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Abstract
We consider randomized QMC methods for approximating the expected recourse in
two-stage stochastic optimization problems containing mixed-integer decisions in the
second stage. It is known that the second-stage optimal value function is piecewise
linear-quadratic with possible kinks and discontinuities at the boundaries of certain
convex polyhedral sets. This structure is exploited to provide conditions implying that
first and higher order terms of the integrand’s ANOVA decomposition (Math. Comp.
79 (2010), 953–966) have mixed weak first order partial derivatives. This leads to a
good smooth approximation of the integrand and, hence, to good convergence rates
of randomized QMC methods if the effective (superposition) dimension is low.

Keywords Stochastic programming · Two-stage · Mixed-integer · Sampling ·
Quasi-Monte Carlo · Haar measure

Mathematics Subject Classification 90C15 · 90C11 · 65C05 · 65D30

1 Introduction

Two-stage stochastic mixed-integer programs belong to the most complicated opti-
mization problems due to multivariate integrals and discontinuous integrands (see
[32,46]). Most approaches for their computational solution require first a numeri-
cal integration scheme for the multivariate integral and second an efficient solution
method for the resulting specifically structured large scale mixed-integer program. For
some time Monte Carlo methods appeared as the only convergent numerical integra-
tion technique for such optimization models [21] while several numerical techniques
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362 H. Leövey, W. Römisch

are available for solving the discrete stochastic program efficiently. For the latter we
refer to approaches based on combinations of decomposition, branch-and-bound and
branch-and-cut (see [1,48] and the survey [47]).

The aimof the present paper is to contribute to the first computational step.Although
Monte Carlo sampling methods are well established in theory and practice (see, for

example, [5,12] and [49, Chapter 5]), they suffer from slow convergence rate O(n− 1
2 ).

In recent years much progress has been achieved in the construction and analysis of
Quasi-Monte Carlo (QMC) methods for computing integrals in high dimension d. We
refer to the monograph [9], the survey [8] and the state-of-the-art [24] for presenting
recent developments. For example, it is known that certain randomized QMCmethods
can achieve almost the optimal convergence rate O(n−1) if the integrands admit mixed
weak first partial derivatives and, hence, belong to certain weighted tensor product
Sobolev spaces on the unit cube [0, 1]d or onR

d . We refer to the origins of randomized
QMC methods in [39,40], a survey [28] and a short introduction [29, Section 2].

In the present paper we study the applicability of randomized QMC methods to
two-stage stochastic mixed-integer programs. Integrands arising in such models are
piecewise linear-quadratic and contain kinks and discontinuties along faces of convex
polyhedral sets (see Sect. 2). Hence, they do not have mixed first derivatives in the
classical or weak sense. However, many such integrands allow an approximate repre-
sentation by a function which can be much smoother than the original integrand under
certain conditions and by a nonsmooth remainder. The key here consists in a specific
decomposition of the multivariate integrand with d variables into a sum of 2d terms
each depending on a group of variables indexed by a subset of {1, . . . , d}. Such decom-
positions depend on the choice of d commuting projections Pk , k ∈ {1, . . . , d}. An
important example is the analysis-of-variance (ANOVA) decomposition in which the
projection Pk integrates with respect to the kth variable (see Sect. 3). As first observed
in [14–16] such ANOVA decompositions may gain smoothness due to the specific
projections. Our results in Sect. 4 show that such smoothness properties hold indeed
for low order ANOVA terms of the integrands in two-stage stochastic mixed-integer
programming if a geometric condition is imposed on the faces of the convex polyhedral
sets. Our main result in Sect. 4 (Theorem 1) states that truncated ANOVA decomposi-
tions of the integrands have mixed weak first derivatives and represent good approxi-
mations of the integrands if the marginal densities of the underlying probability distri-
bution are sufficiently smooth and the effective (superposition) dimension (23) is low.

Thereby we extend our earlier work [29] for two-stage models without integer deci-
sions substantially. In particular, we show that the ANOVA terms of linear two-stage
integrands satisfy the relevant smoothness properties not only until order 2 (as asserted
in the main result of [29]) but until any order less than d

2 . In addition, we extend the
convergence analysis for randomly shifted lattice rules to such discontinuous inte-
grands (in Sect. 5). Compared to [29] the proofs of our main results in Sects. 4 and 6
require new tools like a characterization of faces of projected polyhedra and the theory
of Haar measures on the topological group of real orthogonal matrices. The latter is
needed to show that for multivariate normal distributions the geometric condition is
satisfied almost everywhere with respect to the Haar measure defined on the group of
orthogonal matrices needed for transforming the covariance matrix to diagonal form.
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In general the performance of randomized QMC methods may be significantly
deteriorated for discontinuous integrands. In [17], for example, the authors derive
convergence rates for functions of the form g(x)1lB(x), x ∈ [0, 1]d , where g is smooth
and B is convex polyhedral. They show that the convergence rate is much lower
than optimal, but it improves if some of the discontinuity faces of B are parallel to
some coordinate axes (best case being all faces parallel to some coordinate axes).
As noted earlier the integrands of two-stage stochastic mixed-integer programs have
also discontinuities at the boundaries of convex polyhedral sets but their structure is
unknown and hidden in the problem data.

Numerical experience on comparing Monte Carlo sampling, randomly scram-
bled Sobol’ point sets and randomly shifted lattice rules for a two-stage stochastic
mixed-integer electricity portfolio optimization problem is reported in detail in the
accompanying paper [30]. In Sect. 7 we recall and discuss the computational results
and add some conclusions.

