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Introduction

• Standard approach for solving stochastic programs are variants

of Monte Carlo (MC) for generating scenarios (i.e., samples).

• Recent alternative approaches to scenario generation:

(a) Optimal quantization of probability distributions

(Pflug-Pichler 2010).

(b) Quasi-Monte Carlo (QMC) methods

(Koivu-Pennanen 05, Homem-de-Mello 08).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08).

(d) Moment matching methods (Høyland-Wallace 01, Kaut-Wallace 07,

Gülpinar-Rustem-Settergren 04)

• MC and (a) may be justified by available stability results, but

there is almost no reasonable justification for (b), (c) and (d).

• Known convergence rates: MC O(n−
1
2), (a) O(n−

1
d)

(b) O(n−1(log n)d), recently: O(n−1+δ) (δ small)

(d dimension of random vector, n number of scenarios).
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Two-stage linear stochastic programs

Two-stage stochastic programs are of the form

min
{
〈c, x〉 +

∫
Rd

Φ(h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where X is convex polyhedral in Rm, c ∈ Rm, h(ξ) ∈ Rr and

the (r,m)-matrix T (ξ) are affine functions of ξ, q ∈ Rm̄, W a

(r, m̄)-matrix, P a probability distribution on Rd, and

Φ(t) = inf{〈q, y〉 : y ∈ Rm̄, Wy = t, y ≥ 0}.

Then dom Φ = W (Rm̄
+) is a polyhedral cone and it holds

Φ(t) = max
j=1,...,`

t>vj (t ∈ dom Φ),

where vj, j = 1, . . . , `, are the vertices of D = {z : W>z ≤ q}.
Hence, the integrand is the convex piecewise linear function

f (ξ) = fx(ξ) = c>x + max
j=1,...,`

(h(ξ)− T (ξ)x)>vj (x ∈ X)

if h(ξ)− T (ξ)x ∈ W (Rm̄
+) for every ξ ∈ Ξ = suppP .
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Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ or Id(f ) =

∫
Rd
f (ξ)ρ(ξ)dξ

by a QMC algorithm

Qn,d(f ) =
1

n

n∑
i=1

f (ξi) or Qn,d(f ) =
1

n

n∑
i=1

f (ξi)ρ(ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d or Rd.

We assume that f belongs to a linear normed space Fd with norm

‖ · ‖d and unit ball Bd. Worst-case error of Qn,d over Bd:

e(Qn,d) = sup
f∈Bd
|Id(f )−Qn,d(f )|

Example: Fd is a weighted tensor product Sobolev space⊗d
i=1W

1
2 ([0, 1]), a particular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in Fd
(even not of bounded variation (Owen 05)).
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ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms

are smooth, but hopefully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd) with ρ(ξ) =
∏d

j=1 ρj(ξj),

where

f ∈ Lp,ρ(Rd) iff

∫
Rd
|f (ξ)|pρ(ξ)dξ <∞ (p ≥ 1).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
(∏
k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering

within the product is not important because of Fubini’s theorem.

The function Puf is constant with respect to all xk, k ∈ u.
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ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊆u

fv

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u
and j ∈ u \ v, respectively. The second representation motivates

that fu is essentially as smooth as P−u(f ).

If f belongs to L2,ρ(Rd), the ANOVA functions {fu}u⊆D are or-

thogonal in L2,ρ(Rd).
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .

Sobol’s global sensitivity indices of f w.r.t. ξj, j ∈ u:

S̄u =
1

σ2(f )

∑
v∩u6=∅

σ2
v(f ).

Owen’s (superposition or truncation) dimension distribution of f :

Probability measure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Mean superposition dimension of f :

d̄S =
∑
∅6=u⊆D

|u|σ
2
u(f )

σ2(f )
=

d∑
i=1

S̄{i}.

Efficient superposition (truncation) dimension dT (ε) of f is the

(1− ε)-quantile of νS (νT ).
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ANOVA decomposition of two-stage integrands

Assumption:
(A1) h(ξ)− Tx ∈ W (Rm̄

+) for all x ∈ X and ξ ∈ Ξ = suppP

(relatively complete recourse).

(A2) D 6= ∅ (dual feasibility).

(A3)
∫
Rd ‖ξ‖P (dξ) <∞.

(A4) P has a density of the form ρ(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd)

with continuous density ρj, j = 1, . . . , d.

The integrand f = fx is convex piecewise linear, i.e.,

f (ξ) = fx(ξ) = max
j=1,...,`

aj(x)>ξ + αj(x),

where aj(x) ∈ Rd and αj(x) are affine functions of x. It holds that

fx(ξ) = aj(x)>ξ + αj(x), ∀ξ ∈ Kj (j = 1, . . . , `),

where Kj = Kj(x) = {ξ ∈ Rd : h(ξ) − T (ξ)x ∈ Kj} is convex

polyhedral and Kj the normal cone to D at the vertex vj (j =

1, . . . , `). The intersection Kj ∩ Kj′ of two adjacent polyhedral

sets is contained in a (d− 1)-dimensional affine subspace of Rd.
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To compute projections Pk(f ) for k ∈ D. Let ξi ∈ R, i = 1, . . . , d,

i 6= k, be given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξs = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd.

Assuming (A1)–(A4) it is possible to derive an explicit representa-

tion of Pk(f ) depending on ξk and on the finitely many points at

which the one-dimensional affine subspace {ξs : s ∈ R} meets the

intersections of two adjacent polyhedral sets Kj. This leads to

Proposition:
Let k ∈ D, x ∈ X . Assume (A1)–(A4) and that vectors aj belong-

ing to adjacent polyhedral sets Kj have different kth components.

