions on Ω . A family F of

Borel measurable functions is called a P-uniformity class if

lim
N→∞ dF(P,PN ) = 0

holds for each sequence {PN } of probability measures converging weakly to P. For
example, it is known that F is a P-uniformity class if F is uniformly bounded and
P({ω ∈ Ω : F is not equicontinuous at ω}) = 0 [23].

Finally, we recall that given a σ -algebraF along with a nominal σ -finite σ -additive
positivemeasurePonΩ , e.g., aBorel probabilitymeasureP ∈ P(Ω), the dual space of
L∞(Ω,F ,P) can be identified with the space of all finitely additive signed measures
ba(Ω) on F absolutely continuous with respect to P, see e.g., [9].

3 The optimization problem

In order to carry out the stability analysis, we restrict the class of allowable integrands
f (θ, ω). These restrictions will henceforth be taken as standing assumptions. The par-
ticular class considered in this paper is inspired by applications in PDE-constrained
optimization under uncertainty in which the PDE is given by a linear elliptic par-
tial differential equation with random coefficients, right-hand side, and/or boundary
conditions. We refer the reader to [17] for an overview of the state-of-the-art theory
including more general objective functions and risk measures. In addition, many prob-
lems in functional data analysis exhibit practically the same form used below, see e.g.,
[21].

Let V and H be real Hilbert spaces such that V embeds continuously into H , and
θd ∈ H . For θ ∈ Θ and ω ∈ Ω , let Σ(ω)θ = S(ω)θ − s(ω), where S(ω) : Θ → V
is bounded and linear in θ independently of ω and s(ω) ∈ H . We then define

f (θ, ω) := 1

2
‖Σ(ω)θ − θd‖2H = 1

2
‖S(ω)θ − (θd + s(ω))‖2H .

Furthermore, we assume that for every θ ∈ Θ (or θ ∈ Θad) and any P ∈ P(Ω)

f (θ, ·) ∈ L1(Ω,F ,P).

This implicitly adds mild regularity assumptions on S and s that are typically fulfilled
when S is related to the solution of a parametric elliptic PDE, e.g., S(·)θ, s(·) ∈
L2(Ω,F ,P; V ). Then for α > 0, we consider the optimization problems

inf
θ∈Θad

F(θ) := EP[ f (θ)] + α

2
‖θ‖2Θ. (3)

Theorem 1 Problem (3) admits a unique solution θP ∈ Θad for every P ∈ P(Ω).

Proof For existence, it suffices to prove F is proper, convex, lower-semicontinuous
and coercive, cf. e.g., [3, Sec. 3.3]. Since f (θ, ·) ∈ L1(Ω,F ,P) for any θ ∈ Θad
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Stability in infinite-dimensional stochastic optimization 2737

and f ≥ 0, F is proper. Convexity follows directly from the P-a.e. convexity of θ 
→
f (θ, ω)+ α

2 ‖θ‖2Θ and themonotonicity of the expectationEP. Lower semicontinuity is
a result of Fatou’s lemma: Let θk → θ inΘ . Then since f ≥ 0 and f (θk, ·) → f (θ, ·)
P-a.s. (by the assumptions on S) we have

lim inf
k

EP [ f (θk)] + α

2
‖θk‖2Θ ≥ EP

[

lim inf
k

f (θk)

]

+ α

2
‖θ‖2Θ = EP[ f (θ)] + α

2
‖θ‖2Θ.

Since EP[ f (θ, ·)] ≥ 0 for all θ ∈ Θad, F is coercive. Given F is proper, convex,
and lower semicontinuous, F is weakly lower semicontinuous, as well. Since F is
coercive, the level set {θ ∈ Θad |F(θ) ≤ α0 } , where θ0 ∈ Θad and α0 := F(θ0), is
weakly sequentially compact. It then follows from the direct method that (3) admits a
solution θP. Given α > 0, F is strictly convex. Hence, θP is unique. �

4 Qualitative stability

In this section, we provide stability results that ensure the approximating optimiza-
tion problems obtained by replacing P by another probability measure Q ∈ P(Ω)

will converge in some sense to the original problem. In particular, we show that the
solutions θQ will strongly converge to θP provided Q converges to P with respect to
a properly chosen ζ -distance. This basic result serves as the foundation needed to
prove continuity of the solutions with respect to narrow convergence of probability
measures. However, in order to do the latter, additional regularity properties will be
required on the integrands with respect to ω. These stability results are in some sense
more versatile than the quantitative results below. Nevertheless, they do not provide
us with a rate of convergence.

Theorem 2 In the context of Theorem 1, suppose we are given a sequence {PN } with
PN ∈ P(Ω) and a probability measure P ∈ P(Ω) such that dF(PN ,P) → 0, where
F is any class of measurable functions from Ω into R large enough to contain f (θ, ·)
for any θ ∈ {θN : N ∈ N} ∪ {θP} with θN := θPN . Then θN → θP strongly in Θ as
N → +∞.

Remark 1 The obvious candidate for the set F would be to choose the collection
of all possible integrands f (θ, ·) : Ω → R indexed by θ ∈ Θad. In terms of the
associated ζ -distance, this would result in what is referred to in [19,20,22] as the
minimal information metric.

Proof We first show {θN } is uniformly bounded in Θ . Indeed, we have

α

2
‖θN‖2Θ ≤ EPN [ f (θN )] + α

2
‖θN‖2Θ ≤ EPN [ f (θ)] + α

2
‖θ‖2Θ θ ∈ Θad. (4)

For any fixed θ ∈ Θad, it follows from the hypotheses that

EPN [ f (θ)] = EPN [ f (θ)] − EP[ f (θ)] + EP[ f (θ)] ≤ dF(PN ,P) + EP[ f (θ)]. (5)
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2738 M. Hoffhues et al.

Substituting this into (4) we obtain the bound

α

2
‖θN‖2Θ ≤ dF(PN ,P) + F(θ) θ ∈ Θad.

Since dF(PN ,P) → 0, {θN } is bounded in Θ . Therefore, there exists a θ̂ ∈ Θad and
a weakly convergent subsequence

{

θN�

}

such that θN�
⇀θ̂ as � → +∞.