2 Two-stage stochastic mixed-integer programs

Let us consider the two-stage stochastic mixed-integer program

min
{
〈c, x〉 +

∫

Rd
�(q(ξ), h(ξ) − T (ξ)x)ρ(ξ)dξ : x ∈ X

}
, (1)

where � is the infimum function of the second-stage mixed-integer linear program

�(u, t) := inf
{〈u1, y1〉 + 〈u2, y2〉 : W1y1 + W2y2 ≤ t, y1 ∈ R

m1 , y2 ∈ Z
m2
}

(2)

for all pairs (u, t) ∈ R
m1+m2 × R

r , where c ∈ R
m , X is a closed subset of R

m , W1
and W2 are (r ,m1) and (r ,m2)-matrices, respectively, q(ξ) ∈ R

m1+m2 , h(ξ) ∈ R
r ,

and the (r ,m)-matrix T (ξ) are affine functions of ξ ∈ R
d , and ρ is the probability

density of a Borel probability measure P on R
d .

The primal and dual feasible right-hand side sets for the second-stage program are

T = {
t ∈ R

r : ∃(y1, y2) ∈ R
m1 × Z

m2 such that W1y1 + W2y2 ≤ t
}
, and

U =
{
u = (u1, u2) ∈ R

m1+m2 : ∃v ∈ R
r− such that W�

1 v = u1, W
�
2 v = u2

}
.

Clearly,�(u, t) is finite for all (u, t) ∈ U×T , it holds (0, 0) ∈ U×T and�(0, t) = 0
for any t ∈ T . While U is a convex polyhedral cone in R

m1+m2 , the structure of T is
more complicated. The latter has the representation

T =
⋃

z∈Z
m2

(W2z + K), (3)

where K is the convex polyhedral cone

K = {t ∈ R
r : ∃y1 ∈ R

m1 such that W1y1 ≤ t} = W1(R
m1) + R

r+ . (4)
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364 H. Leövey, W. Römisch

Specific cases are (i) W2 = 0 (pure continuous recourse) implying T = K and (ii)
W1 = 0 (pure integer recourse) leading to K = R

r+.
Next we introduce two assumptions:

(A1) The matrices W1 and W2 have only rational elements.
(A2) The cardinality of the set

Z =
⋃

t∈T
Z(t), where Z(t) = {

y2 ∈ Z
m2 : ∃y1 ∈ R

m1 such that W1y1 + W2y2 ≤ t
}
,

is finite, i.e., the number of integer decisions in (1) is finite.
It is known that the set T is always connected (i.e., there exists a polygon con-
necting two arbitrary points ofT ) and closed if (A1) is satisfied (see [4, Theorems
5.6.1 and 5.6.2]). The representation (3) implies that T can be decomposed into
subsets of the form

T (t0) := {t ∈ T : Z(t) = Z(t0)} =
⋂

z∈Z(t0)

(W2z + K)\
⋃

z∈Z\Z(t0)

(W2z + K) (5)

for each fixed t0 ∈ T . Condition (A1) implies that the intersection in (5) may be
replaced by t̄ + K for some t̄ ∈ T (see [4, Lemma 5.6.1]).

Hence, if (A1) is satisfied, there exist a finite subset N of N and elements ti ∈ T and
zi j ∈ Z

m2 for i ∈ N and j belonging to a finite subset Ni of N , such that T admits
the representation

T =
⋃
i∈N

T (ti ) with T (ti ) = (ti + K)\
⋃
j∈Ni

(W2zi j + K). (6)

The sets T (ti ), i ∈ N , are nonempty and connected (even star-shaped cf. [4, Theorem
5.6.3]), but nonconvex in general. If for some i ∈ N the set T (ti ) is nonconvex, it
can be decomposed into a finite number of disjoint subsets whose closures are convex
polyhedra with facets parallel to suitable facets ofK. By renumbering all such subsets
(for every i ∈ N ) one obtains a finite index set which is again denoted by N and
subsets Bi , i ∈ N , forming a partition of T .

We will need the following result on optimal value functions of linear programs.
For a given (r ,m)-matrix W we consider the function

�L(u, t) = inf{〈u, y〉 : Wy ≤ t} (7)

from R
m × R

r to R. We define the primal and dual feasibility sets

P = W (Rm) + R
r+ and D = W�(Rr−)

and recall some well-known properties of �L (see [37,55]).
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Lemma 1 The function �L is finite and continuous on the convex polyhedral cone
D × P in R

m × R
r and there exist (m, r)-matrices C j and convex polyhedral cones

K j , j = 1, . . . , �, such that

�⋃
j=1

K j = D × P and int K j ∩ int K j ′ = ∅ , j �= j ′,

�L(u, t) = max
j=1,...,�

〈C ju, t〉 ((u, t) ∈ D × P),

�L(u, t) = 〈C ju, t〉, for each (u, t) ∈ K j , j = 1, . . . , �.

The function �L(u, ·) is convex on P for each u ∈ D, and �L(·, t) is concave on D
for each t ∈ P . Furthermore, the intersection K j ∩ K j ′ , j �= j ′, is either equal to
{0} or contained in a (m + r − 1)-dimensional subspace of R

m+r if the two cones are
adjacent.

Now we are in the position to prove the following result on the representation and
properties of the infimum function � (see also [32, (2.10)] for the case of fixed u).

Lemma 2 Assume (A1) and (A2). Then there exists a finite set N and Borel sets Bi ,
i ