Are Quasi-Monte Carlo methods efficient for two-stage stochastic programs?

H. Heitsch, H. Leövey and W. Römisch

Humboldt-University Berlin Institute of Mathematics

www.math.hu-berlin.de/~romisch

ISMP, TU Berlin, August 19-24, 2012

Introduction

- Standard approach for solving stochastic programs are variants of Monte Carlo (MC) for generating scenarios (i.e., samples).
- Recent alternative approaches to scenario generation:
 - (a) Optimal quantization of probability distributions (Pflug-Pichler 2010).
 - (b) Quasi-Monte Carlo (QMC) methods

(Koivu-Pennanen 05, Homem-de-Mello 08).

- (c) Sparse grid quadrature rules (Chen-Mehrotra 08).
- (d) Moment matching methods (Høyland-Wallace 01, Kaut-Wallace 07, Gülpinar-Rustem-Settergren 04)
- MC and (a) may be justified by available stability results, but there is almost no reasonable justification for (b), (c) and (d).
- Known convergence rates: MC O(n^{-1/2}), (a) O(n^{-1/d})
 (b) O(n⁻¹(log n)^d), recently: O(n^{-1+δ}) (δ small)
 (d dimension of random vector, n number of scenarios).

Home Page
Title Page
Contents
•• ••
Page 2 of 20
Go Back
Full Screen
Close
Quit

Two-stage linear stochastic programs

Two-stage stochastic programs are of the form

$$\min\Big\{\langle c, x\rangle + \int_{\mathbb{R}^d} \Phi(h(\xi) - T(\xi)x) P(d\xi) : x \in X\Big\},\$$

where X is convex polyhedral in \mathbb{R}^m , $c \in \mathbb{R}^m$, $h(\xi) \in \mathbb{R}^r$ and the (r,m)-matrix $T(\xi)$ are affine functions of ξ , $q \in \mathbb{R}^{\bar{m}}$, W a (r,\bar{m}) -matrix, P a probability distribution on \mathbb{R}^d , and

$$\Phi(t) = \inf\{\langle q, y \rangle : y \in \mathbb{R}^{\bar{m}}, Wy = t, y \ge 0\}.$$

Then dom $\Phi = W(\mathbb{R}^{\overline{m}}_+)$ is a polyhedral cone and it holds

$$\Phi(t) = \max_{j=1,\dots,\ell} t^{\top} v^j \quad (t \in \operatorname{dom} \Phi),$$

where v^j , $j = 1, ..., \ell$, are the vertices of $\mathcal{D} = \{z : W^\top z \leq q\}$. Hence, the integrand is the convex piecewise linear function

$$f(\xi) = f_x(\xi) = c^{\top} x + \max_{j=1,\dots,\ell} (h(\xi) - T(\xi)x)^{\top} v^j \quad (x \in X)$$

if $h(\xi) - T(\xi)x \in W(\mathbb{R}^{\bar{m}}_+)$ for every $\xi \in \Xi = \operatorname{supp} P$.

Home Page
Title Page
Contents
•
Page 3 of 20
Go Back
Full Screen
Close
Quit

Quasi-Monte Carlo methods

We consider the approximate computation of

$$I_d(f) = \int_{[0,1]^d} f(\xi) d\xi \quad \text{or} \quad I_d(f) = \int_{\mathbb{R}^d} f(\xi) \rho(\xi) d\xi$$

by a QMC algorithm

$$Q_{n,d}(f) = \frac{1}{n} \sum_{i=1}^{n} f(\xi^{i}) \quad \text{or} \quad Q_{n,d}(f) = \frac{1}{n} \sum_{i=1}^{n} f(\xi^{i}) \rho(\xi^{i})$$

with (non-random) points ξ^i , i = 1, ..., n, from $[0, 1]^d$ or \mathbb{R}^d . We assume that f belongs to a linear normed space \mathbb{F}_d with norm $\|\cdot\|_d$ and unit ball \mathbb{B}_d . Worst-case error of $Q_{n,d}$ over \mathbb{B}_d :

$$e(Q_{n,d}) = \sup_{f \in \mathbb{B}_d} |I_d(f) - Q_{n,d}(f)|$$

Example: F_d is a weighted tensor product Sobolev space $\bigotimes_{i=1}^{d} W_2^1([0,1])$, a particular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in F_d (even not of bounded variation (Owen 05)).