For fixed P, it follows from the proof of Theorem 1 that EP[ f (·)] : Θ → R is
weakly lower semicontinuous. Therefore,

EP

[

f
(

θ̂
)]+ α

2
‖θ̂‖2Θ ≤ lim inf

�
EP

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ
≤ lim inf

�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ + EP

[

f
(

θN�

)]− EPN�

[

f
(

θN�

)]]

≤ lim inf
�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ + dF
(

PN�
,P
)]

= lim inf
�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ
]

.

(6)

It then follows from (6), the optimality of θN�
, and (5) that for any θ ∈ Θad we have:

EP[ f (θ̂)] + α

2
‖θ̂‖2Θ ≤ lim inf

�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ
]

≤ lim inf
�

[

EPN�
[ f (θ)] + α

2
‖θ‖2Θ

]

≤ lim inf
�

dF(PN�
,P) + EP[ f (θ)] + α

2
‖θ‖2Θ

= EP[ f (θ)] + α

2
‖θ‖2Θ.

(7)

Hence, θP = θ̂ . Since θP is unique and the previous arguments hold for all weakly
convergent subsequences of {θN }, we have θN⇀θP = θ̂ as N → +∞. It remains to
prove ‖θN − θP‖Θ → 0.

Clearly we have the inequality

lim inf
N

‖θN‖Θ ≥ ‖θ̂‖Θ (8)

by weak lower semicontinuity of the norm ‖ · ‖Θ . On the other hand, by rearranging
terms, the definition of θN and feasibility of θ̂ yield

α

2
‖θN‖2Θ ≤ α

2
‖θ̂‖2Θ + EPN [ f (θ̂)] − EPN [ f (θN )]

= α

2
‖θ̂‖2Θ + EPN [ f (θ̂)] − EPN [ f (θN )] + EP[ f (θN )] − EP[ f (θN )]

≤ α

2
‖θ̂‖2Θ + EPN [ f (θ̂)] − EP[ f (θN )] + dF(PN ,P)

= α

2
‖θ̂‖2Θ + EPN [ f (θ̂)] − EP[ f (θ̂)] + EP[ f (θ̂)] − EP[ f (θN )] + dF(PN ,P)

≤ α

2
‖θ̂‖2Θ + 2dF(PN ,P) + EP[ f (θ̂)] − EP[ f (θN )].
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Stability in infinite-dimensional stochastic optimization 2739

Therefore, we again appeal to the weak lower semicontinuity of EP[ f (·)] on Θ to
obtain

lim sup
N

α

2
‖θN‖2Θ ≤ α

2
‖θ̂‖2Θ + lim sup

N

[

2dF(PN ,P) + EP[ f (θ̂)] − EP[ f (θN )]]

= α

2
‖θ̂‖2Θ + EP[ f (θ̂)] − lim inf

N
[ f (θN )]]

≤ α

2
‖θ̂‖2Θ + EP[ f (θ̂)] − EP[ f (θ̂)]

= α

2
‖θ̂‖2Θ.

(9)
Combining (8) and (9), we have ‖θN‖Θ → ‖θ̂‖Θ . Then since Θ is a Hilbert space
and θN⇀θ̂ , the assertion follows. �

An alternative perspective on qualitative stability is offered by our next result.
Here, we will prove convergence of the sequence of minimizers under different data
assumptions on the integrands and a different form of weak convergence of measures.
We note that in PDE-constrained optimization under uncertainty these assumptions are
less restrictive than they may appear. In particular, we do not require f (θ, ·) : Ω → R

to be continuous as is needed below for the Fortet-Mourier metric. The caveat here is
the requirement that PN is absolutely continuous with respect to P.

Theorem 3 In addition to the standing assumptions, fix some P ∈ P(Ω) and suppose
that for all θ ∈ Θad f (θ, ·) ∈ L∞(Ω,F ,P). Assume furthermore that the superposi-
tion operator Φ : Θ → L∞(Ω,F ,P) defined by

Φ(θ)(ω) := f (θ, ω)

is completely continuous. Let {PN } ⊂ P(Ω) such that

1. for all N ∈ N PN << P (PN is absolutely continuous with respect to P) and
2. PN → P with respect to the weak-star topology on (L∞(Ω,F ,P))∗.

Then θN → θP.

Proof As noted in Sect. 2, eachQ ∈ P(Ω) is an element of (L∞(Ω,F ,P))∗ provided
Q << P. The rest of the proof mirrors that of Theorem 2. Given the sequence of
minimizers {θN } we immediately obtain a uniform bound on ‖θN‖ from (4) since for

any θ ∈ Θad f (θ, ·) ∈ L∞(Ω,F ,P) and PN
∗
⇀ P. As before, we let

{

θN�

}∞
�=1 denote

the weakly convergent subsequence and θ̂ the associated weak limit.
Turning now to the estimate derived in (6), we see that

EP

[

f
(

θ̂
)]+ α

2
‖θ̂‖2Θ ≤ lim inf

�
EP

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ
≤ lim inf

�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ + EP

[

f
(

θN�

)]− EPN�

[

f
(

θN�

)]]

= lim inf
�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ
]

.

(10)
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Here, Φ(θNl ) → Φ(θ̂) strongly in L∞(Ω,F ,P) due the assumption of complete
continuity. Therefore, both EP[ f (θN�

)] and EPN�
[ f (θN�

)] converge to EP[ f (θ̂)].
As in the proof of Theorem 2, we obtain optimality of θ̂ by adapting the inequality

(7), i.e., for every θ ∈ Θad we have

EP

[

f
(

θ̂
)]+ α

2
‖θ̂‖2Θ ≤ lim inf

�

[

EPN�

[

f
(

θN�

)]+ α

2
‖θN�

‖2Θ
]

≤ lim inf
�

[

EPN�
[ f (θ)] + α

2
‖θ‖2Θ

]

= EP[ f (θ)] + α

2
‖θ‖2Θ.

(11)

Here, the regularity of the integrand ensures that EPN�
[ f (θ)] converges to EP[ f (θ)];

from which it follows that θ̂ = θP. As in the proof of Theorem 2, we can again argue
that the entire sequence

{

θPN

}

weakly converges to θP.
In order to prove norm convergence, we note that

α

2
‖θN‖2Θ ≤ α

2
‖θ̂‖2Θ + EPN [ f (θ̂)] − EPN [ f (θN )].

