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Introduction

Many stochastic programming models may be traced back to minimizing an

expectation functional on some closed subset of a Euclidean space or, eventually

in addition, relative to some expectation constraint. Their general form is

(SP) min
{∫

Ξ

f0(x, ξ)P (dξ) : x ∈ X,
∫

Ξ

f1(x, ξ)P (dξ) ≤ 0
}

where X is a closed subset of Rm, Ξ a closed subset of Rs, P is a Borel probability

measure on Ξ abbreviated by P ∈ P(Ξ). The functions f0 and f1 from Rm× Ξ

to the extended reals R = [−∞,∞] are normal integrands.
For example, typical integrands in linear two-stage stochastic programming models are

f0(x, ξ) =

{
g(x) + Φ(q(ξ), h(x, ξ)) , q(ξ) ∈ D

+∞ , else
and f1(x, ξ) ≡ 0,

where X and Ξ are convex polyhedral, g(·) is a linear function, q(·) is affine, D = {q ∈ Rm̄ :
{z ∈ Rr : W>z − q ∈ Y ?} 6= ∅} denotes the convex polyhedral dual feasibility set, h(·, ξ) is
affine for fixed ξ and h(x, ·) is affine for fixed x, and Φ denotes the infimal function of the
linear (second-stage) optimization problem

Φ(q, t) := inf{〈q, y〉 : Wy = t, y ∈ Y }

with (r, m̄) matrix W and convex polyhedral cone Y ⊂ Rm̄.



Typical integrands f1 appearing in chance constrained programming are of the form

f1(x, ξ) = p− 1lP(x)(ξ),

where 1lP(x) is the characteristic function of the polyhedron P(x) = {ξ ∈ Ξ : h(x, ξ) ≤ 0}
depending on x.

For general continuous multivariate probability distributions P such stochastic

optimization models are not solvable in general.

Many approaches for solving such optimization models computationally are based

on discrete approximations of the probability measure P , i.e., on finding a discrete

probability measure Pn in

Pn(Ξ) :=
{ n∑

i=1

piδξi : ξi ∈ Ξ, pi ≥ 0, i = 1, . . . , n,
n∑
i=1

pi = 1
}

for some n ∈ N, which approximates P in a suitable way.

The atoms ξi, i = 1, . . . , n, of Pn are often called scenarios in this context. Of

course, the notion suitable should at least include that the distance of infima

|v(P )− v(Pn)|

becomes resonably small.



Stability-based scenario generation

Let v(P ) and S(P ) denote the infimum and solution set of (SP). We are inter-

ested in their dependence on the underlying probability distribution P .

To state a stability result we introduce the following sets of functions and of

probability distributions (both defined on Ξ)

F = {fj(x, · ) : j = 0, 1, x ∈ X} ,

PF =
{
Q ∈ P(Ξ) : −∞ <

∫
Ξ

inf
x∈X

fj(x, ξ)Q(dξ), sup
x∈X

∫
Ξ

fj(x, ξ)Q(dξ) < +∞,∀j
}

and the (pseudo-) distance on PF

dF(P,Q) = sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣ (P,Q ∈ PF).

At first sight the set PF seems to have a complicated structure. For typical

applications, however, like for linear two-stage and chance constrained models,

the sets PF or appropriate subsets allow a simple characterization, for example,

as subsets of P(Ξ) satisfying certain moment conditions.



Proposition: We consider (SP) for P ∈ PF , assume that X is compact and

(i) the function x→
∫

Ξ f0(x, ξ)P (dξ) is Lipschitz continuous on X ,

(ii) the set-valued mapping y ⇒
{
x ∈ X :

∫
Ξ f1(x, ξ)P (dξ) ≤ y

}
satisfies the

Aubin property at (0, x̄) for each x̄ ∈ S(P ).

Then there exist constants L > 0 and δ > 0 such that the estimates

|v(P )− v(Q)| ≤ LdF(P,Q)

sup
x∈S(Q)

d(x, S(P )) ≤ ΨP (LdF(P,Q))

hold whenever Q ∈ PF and dF(P,Q) < δ. The real-valued function ΨP is

given by ΨP (r) = r+ψ−1
P (2r) for all r ∈ R+, where ψP is the growth function

ψP (τ ) = inf
x∈X

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X,∫
Ξ

f1(x, ξ)P (dξ) ≤ 0
}
.

