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Introduction
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e Standard approach for solving stochastic programs are variants

of Monte Carlo (MC) for generating scenarios (i.e., samples). Tice Page_|

e Recent alternative approaches to scenario generation: |

(a) Optimal quantization of probability distributions

(Pflug-Pichler 2010). I
(b) Quasi-Monte Carlo (QMC) methods rp—

(Koivu-Pennanen 05, Homem-de-Mello 08).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08). Page 2020 |
(d) Moment matching methods (Hgyland-Wallace 01, Kaut-Wallace 07,
L Go Back I
Giilpinar-Rustem-Settergren 04)
e MC and (a) may be justified by available stability results, but Ful Screen

there is almost no reasonable justification for (b), (c) and (d).

e Known convergence rates: MC O(n_%), (a) O(n_%)
(b) O(n~t(logn)?), recently: O(n='%) (5 small)

(d dimension of random vector, n number of scenarios).
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Two-stage linear stochastic programs

Two-stage stochastic programs are of the form

min {<c, z) + /R D(h(E) — T(§)a)P(de) : w € X},

where X is convex polyhedral in R™, ¢ € R™, h({) € R" and
the (r,m)-matrix T'(&) are affine functions of &, ¢ € R™, W a
(r,m)-matrix, P a probability distribution on R?, and

d(t) = inf{(q,y) : y € R", Wy =t,y > 0}.
Then dom ¢ = W (RR?) is a polyhedral cone and it holds

d(t) = max, t'v)  (t € dom®),
j=1,...,

where v/, j =1,...,/, are the vertices of D = {z: W'z < ¢}.

Hence, the integrand is the convex piecewise linear function

£(6) = £u(6) = Tz + max (h(€) — T(E)) v (z € X)

.....

if h(§) —T(§)x € W(RT) for every £ € = = supp P.
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Quasi-Monte Carlo methods

We consider the approximate computation of

Lo(f) = f(E)d§ or Iy(f) = Rdf(ﬁ)p(f)df

[0,1)4
by a QMC algorithm

Qualf) = 3 F(E) o Qualf) =+ D J(ED(E)

with (non-random) points &, i = 1,...,n, from [0, 1]% or R
We assume that f belongs to a linear normed space IF; with norm
| - |[|¢ and unit ball B,;. Worst-case error of Q,, 4 over By:
e(Qna) = sup [La(f) — Qn.alf)|
feBy
Example: Fj is a weighted tensor product Sobolev space
®§l:1 W3([0,1]), a particular kernel reproducing Hilbert space.

Problem: |Integrands in stochastic programming are not in Fj
(even not of bounded variation (Owen 05)).
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ANOVA decomposition of multivariate functions
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Idea: Decompositions of f may be used, where most of the terms
are smooth, but hopefully only some of them relevant. Tice Page_|

Let D = {1,...,d} and f € L1 ,(R?) with p(&) = [, pj(§), = |

where d I 5
Felu®) [ ireraie <o pzy.

Let the projection Py, k € D, be defined by

00 Page 5 of 20 I
(PO = [ fEr G5, Cels)ds (€ €RY,
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Clearly, P f is constant with respect to &;.. For u C D we write

rf=(T1R) ), s |
keu —

where the product means composition, and note that the ordering
within the product is not important because of Fubini’'s theorem. que |
The function P, f is constant with respect to all zj, k € w.



ANOVA-decomposition of f:
f= Z fus
where fy = I;(f) = Pp(f) and recursively
f) o Z fv
vCu

or (due tO Kuo-Sloan-Wasilkowski-Wozniakowski 10)
o= D (SR = 2 F) D (= )

vCu vCU

where P_,, and P,_, mean integration with respect to §;, j € D\ u
and j € u \ v, respectively. The second representation motivates
that f, is essentially as smooth as P_,(f).

If f belongs to Ly ,(R?), the ANOVA functions {f,}.cp are or-
thogonal in Ly ,(R?).
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We set 0(f) = ||f — Lu(f)[|3, and 02(f) = || fu]|3,. and have
o*(f) = £I7, = Ta(f)*= ) ouf).

0#uCD
Sobol’s global sensitivity indices of f w.r.t. §;, j € w:

Si=—— 3" o)

Uz(f)vﬂu#@

Owen's (superposition or truncation) dimension distribution of f:

Probability measure vg (vr) defined on the power set of D

N A .
%@»_gza%ﬂ (T<>ngigsﬁﬁg (s € D).

Mean superposition dimension of f:

2 d
ds= ) |“’ZZ‘EQ—25{2}-

0#£uCD

Efficient superposition (truncation) dimension dr(e) of f is the
(1 — e)-quantile of vs (v7).



ANOVA decomposition of two-stage integrands

Assumption:

(A1) h(§) — Tz € W(RT) forall z € X and £ € == supp P
(relatively complete recourse).

(A2) D +# 0 (dual feasibility).

(A3) [y IE| P(dE) < oo

(A4) P has a density of the form p(§) = H;l:l p;(&) (€ € RY)
with continuous density p;, 7 =1,...,d.