Then by the complete continuity and regularity assumptions, we have

lim sup
N

α

2
‖θN‖2Θ ≤ lim sup

N

α

2
‖θ̂‖2Θ + EPN [ f (θ̂)] − EPN [ f (θN )] = lim sup

N

α

2
‖θ̂‖2Θ.

This completes the proof. �
Next, we return to the setting using probability metrics to obtain some important

implications of the Theorem 2 under further regularity assumptions on the integrands.
In our setting, we recall that the space of all (Borel) probability measures with finite
p-th moments is defined by

Pp(Ω) :=
{

P ∈ P(Ω)

∣
∣
∣
∣

∫

Ω

d(ω0, ω)pdP(ω) < +∞
}

,

for some arbitrary ω0 ∈ Ω . We recall that a sequence {PN } ⊂ Pp(Ω) converges
weakly (narrowly) provided for all ϕ ∈ C0

b (Ω)

EPN [ϕ] → EP[ϕ] and EPN

[

d (ω0, ·)p
] → EP

[

d (ω0, ·)p
]

as N → ∞. This type of weak convergence shares an intimate link with a certain
class of ζ -distances known as Fortet-Mourier metrics. To start, for p ∈ [1,∞), we
define the sets Fp(Ω) of locally Lipschitz functions with a certain p-related growth
condition by
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Fp(Ω) := { f : Ω → R | | f (ω1) − f (ω2) |
≤ max

{

1, d (ω1, ω0)
p−1 , d (ω2, ω0)

p−1
}

d (ω1, ω2) ∀ω1, ω2 ∈ Ω
}

.

We then define the Fortet-Mourier metric of order p for two measures P,Q ∈ Pp(Ω)

by

ζp(P,Q) = dFp(Ω)(P,Q).

In particular, ζp is equivalent to the so-called Kantorovich-Rubinstein functional with
cost function given by

c (ω1, ω2) = max
{

1, d (ω1, ω0)
p−1 , d (ω2, ω0)

p−1
}

d (ω1, ω2) .

(see [19, Theorem 5.3.3] along with the discussion on page 93 in [19]). Furthermore,
it follows from [19, Theorem 6.2.1] that {PN } ⊂ Pp(Ω) converges weakly (narrowly)
to P ∈ Pp(Ω) if and only if ζp(PN ,P) → 0 as N → +∞. We may therefore connect
Theorem 2 directly to the weak convergence of probability measures.

Proposition 1 In the setting of Theorem 2, suppose there exists a p ∈ [1,∞) and some
L > 0 such that

F = Fp(Ω) and

{
1

L
f (θ, ·) : Ω → R | θ ∈ Θad

}

⊂ F.

Then the solution mapping Pp(Ω) � Q 
→ θQ ∈ Θad is continuous with respect to
weak (narrow) convergence of probability measures on Pp(Ω).

Proof After rescaling the integrands by 1/L > 0, this is a direct consequence of
Theorem 2 in light of the preceding arguments. �

Finally, we note that an alternative means of obtaining the sequential convergence
result in Proposition 1 would be to appeal to the link between the weak topology on
Pp(Ω) and the topologies generated by the well-known Wasserstein distance Wp of
order p. Let γi (i = 1, 2) be the projection onto the first or second term of Ω × Ω ,
respectively, and for π ∈ P(Ω ×Ω) denote the marginals by π i := π#γi := π ◦γ −1

i .
Then the Wasserstein distance of order p is given by

W p
p (P,Q) = inf

{∫

Ω×Ω
d(ω1, ω2)

pdπ (ω1, ω2)
∣
∣
∣π ∈ P (Ω × Ω) , π1 = P and π2 = Q

}

.

For this distance we have the estimate:

ζp (P,Q) ≤
(

1 +
∫

Ω

d(ω0, ω)p dP(ω) +
∫

Ω

d(ω0, ω)p dQ(ω)

) p−1
p

Wp(P,Q).

(12)
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2742 M. Hoffhues et al.

Therefore, if we start with a sequence of Borel probability measures {PN } and P ∈
P(Ω) such thatWp(PN ,P) → 0, then we obtain the same statement as in Proposition
1. However, as shown in [20] the convergence in the Wasserstein metric is potentially
strictly slower than in the Fortet-Mourier metric.

5 Quantitative stability

As mentioned above, quantitative stability provides us with Lipschitz or Hölder-type
estimates of the optimal values and solutions. This is first done using the “weakest”
possible ζ -distancedF inwhichF is directly related to the integrandswithout additional
regularity assumptions on the dependence on ω. Further estimates related to Fortet-
Mourier andWasserstein metrics then follow as corollaries under Lipschitz conditions
on the integrands.

Theorem 4 Under the standing asusmptions, let P,Q ∈ P(Ω) and let F be any set
of Borel measurable functions that contains gθ (·) := f (θ, ·), where θ = θP and θQ.
Then we have the estimates:

|ν(Q) − ν(P)| ≤ dF(Q,P) (13)

‖θQ − θP‖ ≤ 2

√

2

α
dF(Q,P). (14)

Proof For the Lipschitz estimate (13), we observe that

|ν(Q) − ν(P)| =max {ν(Q) − ν(P), ν(P) − ν(Q)}
=max

{

EQ

[

f (θQ)
]+ α

2
‖θQ‖2 − EP [ f (θP)] − α

2
‖θP‖2,

EP [ f (θP)] + α

2
‖θP‖2 − EQ

[

f
(

θQ
)]− α

2
‖θQ‖2

}

≤max
{

EQ[ f (θP)] − EP [ f (θP)] ,EP

[

f
(

θQ
)]− EQ

[

f
(

θQ
)]}

≤max{|EQ [ f (θP)] − EP [ f (θP)] |,
|EP

[

f
(

θQ
)]− EQ[ f (θQ

) |}
≤dF(Q,P).