Home Page
Title Page
Contents
•• ••
•
Page 4 of 20
Go Back
Full Screen
Close
Quit

ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth, but hopefully only some of them relevant.

Let $D = \{1, \ldots, d\}$ and $f \in L_{1,\rho}(\mathbb{R}^d)$ with $\rho(\xi) = \prod_{j=1}^d \rho_j(\xi_j)$, where

$$f \in L_{p,\rho}(\mathbb{R}^d)$$
 iff $\int_{\mathbb{R}^d} |f(\xi)|^p \rho(\xi) d\xi < \infty \quad (p \ge 1).$

Let the projection P_k , $k \in D$, be defined by

$$(P_k f)(\xi) := \int_{-\infty}^{\infty} f(\xi_1, \dots, \xi_{k-1}, s, \xi_{k+1}, \dots, \xi_d) \rho_k(s) ds \quad (\xi \in \mathbb{R}^d).$$

Clearly, $P_k f$ is constant with respect to ξ_k . For $u \subseteq D$ we write

$$P_u f = \Big(\prod_{k \in u} P_k\Big)(f),$$

where the product means composition, and note that the ordering within the product is not important because of Fubini's theorem. The function $P_u f$ is constant with respect to all x_k , $k \in u$.

Home Page Title Page Contents Page 5 of 20 Go Back Full Screen Close Quit

ANOVA-decomposition of f:

$$f = \sum_{u \subseteq D} f_u \,,$$

where $f_{\emptyset} = I_d(f) = P_D(f)$ and recursively

$$f_u = P_{-u}(f) - \sum_{v \subseteq u} f_v$$

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

$$f_{u} = \sum_{v \subseteq u} (-1)^{|u| - |v|} P_{-v} f = P_{-u}(f) + \sum_{v \subset u} (-1)^{|u| - |v|} P_{u-v}(P_{-u}(f)),$$

where P_{-u} and P_{u-v} mean integration with respect to ξ_j , $j \in D \setminus u$ and $j \in u \setminus v$, respectively. The second representation motivates that f_u is essentially as smooth as $P_{-u}(f)$.

If f belongs to $L_{2,\rho}(\mathbb{R}^d)$, the ANOVA functions $\{f_u\}_{u \subseteq D}$ are orthogonal in $L_{2,\rho}(\mathbb{R}^d)$.

Home Page
Title Page
Contents
•• ••
•
Page <mark>6</mark> of <mark>20</mark>
Go Back
Full Screen
Close
Quit

We set $\sigma^2(f) = ||f - I_d(f)||_{L_2}^2$ and $\sigma_u^2(f) = ||f_u||_{L_2}^2$, and have $\sigma^2(f) = ||f||_{L_2}^2 - (I_d(f))^2 = \sum_{\emptyset \neq u \subseteq D} \sigma_u^2(f)$.

Sobol's global sensitivity indices of f w.r.t. ξ_j , $j \in u$:

$$\bar{S}_u = \frac{1}{\sigma^2(f)} \sum_{v \cap u \neq \emptyset} \sigma_v^2(f).$$

Owen's (superposition or truncation) dimension distribution of f: Probability measure ν_S (ν_T) defined on the power set of D

$$\nu_{S}(s) := \sum_{|u|=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \qquad \left(\nu_{T}(s) = \sum_{\max\{j: j \in u\}=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}\right) \ (s \in D).$$

Mean superposition dimension of f:

$$\bar{d}_S = \sum_{\emptyset \neq u \subseteq D} |u| \frac{\sigma_u^2(f)}{\sigma^2(f)} = \sum_{i=1}^d \bar{S}_{\{i\}}$$

Efficient superposition (truncation) dimension $d_T(\varepsilon)$ of f is the $(1 - \varepsilon)$ -quantile of ν_S (ν_T).

ANOVA decomposition of two-stage integrands

Assumption:

- (A1) $h(\xi) Tx \in W(\mathbb{R}^{\overline{m}}_{+})$ for all $x \in X$ and $\xi \in \Xi = \operatorname{supp} P$ (relatively complete recourse).
- **(A2)** $\mathcal{D} \neq \emptyset$ (dual feasibility).
- (A3) $\int_{\mathbb{R}^d} \|\xi\| P(d\xi) < \infty.$
- (A4) P has a density of the form $\rho(\xi) = \prod_{j=1}^{d} \rho_j(\xi_j)$ ($\xi \in \mathbb{R}^d$) with continuous density ρ_j , $j = 1, \ldots, d$.

