Are Quasi-Monte Carlo methods efficient for two-stage stochastic programs?

H. Heitsch, H. Leövey and W. Römisch

Humboldt-University Berlin Institute of Mathematics
www.math.hu-berlin.de/~romisch
Go Back

ISMP, TU Berlin, August 19-24, 2012

Introduction

- Standard approach for solving stochastic programs are variants of Monte Carlo (MC) for generating scenarios (i.e., samples).
- Recent alternative approaches to scenario generation:
(a) Optimal quantization of probability distributions (Pflug-Pichler 2010).
(b) Quasi-Monte Carlo (QMC) methods
(Koivu-Pennanen 05, Homem-de-Mello 08).
(c) Sparse grid quadrature rules (Chen-Mehrotra 08).

Page 2 of 20
(d) Moment matching methods (Høyland-Wallace 01, Kaut-Wallace 07,

Gülpinar-Rustem-Settergren 04)

- MC and (a) may be justified by available stability results, but there is almost no reasonable justification for (b), (c) and (d).
- Known convergence rates: MC $O\left(n^{-\frac{1}{2}}\right)$, (a) $O\left(n^{-\frac{1}{d}}\right)$ (b) $O\left(n^{-1}(\log n)^{d}\right)$, recently: $O\left(n^{-1+\delta}\right)(\delta$ small $)$

Two-stage linear stochastic programs

Two-stage stochastic programs are of the form

$$
\min \left\{\langle c, x\rangle+\int_{\mathbb{R}^{d}} \Phi(h(\xi)-T(\xi) x) P(d \xi): x \in X\right\}
$$

where X is convex polyhedral in $\mathbb{R}^{m}, c \in \mathbb{R}^{m}, h(\xi) \in \mathbb{R}^{r}$ and the (r, m)-matrix $T(\xi)$ are affine functions of $\xi, q \in \mathbb{R}^{\bar{m}}, W$ a (r, \bar{m})-matrix, P a probability distribution on \mathbb{R}^{d}, and

$$
\Phi(t)=\inf \left\{\langle q, y\rangle: y \in \mathbb{R}^{\bar{m}}, W y=t, y \geq 0\right\} .
$$

Then $\operatorname{dom} \Phi=W\left(\mathbb{R}_{+}^{\bar{m}}\right)$ is a polyhedral cone and it holds

$$
\Phi(t)=\max _{j=1, \ldots, \ell} t^{\top} v^{j} \quad(t \in \operatorname{dom} \Phi)
$$

where $v^{j}, j=1, \ldots, \ell$, are the vertices of $\mathcal{D}=\left\{z: W^{\top} z \leq q\right\}$. Hence, the integrand is the convex piecewise linear function

$$
f(\xi)=f_{x}(\xi)=c^{\top} x+\max _{j=1, \ldots, \ell}(h(\xi)-T(\xi) x)^{\top} v^{j} \quad(x \in X)
$$

if $h(\xi)-T(\xi) x \in W\left(\mathbb{R}_{+}^{\bar{m}}\right)$ for every $\xi \in \Xi=\operatorname{supp} P$.

Quasi-Monte Carlo methods

We consider the approximate computation of

$$
I_{d}(f)=\int_{[0,1] d^{d}} f(\xi) d \xi \quad \text { or } \quad I_{d}(f)=\int_{\mathbb{R}^{d}} f(\xi) \rho(\xi) d \xi
$$

by a QMC algorithm

$$
Q_{n, d}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right) \quad \text { or } \quad Q_{n, d}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right) \rho\left(\xi^{i}\right)
$$

with (non-random) points $\xi^{i}, i=1, \ldots, n$, from $[0,1]^{d}$ or \mathbb{R}^{d}. We assume that f belongs to a linear normed space \mathbb{F}_{d} with norm $\|\cdot\|_{d}$ and unit ball \mathbb{B}_{d}. Worst-case error of $Q_{n, d}$ over \mathbb{B}_{d} :

$$
e\left(Q_{n, d}\right)=\sup _{f \in \mathbb{B}_{d}}\left|I_{d}(f)-Q_{n, d}(f)\right|
$$

Example: F_{d} is a weighted tensor product Sobolev space $\bigotimes_{i=1}^{d} W_{2}^{1}([0,1])$, a particular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in F_{d} (even not of bounded variation (Owen 05)).

ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth, but hopefully only some of them relevant.

Let $D=\{1, \ldots, d\}$ and $f \in L_{1, \rho}\left(\mathbb{R}^{d}\right)$ with $\rho(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)$, where

$$
f \in L_{p, \rho}\left(\mathbb{R}^{d}\right) \quad \text { iff } \quad \int_{\mathbb{R}^{d}}|f(\xi)|^{p} \rho(\xi) d \xi<\infty \quad(p \geq 1)
$$

Let the projection $P_{k}, k \in D$, be defined by

$$
\left(P_{k} f\right)(\xi):=\int_{-\infty}^{\infty} f\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \rho_{k}(s) d s \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

Clearly, $P_{k} f$ is constant with respect to ξ_{k}. For $u \subseteq D$ we write

$$
P_{u} f=\left(\prod_{k \in u} P_{k}\right)(f),
$$

where the product means composition, and note that the ordering within the product is not important because of Fubini's theorem.

ANOVA-decomposition of f :

$$
f=\sum_{u \subseteq D} f_{u}
$$

where $f_{\emptyset}=I_{d}(f)=P_{D}(f)$ and recursively

$$
f_{u}=P_{-u}(f)-\sum_{v \subseteq u} f_{v}
$$

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)
$f_{u}=\sum_{v \subseteq u}(-1)^{|u|-|v|} P_{-v} f=P_{-u}(f)+\sum_{v \subset u}(-1)^{|u|-|v|} P_{u-v}\left(P_{-u}(f)\right)$,
where P_{-u} and P_{u-v} mean integration with respect to $\xi_{j}, j \in D \backslash u$ and $j \in u \backslash v$, respectively. The second representation motivates that f_{u} is essentially as smooth as $P_{-u}(f)$.

If f belongs to $L_{2, \rho}\left(\mathbb{R}^{d}\right)$, the ANOVA functions $\left\{f_{u}\right\}_{u \subseteq D}$ are orthogonal in $L_{2, \rho}\left(\mathbb{R}^{d}\right)$.

We set $\sigma^{2}(f)=\left\|f-I_{d}(f)\right\|_{L_{2}}^{2}$ and $\sigma_{u}^{2}(f)=\left\|f_{u}\right\|_{L_{2}}^{2}$, and have

$$
\sigma^{2}(f)=\|f\|_{L_{2}}^{2}-\left(I_{d}(f)\right)^{2}=\sum_{\emptyset \neq u \subseteq D} \sigma_{u}^{2}(f) .
$$

Sobol's global sensitivity indices of f w.r.t. $\xi_{j}, j \in u$:

$$
\bar{S}_{u}=\frac{1}{\sigma^{2}(f)} \sum_{v \cap u \neq \emptyset} \sigma_{v}^{2}(f)
$$

Owen's (superposition or truncation) dimension distribution of f : Probability measure $\nu_{S}\left(\nu_{T}\right)$ defined on the power set of D

$$
\nu_{S}(s):=\sum_{|u|=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \quad\left(\nu_{T}(s)=\sum_{\max \{j: j \in u\}=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}\right) \quad(s \in D) .
$$

Mean superposition dimension of f :

$$
\bar{d}_{S}=\sum_{\emptyset \neq u \subseteq D}|u| \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}=\sum_{i=1}^{d} \bar{S}_{\{i\}} .
$$

Efficient superposition (truncation) dimension $d_{T}(\varepsilon)$ of f is the $(1-\varepsilon)$-quantile of $\nu_{S}\left(\nu_{T}\right)$.

ANOVA decomposition of two-stage integrands

Assumption:

(A1) $h(\xi)-T x \in W\left(\mathbb{R}_{+}^{\bar{m}}\right)$ for all $x \in X$ and $\xi \in \Xi=\operatorname{supp} P$ (relatively complete recourse).
(A2) $\mathcal{D} \neq \emptyset$ (dual feasibility).
(A3) $\int_{\mathbb{R}^{d}}\|\xi\| P(d \xi)<\infty$.
(A4) P has a density of the form $\rho(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)\left(\xi \in \mathbb{R}^{d}\right)$ with continuous density $\rho_{j}, j=1, \ldots, d$.