For theHölder estimate on the solutionmapping (14), we start by letting δ := dF(Q,P)

and observing that

2δ ≥ δ + |ν(Q) − ν(P)|
≥ δ + ν(Q) − ν(P)

= δ + EQ[ f (θQ)] + α

2
‖θQ‖2 − EP[ f (θP)] − α

2
‖θP‖2

= δ ± (EP[ f (θQ)] + α

2
‖θQ‖2) + EQ[ f (θQ)] + α

2
‖θQ‖2 − EP[ f (θP)] − α

2
‖θP‖2

= δ − (EP[ f (θQ)] − EQ[ f (θQ)])
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+ EP[ f (θQ)] + α

2
‖θQ‖2 − EP[ f (θP)] − α

2
‖θP‖2

≥ EP[ f (θQ)] + α

2
‖θQ‖2 − EP[ f (θP)] − α

2
‖θP‖2. (15)

Using the quadratic term α
2 ‖ · ‖2, the convexity of the integrand f (·, ω), the convexity

of Θad, and optimality of θP, we have

EP[ f (θP)] + α

2
‖θP‖2 ≤ EP[ f (θP/2 + θQ/2)] + α

2
‖θP/2 + θQ/2‖2

≤ 1

2
(EP[ f (θP)] + α

2
‖θP‖2)

+ 1

2
(EP[ f (θQ)] + α

2
‖θQ‖2) − α

8
‖θP − θQ‖2.

It follows that

EP[ f (θQ)] + α

2
‖θQ‖2 − EP[ f (θP)] − α

2
‖θP‖2 ≥ α

8
‖θQ − θP‖2. (16)

Combining (16) with (15) above yields

‖θQ − θP‖ ≤
√

8δ

α
= 2

√

2dF(Q,P)

α

as was to be shown. �
Wemay now return to the results at the end of Sect. 4 in order to derive quantitative

stability results using the familiar Fortet-Mourier and Wasserstein distances.

Corollary 1 In the setting of Theorem 4, suppose there exists a p ∈ [1,∞) and some
L > 0 such that

F = Fp(Ω) and

{
1

L
f (θ, ·) : Ω → R | θ ∈ Θad

}

⊂ F.

Then the following estimates hold for the associated Fortet-Mourier metric:

|ν(Q) − ν(P)| ≤ Lζp(Q,P), ‖θQ − θP‖ ≤ 2L

√

2

α
ζp(Q,P).

Consequently, the following estimates hold for the Wasserstein metric Wp:

|ν(Q) − ν(P)| ≤ Lc(ω0,P,Q)Wp(Q,P),

‖θQ − θP‖ ≤ 2L

√

2

α
c(ω0,P,Q)Wp(Q,P).

Here, we set c(ω0,P,Q) = (

1 + ∫

Ω
d(ω0, ω)pdP(ω) + ∫

Ω
d(ω0, ω)pdQ(ω)

) p−1
p .
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6 An application to PDE-constrained optimization under uncertainty

We conclude the theoretical discussion with an example from PDE-constrained opti-
mization under uncertainty to demonstrate the applicability of our results. For the
purpose of discussion, we start with an arbitrary Borel probability measure P in order
to introduce the problem. The notation mirrors in part that of [17]. For readability, we
indicate the associated quantities in the general discussions above.

Our goal is twofold. Under reasonable data assumptions, we will define a class of
integrands F, which allow us to use the m.i. metric in our stability results to prove
convergence of optimal values and optimal solutions under weak convergence of a
sequence of measures {PN }. Afterwards, assuming the underlying function spaces
are replaced by finite-dimensional subspaces defined by a standard finite-element
discretization, we derive an a priori-type error bound and argue that the fully discrete
problems converge to the original continuous problems.

We will consider a class of optimization problems in which we seek to minimize
the objective function

J (u, z) := 1

2

∫

Ω

∫

D
|u(x, ω) − ũd(x)|2 dxdP(ω) + α

2

∫

D
|z(x)|2 dx

= 1

2
EP

[

‖u − ũd‖2L2(D)

]

+ α

2
‖z‖2L2(D)

(17)

subject to the condition that z ∈ Zad ⊂ L2(D), a closed bounded convex set, and
for z ∈ Zad, u solves a random partial differential equation (PDE), which we define
below. The function ũd ∈ L2(D) can be thought of as a desired state or general target
function.

To be precise, let D ⊂ R
n be an open, bounded Lipschitz domain, V = H1

0 (D) the
classical Sobolev space with inner product (·, ·)V , and V � = H−1(D) its dual with
norm ‖ · ‖� und dual pairing 〈·, ·〉. In addition, let H = L2(D) with inner product
(·, ·)H . Furthermore, let Ω be a metric space with metric ρ and Borel σ -field F and
let P be a Borel probability measure.

Within this framework, we consider the bilinear form a(·, ·;ω) : V × V → R

defined by

a(u, v;ω) =
∫

D

n
∑

i, j=1

bi j (x, ω)
∂u(x)

∂xi

∂v(x)

∂x j
dx

where ω ∈ Ω . The associated random PDE can be defined pointwise as:

a(u, v;ω) =
∫

D
(z(x) + g(x, ω))v(x)dx for P-a.e. ω ∈ Ω,

for all test functions v ∈ C∞
0 (D), z varying in a constraint set Zad ⊂ H , and g, bi j :

D×Ω → R, which are assumed to be at least measurable inΩ and square (Lebesgue)
integrable in D.
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In order to use our stability results in this context, we will need further data assump-
tions on the bilinear form. For each ω ∈ Ω , we let A(ω) : V → V � be the mapping

〈A(ω)u, v〉 = a(u, v;ω) (∀u, v ∈ V ).

The existence of A(ω) as a bounded linear operator is due to the Riesz representation
theorem and the Lax-Milgram lemma based on the following assumptions, see e.g.,
[1, Chap. 6., 6.1, 6.2]. First, we impose the condition that there exist L > γ > 0 such
that

γ

n
∑

i=1

y2i ≤
n
∑

i, j=1

bi j (x, ω)yi y j ≤ L
n
∑

i=1

y2i (∀y ∈ R
n)

for all x ∈ D and P-a.e. ω ∈ Ω . This implies that each bi j is essentially bounded
in D × Ω with respect to the associated product measure. Moreover, the mapping
A(ω) : V → V � is uniformly positive definite (with constant γ ) and uniformly
bounded (with constant L) with respect to P-a.e. ω ∈ Ω , i.e.,

γ ‖u‖2V ≤ 〈A(ω)u, u〉 ≤ L‖u‖2V (∀u ∈ V ).