The integrand $f = f_x$ is convex piecewise linear, i.e.,

 $f(\xi) = f_x(\xi) = \max_{j=1,...,\ell} a_j(x)^{\top} \xi + \alpha_j(x),$

where $a_j(x) \in \mathbb{R}^d$ and $\alpha_j(x)$ are affine functions of x. It holds that

 $f_x(\xi) = a_j(x)^\top \xi + \alpha_j(x), \quad \forall \xi \in K_j \quad (j = 1, \dots, \ell),$

where $K_j = K_j(x) = \{\xi \in \mathbb{R}^d : h(\xi) - T(\xi)x \in \mathcal{K}_j\}$ is convex polyhedral and \mathcal{K}_j the normal cone to \mathcal{D} at the vertex v^j $(j = 1, \ldots, \ell)$. The intersection $K_j \cap K_{j'}$ of two adjacent polyhedral sets is contained in a (d-1)-dimensional affine subspace of \mathbb{R}^d .

Home Page
Title Page
Contents
••
Page 8 of 20
Go Back
Full Screen
Close
Quit

To compute projections $P_k(f)$ for $k \in D$. Let $\xi_i \in \mathbb{R}$, $i = 1, \ldots, d$, $i \neq k$, be given. We set $\xi^k = (\xi_1, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_d)$ and

 $\xi_s = (\xi_1, \dots, \xi_{k-1}, s, \xi_{k+1}, \dots, \xi_d) \in \mathbb{R}^d.$

Assuming (A1)–(A4) it is possible to derive an explicit representation of $P_k(f)$ depending on ξ^k and on the finitely many points at which the one-dimensional affine subspace $\{\xi_s : s \in \mathbb{R}\}$ meets the intersections of two adjacent polyhedral sets K_j . This leads to

Proposition:

Let $k \in D$, $x \in X$. Assume (A1)–(A4) and that vectors a_j belonging to adjacent polyhedral sets K_j have different kth components. Then the kth projection $P_k f$ is twice continuously differentiable. $P_k f$ is infinitely differentiable if the density ρ_k is in $C^{\infty}(\mathbb{R})$.

Proof:

$$\frac{\partial^2 P_k f}{\partial \xi_l \partial \xi_r}(\xi^k) = \sum_{i=1}^p \frac{-w_{il} w_{ir}}{w_{ik}} \rho_k(s_i(\xi^k)), \text{ where } w_i = a_{j_i} - a_{j_{i+1}} \text{ and } s_i \text{ is an affine function.}$$

Home Page
Title Page
Contents
Contents
••
Page 9 of 20
Go Back
Full Screen
Close

Theorem:

Let $x \in X$, assume (A1)–(A4) and that the following geometric condition (GC) be satisfied: All (d-1)-dimensional affine subspaces containing (d-1)-dimensional intersections of adjacent polyhedral sets K_i are not parallel to any coordinate axis. Then the ANOVA approximation

$$f_{d-1} := \sum_{u \in D} f_u$$
 with $f = f_{d-1} + f_D$

of f is infinitely differentiable if all densities ρ_k belong to $C_h^{\infty}(\mathbb{R})$.

Example: Let $\bar{m} = 3$, d = 2, P denote the two-dimensional standard normal distribution, $h(\xi) = \xi$, q and W be given by

$$W = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \qquad q = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Then (A1) and (A2) are satisfied and the dual feasible set \mathcal{D} is

 $\mathcal{D} = \{ z \in \mathbb{R}^2 : -z_1 + z_2 \le 1, z_1 + z_2 \le 1, -z_2 \le 0 \},\$

Home Page Title Page Contents 44 Page 10 of 20 Go Back Full Screen Close Quit

Figure 1: Illustration of \mathcal{D} , its vertices v^j and the normal cones \mathcal{K}_j to its vertices

Hence, the second component of the two adjacent vertices v^1 and v^2 coincides. The function Φ is of the form

$$\Phi(t) = \max_{i=1,2,3} \langle v^i, t \rangle = \max\{t_1, -t_1, t_2\} = \max\{|t_1|, t_2\}$$

and the integrand is

$$f(\xi) = \max\{|\xi_1 - [Tx]_1|, \xi_2 - [Tx]_2\}$$

The ANOVA projection $P_1 f$ is in C^{∞} , but $P_2 f$ is not differentiable.