Then the kth projection Pkf is twice continuously differentiable.

Pkf is infinitely differentiable if the density ρk is in C∞(R).

Proof:

∂2Pkf
∂ξl∂ξr

(ξk) =
∑p

i=1
−wilwir

wik
ρk(si(ξ

k)), where wi = aji − aji+1
and si is an affine function.
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Theorem:
Let x ∈ X , assume (A1)–(A4) and that the following geometric

condition (GC) be satisfied: All (d−1)-dimensional affine subspaces

containing (d− 1)-dimensional intersections of adjacent polyhedral

sets Kj are not parallel to any coordinate axis. Then the ANOVA

approximation

fd−1 :=
∑
u⊂D

fu with f = fd−1 + fD

of f is infinitely differentiable if all densities ρk belong to C∞b (R).

Example: Let m̄ = 3, d = 2, P denote the two-dimensional

standard normal distribution, h(ξ) = ξ, q and W be given by

W =

(
−1 1 0

1 1 −1

)
q =

 1

1

0


Then (A1) and (A2) are satisfied and the dual feasible set D is

D = {z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0},
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Figure 1: Illustration of D, its vertices vj and the normal cones Kj to its vertices

Hence, the second component of the two adjacent vertices v1 and

v2 coincides. The function Φ is of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

and the integrand is

f (ξ) = max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}

The ANOVA projection P1f is in C∞, but P2f is not differentiable.
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Proposition: Let x ∈ X , (A1), (A2) be satisfied, dom Φ = Rr

and P be a normal distribution with nonsingular covariance matrix

Σ. Then the infinite differentiability of the ANOVA approximation

fd−1 of f is a generic property, i.e., it holds in a residual set (count-

able intersection of open dense subsets) in the space of orthogonal

(d, d)-matrices for the spectral decomposition of Σ.

Question: For which two-stage stochastic programs is ‖fD‖L2,ρ
small, i.e., the efficient truncation dimension is less than d − 1 or

even much less?
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Dimension reduction in case of normal distributions

Let P be the normal distribution with mean µ and nonsingular

covariance matrix Σ. Let A be a matrix satisfying Σ = AA>.

Then η defined by ξ = Aη + µ is standard normal.

A universal principle is principal component analysis (PCA). Here,

one uses A = (
√
λ1u1, . . . ,

√
λdud), where λ1 ≥ · · · ≥ λd > 0

are the eigenvalues of Σ in decreasing order and the corresponding

orthonormal eigenvectors ui, i = 1, . . . , d. Wang-Fang 03, Wang-Sloan 05

report an enormous reduction of the efficient truncation dimension

in financial models if PCA is used.

A problem-dependent principle may be based on the following equiv-

alence principle (Wang-Sloan 11).

Proposition: Let A be a fixed d×d matrix such that AA> = Σ.

Then it holds Σ = BB> if and only if B is of the form B = AQ

with some orthogonal d× d matrix Q.

Idea: Determine Q for given A such that the efficient truncation

dimension is minimized (Wang-Sloan 11).



Home Page

Title Page

Contents

JJ II

J I

Page 14 of 20

Go Back

Full Screen

Close

Quit

Some computational experience

We considered a two-stage production planning problem for max-

imizing the expected revenue while satisfying a fixed demand in a

time horizon with d = T = 100 time periods and stochastic prices

for the second-stage decisions. It is assumed that the probability

distribution of the prices ξ is log-normal. The model is of the form

max
{ T∑
t=1

(
c>t xt+

∫
RT
qt(ξ)>ytP (dξ)

)
:Wy+V x = h, y ≥ 0, x ∈X

}
The use of PCA for decomposing the covariance matrix has led to

efficient truncation dimension dT (0.01) = 2. As QMC methods we

used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell)

with n = 27, 29, 211 and a randomly shifted lattice rule (Sloan-Kuo-

Joe) with n = 127, 509, 2039, weights γj = 1
j2

and used for MC the

Mersenne-Twister. 10 runs were performed for the error estimates

and 30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n−0.9) and O(n−0.8).
Instead of n = 27 SSobol samples one would need n = 104 MC samples to achieve a similar
accuracy as SSobol.
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Conclusions

• Our analysis provides a theoretical basis for applying QMC

accompanied by dimension reduction techniques to stochastic

programs with low efficient dimension.

• The results are extendable and will be extended to more general

two-stage and to multi-stage situations.

• The analysis also applies to sparse grid quadrature techniques.

Thank you !
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Appendix: QMC quadrature error estimates

The QMC quadrature error allows to derive the following bound (by

using the ANOVA decomposition and Hickernell 98)∣∣∣∫
[0,1]d

f (ξ)dξ − 1

n

n∑
j=1

f (ηj)
∣∣∣≤∑

0<|u|

∣∣∣∫
[0,1]d

fu(ξ
u)dξu − 1

n

n∑
j=1

fu(η
u
j )
∣∣∣

≤
∑

0<|u|<d

Discn,u(η
u
1 , . . . , η

u
n)‖fu‖

+
∣∣∣ ∫

[0,1]d
fD(ξ)dξ − 1

n

n∑
j=1

fD(ηj)
∣∣∣,

where Discn,u is a discrepancy for n points in [0, 1]|u| and ‖fu‖
a compatible norm, e.g. the norm in the weighted tensor product

Sobolev space and the corresponding weighted L2-discrepancy

Disc2
n,u(η

u
1 , . . . , η

u
n) =

∏
j∈u

γj

∫
[0,1]|u|

disc2
u(ξ

u)dξu,

discu(ξ
u) =

∏
j∈u

ξj −
1

n
|{j ∈ {1, . . . , n} : ηuj ∈ [0, ξu)}|.
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