In addition, the inverse mapping A(ω)−1 : V � → V is again uniformly positive
definite (with constant 1

L ) and uniformly bounded (with constant 1
γ
) with respect to

P-a.e. ω ∈ Ω .
Under these data assumptions, we may now define a class of integrands for the m.i.

metric forwhich dF(PN ,P) → 0 for any sequence of Borel probabilitymeasures {PN }
that converges weakly to P. To this end, we define the functions f : Zad × Ω → R

by

f (z, ω) = 1

2
‖A(ω)−1 (z + g(ω)) − ũd‖2H = 1

2
‖A(ω)−1z −

(

ũd − A(ω)−1g(ω)
)

‖2H
= 1

2

∫

D
([A(ω)−1z](x) − (̃ud(x) − [A(ω)−1g(·, ω)](x)))2dx .

Our aim is to derive conditions implying that the class F = { f (z, ·) : z ∈ Zad} is
uniformly bounded and equicontinuous, and consequently a P-uniformity class, cf.
[23].

Lemma 1 In addition to the standing assumptions, suppose that ũd ∈ H and g ∈
L2(Ω,F ,P; V �). Then for some C > 0 we have

| f (z, ω)| ≤ C(1 + ‖g(ω)‖2�) (P- a.e. ω ∈ Ω, z ∈ Zad).

Proof For z ∈ Zad and ω ∈ Ω we obtain

| f (z, ω)| ≤ (‖A(ω)−1z‖2H + ‖ũd − A(ω)−1g(ω)‖2H
)

≤ (‖A(ω)−1z‖2H + 2‖ũd‖2H + 2‖A(ω)−1g(ω)‖2H
)

123



2746 M. Hoffhues et al.

≤ (‖A(ω)−1z‖2V + 2‖A(ω)−1g(ω)‖2V + 2‖ũd‖2H
)

≤
(
c

γ
(‖z‖2� + 2‖g(ω)‖2�) + 2‖ũd‖2H

)

,

where we used the Poincaré-Friedrichs inequality twice (with some constant c) and
the uniform boundedness of ‖A(ω)−1‖ by 1

γ
. Since z varies in the bounded set Zad,

there is a positive constant C such that the assertion holds. �
Lemma 1 provides us with a uniform bound on all functions in F. The proof of the
following Lemmamakes use of a result in [12]. Since this book is not readily available
in English, we provide it and a short proof in the “Appendix”.

Lemma 2 In addition to the assumptions of Lemma 1, suppose there is a constant
C > 0 such that

√
√
√
√

n
∑

i, j=1

|bi j (x, ω) − bi j (x, ω′)|2 ≤ Cρ(ω, ω′) (∀ω,ω′ ∈ Ω).

Then for any g ∈ V � and ω,ω′ ∈ Ω we have

‖A(ω)−1g − A(ω′)−1g‖V ≤ t

1 − κ(t)
C‖g‖�ρ(ω, ω′) ∀t ∈

(

0,
2γ

L2

)

,

where κ(t) = √

1 − 2γ t + L2t2.

Proof First we study the dependence of A(ω)u on ω. Let u, v ∈ V and ω,ω′ ∈ Ω .

|〈(A(ω) − A(ω′))u, v〉| =
∣
∣
∣
∣
∣
∣

∫

D

n
∑

i, j=1

(bi j (x, ω) − bi j (x, ω
′))∂u(x)

∂xi

∂v(x)

∂x j
dx

∣
∣
∣
∣
∣
∣

= ∣
∣
(

B(·;ω,ω′)∇u(·),∇v(·))∣∣

≤
∫

D
‖B(x;ω,ω′)‖|∇u(x)||∇v(x)|dx

≤ sup
x∈D

‖B(x;ω,ω′)‖‖u‖V ‖v‖V ,

where B(x;ω,ω′) denotes the n × n-matrix

B(x;ω,ω′) = (bi j (x, ω) − bi j (x, ω
′))i, j=1,...,n

with Frobenius norm ‖B(x;ω,ω′)‖, ∇u the gradient of u in the sense of Sobolev and
|∇u| its Euclidean norm. Hence, we obtain

‖(A(ω) − A(ω′))u‖� ≤ ‖u‖V sup
x∈D

√
√
√
√

n
∑

i, j=1

|bi j (x, ω) − bi j (x, ω′)|2 ≤ C‖u‖V ρ(ω, ω′).
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Next we consider the mapping Kt (ω)u = u− t J−1(A(ω)u−g) for some t ∈ (0, 2γ
L2 ),

ω ∈ Ω , g ∈ V � and any u ∈ V . Then it follows from Proposition 2 that

‖Kt (ω)u − Kt (ω)u′‖V ≤ κ(t)‖u − u′‖V
for any u, u′ ∈ V and κ(t) = √

1 − 2tγ + t2L2 < 1. Furthermore, the unique fixed
point of Kt (ω) belongs to the ball around zero with radius

r = ‖Kt0 − 0‖V
1 − κ(t)

= t

1 − κ(t)
‖J−1g‖V = t

1 − κ(t)
‖g‖�.

For any u ∈ V and ω,ω′ ∈ Ω we have

‖Kt (ω)u − Kt (ω
′)u‖V = t‖J−1(A(ω) − A(ω′))u‖V = t‖(A(ω) − A(ω′))u‖�

and apply Proposition 3 from the “Appendix” with P = Ω , X = B(0, r) = {u ∈ V :
‖u‖V ≤ r}, F(p, u) = Kt (ω)u and F(p′, u) = Kt (ω

′)u. We obtain

‖x̄(g, ω) − x̄(g, ω′)‖ ≤ t

1 − κ(t)
Crρ(ω, ω′)

where x̄(g, ω) = A(ω)−1g and r = t
1−κ(t)‖g‖�. This completes the proof. �

We now have enough results to prove that F constitutes a P-uniformity class, which
is a direct consequence of the following theorem.

Theorem 5 In addition to the hypotheses of Lemma 2, assume g ∈ L∞(Ω,F ,P; H)

and there exists C̄ > 0 such that

|g(x, ω) − g(x, ω′)| ≤ C̄ρ(ω, ω′) (∀ω,ω′ ∈ Ω, a. e. in D).

Then F is uniformly bounded and equi-Lipschitz continuous with respect to ρ on Ω .