Proposition: Let $x \in X$, (A1), (A2) be satisfied, dom $\Phi = \mathbb{R}^r$ and P be a normal distribution with nonsingular covariance matrix Σ . Then the infinite differentiability of the ANOVA approximation f_{d-1} of f is a generic property, i.e., it holds in a residual set (countable intersection of open dense subsets) in the space of orthogonal (d, d)-matrices for the spectral decomposition of Σ .

Question: For which two-stage stochastic programs is $||f_D||_{L_{2,\rho}}$ small, i.e., the efficient truncation dimension is less than d-1 or even much less?

Home Page Title Page Contents Page 12 of 20 Go Back Full Screen Close Quit

Dimension reduction in case of normal distributions

Let P be the normal distribution with mean μ and nonsingular covariance matrix Σ . Let A be a matrix satisfying $\Sigma = A A^{\top}$. Then η defined by $\xi = A\eta + \mu$ is standard normal.

A universal principle is principal component analysis (PCA). Here, one uses $A = (\sqrt{\lambda_1}u_1, \ldots, \sqrt{\lambda_d}u_d)$, where $\lambda_1 \ge \cdots \ge \lambda_d > 0$ are the eigenvalues of Σ in decreasing order and the corresponding orthonormal eigenvectors u_i , $i = 1, \ldots, d$. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the efficient truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence principle (Wang-Sloan 11).

Proposition: Let A be a fixed $d \times d$ matrix such that $A A^{\top} = \Sigma$. Then it holds $\Sigma = B B^{\top}$ if and only if B is of the form B = A Q with some orthogonal $d \times d$ matrix Q.

Idea: Determine Q for given A such that the efficient truncation dimension is minimized (Wang-Sloan 11).

Home Page
Title Page
Contents
••
Page 13 of 20
Go Back
Full Screen
Close
Quit

Some computational experience

We considered a two-stage production planning problem for maximizing the expected revenue while satisfying a fixed demand in a time horizon with d = T = 100 time periods and stochastic prices for the second-stage decisions. It is assumed that the probability distribution of the prices ξ is log-normal. The model is of the form

$$\max\left\{\sum_{t=1}^{I} \left(c_t^{\top} x_t + \int_{\mathbb{R}^T} q_t(\xi)^{\top} y_t P(d\xi)\right) : Wy + Vx = h, y \ge 0, x \in X\right\}$$

The use of PCA for decomposing the covariance matrix has led to efficient truncation dimension $d_T(0.01) = 2$. As QMC methods we used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell) with $n = 2^7, 2^9, 2^{11}$ and a randomly shifted lattice rule (Sloan-Kuo-Joe) with n = 127, 509, 2039, weights $\gamma_j = \frac{1}{j^2}$ and used for MC the Mersenne-Twister. 10 runs were performed for the error estimates and 30 runs for plotting relative errors.

Average rate of convergence for QMC: $O(n^{-0.9})$ and $O(n^{-0.8})$. Instead of $n = 2^7$ SSobol samples one would need $n = 10^4$ MC samples to achieve a similar accuracy as SSobol.

Close

Conclusions

- Our analysis provides a theoretical basis for applying QMC accompanied by dimension reduction techniques to stochastic programs with low efficient dimension.
- The results are extendable and will be extended to more general two-stage and to multi-stage situations.
- The analysis also applies to sparse grid quadrature techniques.

Thank you !

Appendix: QMC quadrature error estimates

The QMC quadrature error allows to derive the following bound (by using the ANOVA decomposition and Hickernell 98)

$$\begin{split} \left| \int_{[0,1]^d} f(\xi) d\xi - \frac{1}{n} \sum_{j=1}^n f(\eta_j) \right| &\leq \sum_{0 < |u|} \left| \int_{[0,1]^d} f_u(\xi^u) d\xi^u - \frac{1}{n} \sum_{j=1}^n f_u(\eta_j^u) \right| \\ &\leq \sum_{0 < |u| < d} \operatorname{Disc}_{n,u}(\eta_1^u, \dots, \eta_n^u) \|f_u\| \\ &+ \Big| \int_{[0,1]^d} f_D(\xi) d\xi - \frac{1}{n} \sum_{j=1}^n f_D(\eta_j) \Big|, \end{split}$$

where $\operatorname{Disc}_{n,u}$ is a discrepancy for n points in $[0,1]^{|u|}$ and $||f_u||$ a compatible norm, e.g. the norm in the weighted tensor product Sobolev space and the corresponding weighted L_2 -discrepancy

$$\operatorname{Disc}_{n,u}^{2}(\eta_{1}^{u},\ldots,\eta_{n}^{u})=\prod_{j\in u}\gamma_{j}\int_{[0,1]^{|u|}}\operatorname{disc}_{u}^{2}(\xi^{u})d\xi^{u},$$

disc_u(
$$\xi^u$$
) = $\prod_{j \in u} \xi_j - \frac{1}{n} |\{j \in \{1, \dots, n\} : \eta_j^u \in [0, \xi^u)\}|.$