Note that in case f1 ≡ 0 the estimates hold for L = 1 and any δ > 0 and that

ΨP is lower semicontinuous and increasing on R+ with ΨP (0) = 0.



The stability result suggests to choose discrete approximations from Pn(Ξ) for

solving (SP) such that they solve the best approximation problem

(OSG) min
Pn∈Pn(Ξ)

dF(P, Pn) .

Determining the scenarios of some solution to (OSG) may be called optimal

scenario generation. This choice of discrete approximations was already suggested

in (Römisch 03), but also characterized there as challenging task which is not solvable

in most cases in reasonable time.

It was suggested in (Rachev-Römisch 02) to eventually enlarge the function class F
such that dF becomes a metric distance and has further nice properties. Follow-

ing this suggestion, however, may lead to nonconvex nondifferentiable minimiza-

tion problems (OSG) for determining the optimal scenarios and to unfavorable

convergence rates of the sequence(
min

Pn∈Pn(Ξ)
dF(P, Pn)

)
n∈N

.

A typical example is the choice of F as the unit ball in the Banach space of

Lipschitz functions on Ξ equipped with the Lipschitz norm ‖ · ‖L which refers to

the smallest Lipschitz modulus.



Monte Carlo, Quasi-Monte Carlo and optimal quantization

Monte Carlo: Let ξi(·), i ∈ N, denote independent and identically distributed

random vectors with common distribution P and Pn be the empirical measure

Pn(·) =
1

n

n∑
i=1

δξi(·) (n ∈ N)

defined on some probability space (Ω,A,P). The law of large numbers implies

that the sequence (Pn(·))n∈N converges P-almost surely weakly to P .

To study the convergence rate one considers the empirical process

{βn(Pn(·)− P )f}f∈F (n ∈ N)

indexed by a function class F with sequence (βn), where Qf =
∫

Ξ f (ξ)Q(dξ) for

any Borel probability measure Q on Ξ. The latter is called bounded in probability

with tail function τF if for all ε > 0 and n ∈ N the estimate

P({βndF(Pn(·), P ) ≥ ε}) ≤ τF(ε)

holds. Whether the empirical process is bounded in probability, depends on the

size of the class F measured in terms of covering numbers in L2(Ξ, P ). Typically,

on has an exponential tail τF(ε) = C(ε) exp (−ε2) and βn =
√
n.



Quasi-Monte Carlo: The basic idea of Quasi-Monte Carlo (QMC) methods is

to use deterministic points that are (in some way) uniformly distributed in [0, 1]d

and to consider first the approximate computation of

Id(f ) =

∫
[0,1]s

f (ξ)dξ

by a QMC algorithm with (non-random) points ξi, i = 1, . . . , n, from [0, 1]s:

Qn,d(f ) =
1

n

n∑
i=1

f (ξi)

The uniform distribution property of point sets may be defined in terms of the

so-called Lp-discrepancy of ξ1, . . . , ξn for 1 ≤ p ≤ ∞

dp,n(ξ1, . . . , ξn) =
(∫

[0,1]s
|disc(ξ)|pdξ

)1
p
, disc(ξ) :=

d∏
j=1

ξj −
1

n

n∑
i=1

1l[0,ξ)(ξ
i) .

A sequence (ξi)i∈N is called uniformly distributed in [0, 1]s if

dp,n(ξ1, . . . , ξn)→ 0 for n→∞
There exist sequences (ξi) in [0, 1]s such that for all δ ∈ (0, 1

2]

d∞,n(ξ1, . . . , ξn) = O(n−1(log n)s) or d∞,n(ξ1, . . . , ξn) ≤ C(d, δ)n−1+δ .



Optimal quantization: Determine the best approximation to P from Pn(Ξ)

with respect to the Lp-Wasserstein or Lp-minimal metric `p, 1 ≤ p <∞,

`p(P,Q) = inf
{(∫

Ξ×Ξ

‖ξ − ξ̃‖pη(dξ, dξ̃)
)1

p
: ηπ−1

1 = P, ηπ−1
2 = Q

}
.