The integrand $f=f_{x}$ is convex piecewise linear, i.e.,

$$
f(\xi)=f_{x}(\xi)=\max _{j=1, \ldots, \ell} a_{j}(x)^{\top} \xi+\alpha_{j}(x),
$$

where $a_{j}(x) \in \mathbb{R}^{d}$ and $\alpha_{j}(x)$ are affine functions of x. It holds that

$$
f_{x}(\xi)=a_{j}(x)^{\top} \xi+\alpha_{j}(x), \quad \forall \xi \in K_{j} \quad(j=1, \ldots, \ell)
$$

where $K_{j}=K_{j}(x)=\left\{\xi \in \mathbb{R}^{d}: h(\xi)-T(\xi) x \in \mathcal{K}_{j}\right\}$ is convex polyhedral and \mathcal{K}_{j} the normal cone to \mathcal{D} at the vertex v^{j} ($j=$ $1, \ldots, \ell)$. The intersection $K_{j} \cap K_{j^{\prime}}$ of two adjacent polyhedral sets is contained in a $(d-1)$-dimensional affine subspace of \mathbb{R}^{d}.

To compute projections $P_{k}(f)$ for $k \in D$. Let $\xi_{i} \in \mathbb{R}, i=1, \ldots, d$, $i \neq k$, be given. We set $\xi^{k}=\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_{d}\right)$ and

$$
\xi_{s}=\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}
$$

Assuming (A1)-(A4) it is possible to derive an explicit representation of $P_{k}(f)$ depending on ξ^{k} and on the finitely many points at which the one-dimensional affine subspace $\left\{\xi_{s}: s \in \mathbb{R}\right\}$ meets the intersections of two adjacent polyhedral sets K_{j}. This leads to

Proposition:

Let $k \in D, x \in X$. Assume (A1)-(A4) and that vectors a_{j} belonging to adjacent polyhedral sets K_{j} have different k th components. Then the k th projection $P_{k} f$ is twice continuously differentiable. $P_{k} f$ is infinitely differentiable if the density ρ_{k} is in $C^{\infty}(\mathbb{R})$.

Proof:

$\frac{\partial^{2} P_{k} f}{\partial \xi_{l} \partial \xi_{r}}\left(\xi^{k}\right)=\sum_{i=1}^{p} \frac{-w_{i} w_{i r}}{w_{i k}} \rho_{k}\left(s_{i}\left(\xi^{k}\right)\right)$, where $w_{i}=a_{j_{i}}-a_{j_{i+1}}$ and s_{i} is an affine function.

Theorem:

Let $x \in X$, assume (A1)-(A4) and that the following geometric condition (GC) be satisfied: All ($d-1$)-dimensional affine subspaces containing $(d-1)$-dimensional intersections of adjacent polyhedral sets K_{j} are not parallel to any coordinate axis. Then the ANOVA approximation

$$
f_{d-1}:=\sum_{u \subset D} f_{u} \quad \text { with } \quad f=f_{d-1}+f_{D}
$$

of f is infinitely differentiable if all densities ρ_{k} belong to $C_{b}^{\infty}(\mathbb{R})$.
Example: Let $\bar{m}=3, d=2, P$ denote the two-dimensional standard normal distribution, $h(\xi)=\xi, q$ and W be given by

$$
W=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 1 & -1
\end{array}\right) \quad q=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Then (A1) and (A2) are satisfied and the dual feasible set \mathcal{D} is

$$
\mathcal{D}=\left\{z \in \mathbb{R}^{2}:-z_{1}+z_{2} \leq 1, z_{1}+z_{2} \leq 1,-z_{2} \leq 0\right\}
$$

Figure 1: Illustration of \mathcal{D}, its vertices v^{j} and the normal cones \mathcal{K}_{j} to its vertices

Hence, the second component of the two adjacent vertices v^{1} and v^{2} coincides. The function Φ is of the form

$$
\Phi(t)=\max _{i=1,2,3}\left\langle v^{i}, t\right\rangle=\max \left\{t_{1},-t_{1}, t_{2}\right\}=\max \left\{\left|t_{1}\right|, t_{2}\right\}
$$

and the integrand is

$$
f(\xi)=\max \left\{\left|\xi_{1}-[T x]_{1}\right|, \xi_{2}-[T x]_{2}\right\}
$$

The ANOVA projection $P_{1} f$ is in C^{∞}, but $P_{2} f$ is not differentiable.