Home Page
Title Page
Contents
•• ••
•
Page 17 of 20
Go Back
Full Screen
Close
Quit

References

M. Chen and S. Mehrotra: Epi-convergent scenario generation method for stochastic problems via sparse grid, *SPEPS* 7-2008.

J. Dick, F. Pillichshammer: *Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration*, Cambridge University Press, 2010.

M. Griebel, F. Y. Kuo and I. H. Sloan: The smoothing effect of integration in \mathbb{R}^d and the ANOVA decomposition, *Mathematics of Computation* (to appear).

F. J. Hickernell: A generalized discrepancy and quadrature error bound, *Mathematics of Computation* 67 (1998), 299-322.

Hee Sun Hong and F. J. Hickernell: Algorithm 823: Implementing scrambled digital sequences, ACM Transactions of Mathematical Software 29 (2003), 95–109.

T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling, *SIAM Journal on Optimization* 19 (2008), 524-551.

J. Imai and K. S. Tan: Minimizing effective dimension using linear transformation, in *Monte Carlo and Quasi-Monte Carlo Methods 2002* (H. Niederreiter Ed.), Springer, Berlin, 2004, 275–292.

F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, *Journal of Complexity* 19 (2003), 301-320.

F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, *Mathematics of Computation* 79 (2010), 953–966.

F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, B. J. Waterhouse: Randomly shifted lattice rules with

Home Page Title Page Contents Page 18 of 20 Go Back Full Screen Close Quit

the optimal rate of convergence for unbounded integrands, *Journal of Complexity* 26 (2010), 135–160.

D. Nuyens and R. Cools: Fast algorithms for component-by-component constructions of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, *Mathematics of Computation* 75 (2006), 903-922.

A. B. Owen: Randomly permuted (t, m, s)-nets and (t, s)-sequences, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics, Vol. 106, Springer, New York, 1995, 299–317.

A. B. Owen: The dimension distribution and quadrature test functions, *Statistica Sinica* 13 (2003), 1–17.

A. B. Owen: Multidimensional variation for Quasi-Monte Carlo, in J. Fan, G. Li (Eds.), International Conference on Statistics, World Scientific Publ., 2005, 49–74.

T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration quadratures, *Numerische Mathematik* 100 (2005), 141–163.

G. Ch. Pflug, A. Pichler: Scenario generation for stochastic optimization problems, in: Stochastic Optimization Methods in Finance and Energy (M.I. Bertocchi, G. Consigli, M.A.H. Dempster eds.), Springer, 2011.

W. Römisch: ANOVA decomposition of convex piecewise linear functions,, Preprint Nr. 979, DFG Research Center Matheon Berlin, 2012 and submitted.

I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for highdimensional integration, *Journal of Complexity* 14 (1998), 1–33.

Home Page Title Page Contents 44 Page 19 of 20 Go Back Full Screen Close

I. H. Sloan, F. Y. Kuo and S. Joe: Constructing randomly shifted lattice rules in weighted Sobolev spaces, *SIAM Journal Numerical Analysis* 40 (2002), 1650–1665.

I. M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Mathematics and Computers in Simulation* 55 (2001), 271–280.

X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, *Journal of Complexity* 19 (2003), 101–124.

X. Wang and I. H. Sloan, Why are high-dimensional finance problems often of low effective dimension. *SIAM Journal Scientific Computing* 27 (2005), 159–183.

X. Wang and I. H. Sloan: Low discrepancy sequences in high dimensions: How well are their projections distributed ? *Journal of Computational and Applied Mathematics* 213 (2008), 366–386.

X. Wang and I. H. Sloan, Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction. *Operations Research* 59 (2011), 80–95.

Home Page
Title Page
Contents
Page 20 of 20
Go Back
Full Screen
Close