The integrand f = f, is convex piecewise linear, i.e.,

f&) = fu(§) = s a;(x) "€ + a;(x),

.....

where a;(z) € R? and a;(x) are affine functions of z. It holds that

fz(&) = aj(:c)TS +aj(x), VYEeK; (j=1,...,0),

where K; = K;(z) = {£€ € R : h(¢) — T(¢)x € K;} is convex

polyhedral and K; the normal cone to D at the vertex v/ (j

1,...,€). The intersection K; N K, of two adjacent polyhedral

sets is contained in a (d — 1)-dimensional affine subspace of R?.
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To compute projections Py.(f)fork € D. Let& e R,i=1,...,d,
i # k, be given. We set &% = (£1,..., &1, &pr1, - - -, &) and

55 — (617 0100 7£k5—17svfk—|-17 S 7€d> S Rd-

Assuming (A1)—(A4) it is possible to derive an explicit representa-
tion of P.(f) depending on £* and on the finitely many points at
which the one-dimensional affine subspace {&, : s € R} meets the
intersections of two adjacent polyhedral sets ;. This leads to

Proposition:

Let k € D, x € X. Assume (Al)—(A4) and that vectors a; belong-
ing to adjacent polyhedral sets K; have different kth components.
Then the kth projection P f is twice continuously differentiable.
Py f is infinitely differentiable if the density py is in C*°(R).

Proof:

M(gk): P —wywir

k. . o ) ) . . .
T i1 — e pi(si(€7)), where w; = aj, — aj,,, and s; is an affine function.
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Theorem:

Let x € X, assume (A1l)—(A4) and that the following geometric
condition (GC) be satisfied: All (d—1)-dimensional affine subspaces
containing (d — 1)-dimensional intersections of adjacent polyhedral
sets /{; are not parallel to any coordinate axis. Then the ANOVA
approximation

faor =) fu with f=fi1+fp

uCD

of f is infinitely differentiable if all densities pj belong to C;°(R).

Example: Let m = 3, d = 2, P denote the two-dimensional
standard normal distribution, h(§) = &£, ¢ and W be given by

1

11 0
W‘(11—1) 1= é

Then (A1) and (A2) are satisfied and the dual feasible set D is

D={2eR’: —z1+5<1,21+2 <1,—2 <0}
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v? 0 v

Ko Ky

Figure 1: lllustration of D, its vertices v/ and the normal cones KC; to its vertices

1

Hence, the second component of the two adjacent vertices v* and

v? coincides. The function ® is of the form

d(t) = i:1a2><3<vi, t) = max{t;, —t1, t2} = max{|t,|, s}

and the integrand is

f(&) = max{|& — [Tz, & — [T'x]s}
The ANOVA projection P f isin C'*°, but P f is not differentiable.
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Proposition: Let © € X, (Al), (A2) be satisfied, dom ® = R”
and P be a normal distribution with nonsingular covariance matrix
Y. Then the infinite differentiability of the ANOVA approximation
fa_1 of fis a generic property, i.e., it holds in a residual set (count-
able intersection of open dense subsets) in the space of orthogonal
(d, d)-matrices for the spectral decomposition of ..

Question: For which two-stage stochastic programs is || fp||L,,
small, i.e., the efficient truncation dimension is less than d — 1 or
even much less?
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Dimension reduction in case of normal distributions

Let P be the normal distribution with mean p and nonsingular
covariance matrix . Let A be a matrix satisfying ¥ = A A",
Then 7 defined by £ = An + u is standard normal.

A universal principle is principal component analysis (PCA). Here,
one uses A = (\/Au1,...,V/Agug), where Ay > -+ > \; > 0
are the eigenvalues of Y in decreasing order and the corresponding
orthonormal eigenvectors u;, 1 = 1,..., d. Wang-Fang 03, Wang-Sloan 05
report an enormous reduction of the efficient truncation dimension
in financial models if PCA is used.

A problem-dependent principle may be based on the following equiv-
alence principle (Wang-Sloan 11).

Proposition: Let A be a fixed d x d matrix such that A A" = ¥.
Then it holds X = B B" if and only if B is of the form B = AQ

with some orthogonal d x d matrix ().

Idea: Determine () for given A such that the efficient truncation
dimension is minimized (Wang-Sloan 11).
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Some computational experience

We considered a two-stage production planning problem for max-
imizing the expected revenue while satisfying a fixed demand in a
time horizon with d = I" = 100 time periods and stochastic prices
for the second-stage decisions. It is assumed that the probability
distribution of the prices € is log-normal. The model is of the form

e {3 (T

t=1 =
The use of PCA for decomposing the covariance matrix has led to
efficient truncation dimension dp(0.01) = 2. As QMC methods we
used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell)
with n = 27, 27, 211 and a randomly shifted lattice rule (Sioan-Kuo-
Joe) with n = 127,509, 2039, weights v, = ]% and used for MC the
Mersenne-Twister. 10 runs were performed for the error estimates
and 30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n~%?) and O(n"%).

Instead of n = 27 SSobol samples one would need n = 10* MC samples to achieve a similar
accuracy as SSobol.

TQt(QT?JtP(df)) Wy+Ve=hy>0x EX}
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Log,,(ERRORS)
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Conclusions

e Our analysis provides a theoretical basis for applying QMC
accompanied by dimension reduction techniques to stochastic
programs with low efficient dimension.

e The results are extendable and will be extended to more general
two-stage and to multi-stage situations.

e The analysis also applies to sparse grid quadrature techniques.

Thank you !
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Appendix: QMC quadrature error estimates
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The QMC quadrature error allows to derive the following bound (by
using the ANOVA decomposition and Hickernell 98) Title Page |

S)dg — % Zl f(n] Z‘ fu U —_ Z fu Contents I
=
§§:meWww%NM\ S
0<|u|<d > S
+‘ fD dg . Z fD /'7‘7 Page 17 of 20 I

0,1]4
where Disc, ,, is a discrepancy for n points in [0, 1]’“‘ and || fu]] Gopack |
a compatible norm, e.g. the norm in the weighted tensor product

) [O’Hd

Sobolev space and the corresponding weighted Lo-discrepancy _ Fulsereen |
Disc S0t oomh) H’y}/ ., disc? (£")dg", cose |
0,1]u
JEU

dise(e) = T& ~ g € {1,....n} - € 0,69} o

JEU
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