Proposition: Let $x \in X$, (A1), (A2) be satisfied, $\operatorname{dom} \Phi=\mathbb{R}^{r}$ and P be a normal distribution with nonsingular covariance matrix Σ. Then the infinite differentiability of the ANOVA approximation f_{d-1} of f is a generic property, i.e., it holds in a residual set (countable intersection of open dense subsets) in the space of orthogonal (d, d)-matrices for the spectral decomposition of Σ.

Question: For which two-stage stochastic programs is $\left\|f_{D}\right\|_{L_{2, \rho}}$ small, i.e., the efficient truncation dimension is less than $d-1$ or even much less?

Dimension reduction in case of normal distributions

Let P be the normal distribution with mean μ and nonsingular covariance matrix Σ. Let A be a matrix satisfying $\Sigma=A A^{\top}$. Then η defined by $\xi=A \eta+\mu$ is standard normal.
A universal principle is principal component analysis (PCA). Here, one uses $A=\left(\sqrt{\lambda_{1}} u_{1}, \ldots, \sqrt{\lambda_{d}} u_{d}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{d}>0$ are the eigenvalues of Σ in decreasing order and the corresponding orthonormal eigenvectors $u_{i}, i=1, \ldots, d$. Wang-Fang 03 , Wang-Sloan 05 report an enormous reduction of the efficient truncation dimension in financial models if PCA is used.
A problem-dependent principle may be based on the following equivalence principle (Wang-Sloan 11).

Proposition: Let A be a fixed $d \times d$ matrix such that $A A^{\top}=\Sigma$. Then it holds $\Sigma=B B^{\top}$ if and only if B is of the form $B=A Q$ with some orthogonal $d \times d$ matrix Q.

Idea: Determine Q for given A such that the efficient truncation

Some computational experience

We considered a two-stage production planning problem for maximizing the expected revenue while satisfying a fixed demand in a time horizon with $d=T=100$ time periods and stochastic prices for the second-stage decisions. It is assumed that the probability distribution of the prices ξ is log-normal. The model is of the form
$\max \left\{\sum_{t=1}^{T}\left(c_{t}^{\top} x_{t}+\int_{\mathbb{R}^{T}} q_{t}(\xi)^{\top} y_{t} P(d \xi)\right): W y+V x=h, y \geq 0, x \in X\right\}$
The use of PCA for decomposing the covariance matrix has led to efficient truncation dimension $d_{T}(0.01)=2$. As QMC methods we used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell) with $n=2^{7}, 2^{9}, 2^{11}$ and a randomly shifted lattice rule (Sloan-KuoJoe) with $n=127,509,2039$, weights $\gamma_{j}=\frac{1}{j^{2}}$ and used for MC the Mersenne-Twister. 10 runs were performed for the error estimates and 30 runs for plotting relative errors.

Average rate of convergence for QMC: $O\left(n^{-0.9}\right)$ and $O\left(n^{-0.8}\right)$.

Title Page

Contents

44

Page 15 of 20

Go Back

Full Screen

Conclusions

- Our analysis provides a theoretical basis for applying QMC accompanied by dimension reduction techniques to stochastic programs with low efficient dimension.
- The results are extendable and will be extended to more general two-stage and to multi-stage situations.
- The analysis also applies to sparse grid quadrature techniques.

Thank you!