Proof For any z ∈ Zad and ω′ ∈ Ω let F(z, ω) = A(ω)−1(z + g(ω)) − ũd . Our
assumptions imply that F(·, ·) is P-a.s. uniformly bounded in H by some constant Ĉ
(see the proof of Lemma 1). Furthermore, we obtain for any z ∈ Zad and ω,ω′ ∈ Ω:

| f (z, ω) − f (z, ω′)| = 1

2
(‖F(z, ω)‖H + ‖F(z, ω′)‖H )|‖F(z, ω)‖H − ‖F(z, ω′)‖H |

≤Ĉ‖F(z, ω) − F(z, ω′)‖H
≤Ĉ(‖(A(ω)−1 − A(ω′)−1)z‖V + ‖A(ω)−1g(ω) − A(ω′)−1g(ω′)‖V ),

where we used the uniform boundedness and the Poincaré-Friedrichs’ inequality. For
the first term on the right-hand side we argue as in Lemma 2. The second term is
estimated by
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‖A(ω)−1g(ω) − A(ω′)−1g(ω′)‖V ≤ ‖(A(ω)−1 − A(ω′)−1)g(ω)‖V
+‖A(ω′)−1(g(ω) − g(ω′))‖V .

Now, we use again Lemma 2 for the first term and both Lemma 1 and the assumption
on g for the second. Combining these observations, we obtain the assertion. �

Theorem 5 establishes the P-uniformity of F under relatively mild assumptions. In
particular, we do not require the terms bi j and g to be smooth in any way with respect
to ω. Of course in many interesting applications, see e.g. [4,5], one can demonstrate
much higher regularity of F(z, ω) = A(ω)−1(z + g(ω)) − ũd in ω for each z ∈ Zad
if some smoothness of bi j and g is in fact available. And though the presence of
‖ · ‖2H in f (z, ω) rules out 1-Lipschitz continuity, as required by estimates using
the Wasserstein distances, the quantitative estimates using the Fortet-Mourier metric,
e.g., ζ2, which are incidentally strictly sharper than the Wasserstein estimates, are still
applicable provided the local growth conditions for functions in Fp(Ω) are fulfilled.
On the other hand, as a general point of critique, the minimal information metric along
with Theorems 4 and 5 preclude the need to enlarge the set of integrands F in order
make use of the rougher estimates given by the Fortet-Mourier estimates.

This brings us to our second goal of this section. In order to solve optimization
problems of the type

min EP[ f (z)] + α

2
‖z‖2H over z ∈ Zad (18)

with f ∈ F numerically, not only P but the decision variables z and the under-
lying partial differential equation must be approximated. In order words, using a
finite-sample-based approximation PN of P and a finite-element discretization for
the deterministic quantities in H and V , we would typically consider the finite-
dimensional problems of the type:

min
1

2

N
∑

i=1

πi

[

‖(Ah
i )

−1(zh) − uhd,i‖2H
]

+ α

2
‖zh‖2H over zh ∈ Zh

ad. (19)

Here, Ah
i is defined from A(ω) by replacing ω with a realization ωi and V by a finite-

dimensional subspaceVh derived by a standardfinite-element approximation. The term
uhd,i = (Ah

i )
−1(ghi − ũd,h) and Zh

ad is an approximate of Zad using a finite-element
approximation of H .

For piecewise constant approximations of the control z, the original ideas date
back to Falk [10], see the recent chapter [2] for a quick reference. For another more
recent, comprehensive treatment see [26] (for a posteriori error estimates) as well as
the monograph [15, Chap. 3] and the many references therein. In many of these works,
as well as in our concrete example in the next section, the set Zad has the concrete
form:

Zad :=
{

z ∈ L2(D)
∣
∣ a(x) ≤ z(x) ≤ a(x) a.e. x ∈ D

}

,
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where a, a are sufficiently regular; often L∞(D). Therefore, for the sake of argument,
we may assume that if D, B, g, a, a, and ũd are sufficiently regular, then there exists
a (random variable) CN ≥ 0 along with a real q ∈ (0, 3/2] such that

‖zh
PN

− zPN ‖H ≤ CNh
q ω ∈ Ω. (20)

Here, the dependence on N results from the fact that the typical estimates, see e.g., [2,
Thm. 10], depend on constants related to the coefficients of the PDE, the right-hand
side g, and ud , which is stochastic. Therefore, in the estimate (20), CN is related to a
realization of a random sample of length N . Using (20), we can apply Theorem 4 and
the triangle inequality to obtain the estimate

‖zP − zh
PN

‖H ≤ 2
√
2α−1/2dF(P,PN )1/2 + CNh

q . (21)

It should also be noted that for piecewise constant approximations of Zh
ad, we can only

expected q = 1. The case for q = 3/2 requires a significant amount of regularity, and
q ∈ (1, 3/2) depends on both the regularity as well as the type of discretization. In
light of Theorem 5, (21) guarantees the convergence of the fully discrete solutions zh

PN
to the original infinite dimensional solution, provided h ↓ 0, and PN → P weakly.

7 Monte Carlo approximation and numerical illustration for
PDE-constrained optimization

In this final section, we provide additional discussions on the behavior of dF(P,PN )

forMonte Carlo approximationsPN ofP in order to give the reader a better impression
of the potential rate of convergence; in particular, for the setting in the previous section.

7.1 Monte Carlo approximation

For the sake of argument, we assume that the integrands f can be written

f (z, ω) = f (z, ξ(ω)) + α

2
‖z‖2H ,

where ξ : Ω → Ξ ⊂ R
d is a random vector. This is often the case for PDE-models

and is used in the example in Sect. 7.2 below.
Let ξ1, ξ2, . . . , ξ N , . . . be independent identically distributed Ξ -valued random

vectors on some probability space (Ω,F , P) having the common probability law P,
i.e., P = P ◦ (ξ1)−1. In this context, we define the empirical measures

PN (·) = 1

N

N
∑

i=1

δξ i (·) (n ∈ N) (22)
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and the empirical or Monte Carlo approximation of the stochastic program (18) with
sample size N , i.e.,

min

{

1

N

N
∑

i=1

f (z, ξ i (·)) : z ∈ Zad

}

. (23)

The optimal value ν(PN (·)) of (23) is a real random variable and the solution
zPN (·) an H -valued random element. It is well known that the sequence {PN (·)} of
empirical measures converges weakly to P P-almost surely (see, e.g., [8, Theorem
11.4.1]). Theorem 5 implies that the class F is a P-uniformity class and, hence, the
sequence dF(PN (·),P) converges to zero P-almost surely. According to Theorem
4, the sequences {v(PN (·))} and {zPN (·)

}

of empirical optimal values and solutions
converge P-almost surely to their true optimal values and solutions v(P) and zP,
respectively.