Due to the Kantorovich-Rubinstein duality theorem it holds

min
Pn∈Pn(Ξ)

`p(P, Pn) ↔ min
ξ∈Ξn

ϕp,n(ξ1, . . . , ξn) =

∫
Ξ

min
i=1,...,n

‖ξ − ξi‖pP (dξ),

where ξi, i = 1, . . . , n, are the scenarios and ‖ · ‖ is a norm in Rs.

It is known (Graf-Luschgy 2000) that ϕp,n is continuous on Ξn and has one-sided

directional derivatives into all directions for all n ∈ N and any norm. Moreover,

it is nonconvex in general for n ≥ 2, but minima exist in Ξn for all n ∈ N.

Furthermore, due to a classical result by (Dudley 69), the estimate

c n−
1
s ≤ `1(P, Pn) ≤ `p(P, Pn)

holds for each Pn ∈ Pn(Ξ), sufficiently large n and some constant c > 0 if P has

a density on Ξ. The convergence rate O(n−
1
s ) is clearly worse than the Monte

Carlo rate O(n−
1
2) if s > 2.



Optimal scenario generation for linear two-stage models

We consider linear two-stage stochastic programs as introduced earlier and impose

the following conditions:

(A0) X is a bounded polyhedron and Ξ is convex polyhedral.

(A1) h(x, ξ) ∈ W (Y ) and q(ξ) ∈ D are satisfied for every pair (x, ξ) ∈ X×Ξ,

(A2) P has a second order absolute moment.

Then the infima v(P ) and v(Pn) are attained and the estimate

|v(P )− v(Pn)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)P (dξ)−
∫

Ξ

f0(x, ξ)Pn(dξ)

∣∣∣∣
= sup

x∈X

∣∣∣∣∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ)−
∫

Ξ

Φ(q(ξ), h(x, ξ))Pn(dξ)

∣∣∣∣
holds due to the stability result for every Pn ∈ Pn(Ξ).

Hence, an appropriate formulation of the optimal scenario generation problem

(OSG) in this case is: Determine P ∗n ∈ Pn(Ξ) such that it solves the best

uniform approximation problem

min
(ξ1,...,ξn)∈Ξn

sup
x∈X

∣∣∣∣∣
∫

Ξ

Φ(q(ξ), h(x, ξ))P (dξ)− 1

n

n∑
i=1

Φ(q(ξi), h(x, ξi))

∣∣∣∣∣.



The class of functions {Φ(q(·), h(x, ·)) : x ∈ X} from Ξ to R enjoys specific

properties. All functions are finite, continuous and piecewise linear-quadratic on

Ξ. They are linear-quadratic on each convex polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(x, ξ)) ∈ Kj} (j = 1, . . . , `),

where the convex polyhedral cones Kj, j = 1, . . . , `, represent a decomposition

of the domain of Φ, which is itself a convex polyhedral cone in Rm̄+r.

Theorem: Assume (A0)–(A2). Then (OSG) is equivalent to the generalized

semi-infinite program

min
t≥0,(ξ1,...,ξn)∈Ξn

t
∣∣∣∣∣∣

1
n

∑n
i=1〈h(x, ξi), zi〉 ≤ t + FP (x)

FP (x) ≤ t + 1
n

∑n
i=1〈q(ξi), yi〉

∀(x, y, z) ∈M(ξ1, . . . , ξn)

,
where the set M =M(ξ1, . . . , ξn) and the function FP : X → R are given by

M = {(x, y, z) ∈ X × Y n × Rrn : Wyi = h(x, ξi),W>zi − q(ξi) ∈ Y ∗,∀i},

FP (x) :=

∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ).

The latter is the convex expected recourse function of the two-stage model.



Generalized semi-infinite programming

Generalized semi-infinite optimization problems are of the form

min{f (x) : x ∈M} with M = {x ∈ Rn : gi(x, y) ≤ 0, y ∈ Y (x), i ∈ I},

where

Y (x) = {y ∈ Rm : hj(x, y) ≤ 0, j ∈ J}
and all functions f , gi, i ∈ I , hj, j ∈ J , are real-valued and continuous and I

and J are finite index sets.

Moreover, the set-valued mapping Y : Rn ⇒ Rm is assumed to be locally

bounded. The latter implies that Y : Rn ⇒ Rm is upper semicontinuous.

Proposition: (Stein 03)

Let Gi = {(x, y) ∈ Rn × Rm : gi(x, y) ≤ 0} and

Y = {(x, y) ∈ Rn × Rm : hj(x, y) ≤ 0, j ∈ J}.
Then M =

⋂
i∈I [prx(Y∩Gci )]c, where Ac denotes the set complement of a set A.

Remark: If gi, i ∈ I , and hj, j ∈ J , are affine in (x, y), Y is a polyhedron and

Gci are open halfspaces. Hence, M may not be closed even in this case.



Proposition: (Stein 03)

M is closed if, in addition, the set-valued mapping Y is lower semicontinuous.

Proposition: (Still 01)

Assume that gi, i ∈ I , are convex in (x, y) on Rn+m and that for all x, x̃ in Rn

and 0 < α < 1 holds that

Y (αx + (1− α)x̃) ⊆ αY (x) + (1− α)Y (x̃).

Then the feasible set M is convex.

Reformulations:
(i) If Y (x) 6= ∅ for all x ∈ Rn, the generalized semi-infinite program is equivalent

to the bilevel optimization problem

min{f (x) : x ∈ Rn, gi(x, y) ≤ 0, i ∈ I, y ∈ arg min{F (x, y) : y ∈ Y (x)}}

by setting

F (x, y) = max
i∈I

gi(x, y) .

Observe that F (x, y) ≤ 0 is equivalent with g(x, y) ≤ 0.



(ii) MPEC reformulation: (Stein 03)

min
x∈X
{f (x) : gi(x, y

i) ≤ 0,∇yLi(x, y
i, λi) = 0, 0 ≤ −h(x, yi) ⊥ λi ≥ 0, i ∈ I},

where Li is the Lagrangian of the ith lower level problem

(Qi(x)) max{gi(x, y) : y ∈ Y (x)},

i.e., Li(x, y
i, λi) = gi(x, y

i) + 〈λi, h(x, yi)〉, i ∈ I , and the lower level problems

are convex for all x ∈ Rn and i ∈ I . However, the MPEC is degenerate since

the Mangasarian-Fromovitz constraint qualification is violated everywhere in the

feasible set.

(iii) Lifted lower level Wolfe duality reformulation:

min
x∈X
{f (x) : Li(x, y

i, λi) ≤ 0,∇yLi(x, y
i, λi) = 0, λi ≥ 0, i ∈ I},

which is a non-degenerate reformulation under the same assumptions as above.

(Diehl-Houska-Stein-Steuermann 13)



Convexity of optimal scenario generation for two-stage models

Theorem:
Let the function h be affine and assume (A0)–(A2).

Then the set-valued mappingM : Ξn ⇒ Rm×Rm̄n×Rrn has convex polyhedral

graph and is Hausdorff Lipschitz continuous on Ξn.

The feasible set M is closed and convex.

M is locally bounded if, in addition, kerW = {0} and the dual feasible set

{z ∈ Rr : W>z − q(ξ) ∈ Y ?} is bounded for each ξ ∈ Ξ.

We note that FP (x) can only be calculated approximately even if the probability

measure P is completely known. For example, this could be done by Monte Carlo

or Quasi-Monte Carlo methods with a large sample size N > n. Let

FP (x) ≈ 1

N

N∑
j=1

Φ(q(ξ̂j), h(x, ξ̂j))

be such an approximate representation of FP (x) based on a sample ξ̂j, j =

1, . . . , N . Hence, in a sense (OSG) may be characterized as scenario clustering

problem.



Solution approach to optimal scenario generation

Polyhedrality and Hausdorff Lipschitz contimuity of Y offer the applicability of a

discretization method, i.e., of determining a set

Mk(ξ
1, . . . , ξn) = {(xj, yj(ξ1, . . . , ξn), zj(ξ1, . . . , ξn)) : j ∈ Jk}

of vertices ofM(ξ1, . . . , ξn), by exchanging and augmenting vertices for increas-

ing k and by determining solutions (ξk,1, . . . , ξk,n) of

min
t≥0,(ξ1,...,ξn)∈Ξn

t
∣∣∣∣∣∣

1
n

∑n
i=1〈h(x, ξi), zi〉 ≤ t + FP (x)

FP (x) ≤ t + 1
n

∑n
i=1〈q(ξi), yi〉

∀(x, y, z) ∈Mk(ξ
1, . . . , ξn)

,
which represents a linear program.

Theorem: (Proof based on (Still 01))

Assume (A0)–(A2), let h be affine, Ξ be compact and M be locally bounded.

Assume that

lim
k→∞

d(Mk(ξ
1, . . . , ξn),M(ξ1, . . . , ξn)) = 0 uniformly on Ξn .

Then the sequence ((ξk,1, . . . , ξk,n))k∈N has an accumulation point in Ξn and

each such point solves (OSG).



Example: The newsboy problem

A newsboy must place a daily order for a number x of copies of a newspaper.

He has to pay r dollars for each copy and sells a copy at c dollars, where

0 < r < c. The daily demand ξ is a real random variable with (discrete)

probability distribution P ∈ P(N), Ξ = R, and the remaining copies y(ξ) =

max{0, x − ξ} have to be removed. The newsboy might wish that decision x

maximizes his expected profit or, equivalently, minimizes his expected costs, i.e.,

f0(x, ξ) = (r − c)x + cmax{0, x− ξ} ((x, ξ) ∈ R× R).

The model may be reformulated as a linear two-stage stochastic program with

the optimal value function Φ(t) = max{0,−t}. Starting from

Φ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0} = sup{〈t, z〉 : W>z ≤ q}
with W = (w11, w12) and q = (q1, q2)>, we choose W = (−1, 1), q = (0, c),

h(x, ξ) = ξ − x, obtain {z ∈ R : −z ≤ 0, z ≤ c} = [0, c], and∫
R
f0(x, ξ)dP (ξ) = rx− cx

∑
k∈N
k≥x

πk −
∑
k∈N
k<x

πkk ,

where πk is the probability of demand k ∈ N. The unique (integer) solution is

the minimal k ∈ N such that
∑∞

i=k πi ≥ r
c .



The corresponding optimal scenario generation problem (OSG) is of the form

min
t≥0,(ξ1,...,ξn)∈Rn

t
∣∣∣∣∣∣∣∣∣

1
n

∑n
i=1(ξi − x)zi ≤ t + FP (x)

FP (x) ≤ t + c
n

∑n
i=1 y2i

∀(x, y, z) ∈ R+ × R2n
+ × Rn :

y2i − y1i = ξi − x, 0 ≤ zi ≤ c, i = 1, . . . , n

,
where

FP (x) =

∞∑
k=1

πk c max{0, x− k} .

If ξi − x ≥ 0 one has y2i = ξi − x, y1i = 0, else in case ξi − x ≤ 0, one has

y2i = 0, y1i = −(ξi − x). Hence, (OSG) is equivalent with

min
t≥0,(ξ1,...,ξn)∈Rn

t
∣∣∣∣∣∣
c
n

∑n
i=1 max{0, x− ξi} ≤ t + FP (x)

FP (x) ≤ t + c
n

∑n
i=1 max{0, x− ξi}

∀x ∈ R+

.
and

min
(ξ1,...,ξn)∈Rn

sup
x∈R+

∣∣∣FP (x)− c

n

n∑
i=1

max{0, x− ξi}
∣∣∣ .



Conclusions

• Quantitative stability results motivate the best uniform approximation of the

underlying probability distribution with respect to discrete measures from

Pn(Ξ) and the minimal function class F .

• Optimal scenario generation for two-stage models are reformulated as a con-

vex generalized semi-infinite optimization model.

• Discretization and exchange methods seem to be favorable for such optimal

scenario generation problems. They require the solution of a number of linear

programs.

• The elaboration of an exchange method, numerical tests and comparisons

with randomized QMC are planned as next step.
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