Appendix: QMC quadrature error estimates

The QMC quadrature error allows to derive the following bound (by using the ANOVA decomposition and Hickernell 98)

$$
\begin{aligned}
\left|\int_{[0,1]^{d}} f(\xi) d \xi-\frac{1}{n} \sum_{j=1}^{n} f\left(\eta_{j}\right)\right| \leq & \sum_{0<|u|}\left|\int_{[0,1]^{d}} f_{u}\left(\xi^{u}\right) d \xi^{u}-\frac{1}{n} \sum_{j=1}^{n} f_{u}\left(\eta_{j}^{u}\right)\right| \\
\leq & \sum_{0<|u|<d} \operatorname{Disc}_{n, u}\left(\eta_{1}^{u}, \ldots, \eta_{n}^{u}\right)| | f_{u} \| \\
& +\left|\int_{[0,1] d^{d}} f_{D}(\xi) d \xi-\frac{1}{n} \sum_{j=1}^{n} f_{D}\left(\eta_{j}\right)\right|,
\end{aligned}
$$

where $\operatorname{Disc}_{n, u}$ is a discrepancy for n points in $[0,1]^{|u|}$ and $\left\|f_{u}\right\|$ a compatible norm, e.g. the norm in the weighted tensor product Sobolev space and the corresponding weighted L_{2}-discrepancy

$$
\operatorname{Disc}_{n, u}^{2}\left(\eta_{1}^{u}, \ldots, \eta_{n}^{u}\right)=\prod_{j \in u} \gamma_{j} \int_{[0,1]^{u u}} \operatorname{disc}_{u}^{2}\left(\xi^{u}\right) d \xi^{u}
$$

References

M. Chen and S. Mehrotra: Epi-convergent scenario generation method for stochastic problems via sparse grid, SPEPS 7-2008.
J. Dick, F. Pillichshammer: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, 2010.
M. Griebel, F. Y. Kuo and I. H. Sloan: The smoothing effect of integration in \mathbb{R}^{d} and the ANOVA decomposition, Mathematics of Computation (to appear).
F. J. Hickernell: A generalized discrepancy and quadrature error bound, Mathematics of Computation 67 (1998), 299-322.

Hee Sun Hong and F. J. Hickernell: Algorithm 823: Implementing scrambled digital sequences, ACM Transactions of Mathematical Software 29 (2003), 95-109.
T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling, SIAM Journal on Optimization 19 (2008), 524-551.
J. Imai and K. S. Tan: Minimizing effective dimension using linear transformation, in Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter Ed.), Springer, Berlin, 2004, 275-292.
F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, Journal of Complexity 19 (2003), 301-320.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, Mathematics of Computation 79 (2010), 953-966.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, B. J. Waterhouse: Randomly shifted lattice rules with
the optimal rate of convergence for unbounded integrands, Journal of Complexity 26 (2010), 135160.
D. Nuyens and R. Cools: Fast algorithms for component-by-component constructions of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, Mathematics of Computation 75 (2006), 903-922.
A. B. Owen: Randomly permuted (t, m, s)-nets and (t, s)-sequences, in: Monte Carlo and QuasiMonte Carlo Methods in Scientific Computing, Lecture Notes in Statistics, Vol. 106, Springer, New York, 1995, 299-317.
A. B. Owen: The dimension distribution and quadrature test functions, Statistica Sinica 13 (2003), 1-17.
A. B. Owen: Multidimensional variation for Quasi-Monte Carlo, in J. Fan, G. Li (Eds.), International Conference on Statistics, World Scientific Publ., 2005, 49-74.
T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration quadratures, Numerische Mathematik 100 (2005), 141-163.
G. Ch. Pflug, A. Pichler: Scenario generation for stochastic optimization problems, in: Stochastic Optimization Methods in Finance and Energy (M.I. Bertocchi, G. Consigli, M.A.H. Dempster eds.), Springer, 2011.
W. Römisch: ANOVA decomposition of convex piecewise linear functions,, Preprint Nr. 979, DFG Research Center Matheon Berlin, 2012 and submitted.
I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for highdimensional integration, Journal of Complexity 14 (1998), 1-33.

Home Page

Contents
I. H. Sloan, F. Y. Kuo and S. Joe: Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM Journal Numerical Analysis 40 (2002), 1650-1665.
I. M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55 (2001), 271-280.
X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, Journal of Complexity 19 (2003), 101-124.
X. Wang and I. H. Sloan, Why are high-dimensional finance problems often of low effective dimension. SIAM Journal Scientific Computing 27 (2005), 159-183.
X. Wang and I. H. Sloan: Low discrepancy sequences in high dimensions: How well are their projections distributed ? Journal of Computational and Applied Mathematics 213 (2008), 366-386.
X. Wang and I. H. Sloan, Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction. Operations Research 59 (2011), 80-95.