In order to obtain rates of convergence for the sequences of empirical optimal
values and solutions, we consider their mean or mean square distance and conclude
from Theorem 4 and Corollary 1 the estimates

E [|v(PN ) − v(P)|] ≤ E
[

dF (PN ,P)
] ≤ L E [ζ1 (PN ,P)]

(

E

[

‖z (PN ) − z (P) ‖2H
]) 1

2 ≤ (

E
[

dF (PN ,P)
]) 1

2 ≤
(

L̂ E [ζ1 (PN ,P)]
) 1

2
,

where L is the constant appearing in Corollary 1 and L̂ is given by L̂ = 2L
√

2
α
. Unfor-

tunately, convergence rates of the mean convergence of dF(PN (·),P) are not known,
but for F containing uniformly bounded and equi-Lipschitz continuous functions, the
rate coincides essentially with that of E[ζ1(PN ,P)]. For the latter it follows from [6,
Theorem 1] that the estimate

E [ζ1 (PN ,P)] ≤ κsMs (P) N− 1
d (24)

is valid if d ≥ 3, s > d
d−1 , κs is a constant only depending on s and the sth absolute

moment

Ms(P) =
(∫

Rd
‖ξ‖sdξ

) 1
s

is finite. It is argued in [11] that the rate (24) is sharp if P is the uniform distribution
on the unit cube [−1, 1]d . For the numerical experiments in the next subsection, we
observe better rates than guaranteed by the probability metrics. This is a limitation of
the probability metrics themselves, not their application to the problem at hand.

7.2 Numerical illustration

The previous discussion provides useful upper bounds for the case of the empirical
measurePN . However, these bounds are based on estimates of theWassersteinmetrics,
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not the minimal information metric. Therefore, in order to obtain a better impression
of the possible rate of convergence associated with dF(P,PN ) in practice, we provide
here a concrete numerical example.

Wepropose amodel problem,which is basedon [16,Ex. 6.1, Ex. 6.2]. Letα = 10−3,
D = (0, 1), ũ(x) = sin(50.0 ∗ x/π), and consider the optimal control problem

minimizez∈L2(D)

1

2
EP

[

‖u − ũd‖2H
]

+ α

2
‖z‖2H over z ∈ L2(D) (25)

where z ∈ Zad with

Zad :=
{

w ∈ L2(D) |−0.75 ≤ w(x) ≤ 0.75 a.e. x ∈ D
}

and u = u(z) ∈ L∞(Ω,F ,P; H1(D)) solves the weak form of

−ν(ω)∂xxu(ω, x) = g(ω, x) + z(x) (ω, x) ∈ Ω × D, (26a)

u(ω, 0) = d0(ω), u(ω, 1) = d1(ω) ω ∈ Ω. (26b)

Furthermore, we suppose that

ν(ω) := 10ξ1(ω)−2, g(ω, x) := ξ2(ω)

100

d0(ω) := 1 + ξ3(ω)

1000
d1(ω) := ξ4(ω)

1000
,

with randomvariables ξi : Ω → R, i = 1, 2, 3, 4, such that the supports ξi , i = 1, 2, 3,
are [−1, 1] and the support of ξ4 is [1, 3]. For the sake of illustration, we assume that
each of these random variables is uniformly distributed and after the usual change of
variables, we consider instead

−ν(ξ)∂xxu(ξ, x) = g(ξ, x) + z(x) (ξ, x) ∈ Ξ × D, (27a)

u(ξ, 0) = d0(ξ), u(ξ, 1) = d1(ξ) ξ ∈ Ξ. (27b)

with Ξ = [−1, 1] × [−1, 1] × [−1, 1] × [1, 3], endowed with the associated uniform
density. We define ξ := (ξ1, . . . , ξ4) ∈ Ξ .

Finally, we note that the linearity of the differential equation allows us to use the
superposition principle to separate the unique, z-dependent solution u(z) into the sum
of randomfields as u(z) = S(z)+û, where S(z)maps z from H into the solution space
and û is a fixed random field. With the aim of showing that the necessary continuity
properties used in the previous section are fulfilled, let û : D × Ξ → R denote
a function such that û(·, ξ) belongs to H1(D) and û satisfies the inhomogeneous
random boundary condition in (27b). If we then recast (27) as the random elliptic
PDE with random boundary conditions

A(ξ)u = z + g(ξ), u(x) = b(x, ξ) (x ∈ ∂D, ξ ∈ Ξ) (28)
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Fig. 1 (l) Optimal solution zP of (25) for M = 100, h = 1/(210 − 1). (r) Empirical mean value of u(zP)

out of sample using 1000 iid random realizations of (ξ1, . . . , ξ4)

and determine u ∈ H1
0 (D) such that

A(ξ)u = z + g(ξ) + A(ξ )̂u(ξ) (ξ ∈ Ξ).

Then u + û solves the random boundary value problem (28) of the random elliptic
PDE. Based on the model assumptions, we see that both A and the altered right-hand
side g + Aû satisfy the necessary conditions for our theory.

In order to illustrate the sensitivities for this model problem, we generate a sample
on Ξ of size M and replace P by the corresponding empirical measure PM . To avoid
confusion, we leave off the M subscript in the following discussion. The underly-
ing spaces for the control, state, and adjoint variables are discretized using standard
piecewise linear finite elements on a uniform mesh with parameter h = 1/(28 − 1).

The resulting finite-dimensional deterministic optimization problems are solved
by a semismooth Newton method as proposed in [14,24,25], which in the current
context is mesh-independent. The forward and adjoint equations as well as the linear
equations for the Hessian-vector products are solved directly and the reduced system
for the semismooth Newton step is calculated using conjugate gradients as some of
the associated operators are only implicitly given.

The algorithm terminates once the discrete �2-norm of the residual of the optimality
system reaches a tolerance of 1e-8. On average, the semismooth Newton algorithm
required between three to four iterations with approximately 13 to 15 inner iterations
for the CG solver. The solution zP of this problem is treated as the “true” solution. See
Fig. 1 for the solution zP with M = 100 and its behavior out of sample on the mean
value of the state u. As expected, the control behaves well on average.

We now investigate dF(PN ,P), wherePN is an empirical probabilitymeasure based
on a random sample of size N (1 ≤ N ≤ M) of the M realizations ξ1, . . . , ξM . Since
a direct calculation of dF(PN ,P) for even simple examples can be quite challenging,
we calculate instead v(PN ) and zPN and compute the associated errors

|ν (PN ) − ν (P) | and ‖zPN − zP‖H .

The experiment is repeated for each N = 1, . . . , M 100 times. The plots of these
errors can be see in Fig. 2.
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Fig. 2 Scatter plots of the computed errors (l) |ν(PN ) − ν(P)| (r) ‖zPN − zP‖H for M = 100, N ∈
{1, . . . , 100} repeated 100 times

The choice of setting M = 100 was made for computationally expediency. Though
the semismooth Newton method implemented for this example works exceptionally
well, it still requires hundreds if not thousands of PDE solves for each N . Nevertheless,
due to the relatively small choice of M we cannot use all the data points in Fig. 2 in
order to estimate a rate of convergence. As a compromise, we only use the data points
for N = 1, . . . , 25. This provides us with the estimates

‖zPN − zP‖H = O(N−0.4995) and |ν (PN ) − ν(P)| = O
(

N−0.5591
)

The estimates were generated by solving a linear least-squares regression problem
with ridge (�2) regularization term. Whereas the convergence of the optimal values
would indicate a rate of roughly 1/2, the rate of convergence for the optimal solutions
would be a marked improvement over the theoretical estimates based on probability
metrics. One explanation for this would be that the integrands for this specific model
problem have much better smoothness properties than assumed. We leave a rigorous
analysis of this question for future research.

8 Conclusion

We have shown that a number known results for stability of stochastic programs with
finite-dimensional decision spaces can be carried over to infinite dimensions, provided
certain convexity conditions are satisfied.As perhaps expected the best possible growth
rates for the convergence of solutions using probability metrics are of Hölder-type.
Our analysis gives rise to a number of possible future directions and open questions.
For example, we consider a setting that is primarily related to risk-neutral problems,
whereas problems using typically non-smooth risk measures in the objective are of
significant interest for robust engineering design. In addition, the assumptions on the
objective and linear operator Σ are essential for the qualitative stability analysis as
the infinite-dimensional setting often requires us to make use of the weak topology.
Without such regularity properties, it is unclear how to proceed in general. Finally, in
order to develop adaptive numerical optimization methods based on estimates of the
type (21), we need to more closely investigate the convergence of dF(PN ,P) for the

123



2754 M. Hoffhues et al.

class of functionsF used in Sect. 6. and specific approximationsPN . Section 7 provides
some deeper insight into this question, however the picture is far from complete.
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A Results from fixed point theory

The following is a result can be found in the monograph [12].
We provide a translation here along with a short proof for the reader’s convenience

Proposition 2 (Lemma 3.1 in [12]) Let V be a Hilbert space with inner product (·, ·),
dual V � and dual pairing 〈·, ·〉, b ∈ V �, A : V → V � a strongly monotone (with
constant γ > 0) and Lipschitz continuous (with modulus L > 0) operator, and
J : V → V � the duality mapping, i.e., 〈Ju, v〉 = (u, v), ∀u, v ∈ V .

Then the mapping Kt : V → V given by

Kt x = x − t J−1(Ax − b)

is a contraction with constant 0 < κ(t) < 1, where

κ(t) =
√

1 − 2γ t + L2t2

and t ∈ (0, 2γ
L2 ). Moreover, the unique fixed point of Kt is the unique solution of

Ax = b and belongs to the ball around zero with radius r = (1−κ(t))−1‖Kt0−0‖ =
t(1 − κ(t))−1‖A0 − b‖�.

Remark 2 Note that min κ(t) = L−1
√

L2 − γ 2 and, hence, κ(t) is typically close to
1.

Proof Let x, x ′ ∈ H . Then

‖Kt x − Kt x
′‖2 = ‖x − x ′‖2 − 2t

(

J−1 (Ax − Ax ′) , x − x ′)+ t2‖J−1(Ax − Ax ′)‖2

= ‖x − x ′‖2 − 2t〈Ax − Ax ′, x − x ′〉 + t2‖Ax − Ax ′‖2�
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≤
(

1 − 2tγ + t2L2
)

‖x − x ′‖2 = κ2(t)‖x − x ′‖2.

Clearly, 0 < κ(t) < 1 iff t ∈ (0, 2γ
L2 ). Furthermore, the unique solution x̄(b) of

Ax = b satisfies

‖x̄(b)‖ = ‖Kt x̄(b)‖ ≤ ‖Kt x̄(b) − Kt0‖ + ‖Kt0 − 0‖ ≤ κ(t)‖x̄(b)‖ + ‖Kt0 − 0‖,

from which immediately obtain the estimate

‖x̄(b)‖ ≤ ‖Kt0 − 0‖
1 − κ(t)

= t

1 − κ(t)
‖A0 − b‖�.

This finishes the proof. �
The following result can be found, e.g., in [7].

Proposition 3 (Theorem 1A.4 in [7]) Let P be a metric space with metric ρ and X
a complete metric space with metric d. Let F : P × X → X and assume that there
exist α ∈ (0, 1) and λ > 0 such that

d
(

F(p, x), F(p, x ′)
) ≤ αd(x, x ′)

(∀x, x ′ ∈ X , p ∈ P
)

d
(

F(p, x), F(p′, x)
) ≤ λρ(p, p′)

(∀p, p′ ∈ P, x ∈ X
)

.

Then, for each p ∈ P, there exists a unique fixed point x(p) of F(p, ·) in X and we
have the estimate

d(x(p), x(p′)) ≤ λ

1 − α
ρ(p, p′)

(∀p, p′ ∈ P
)

.
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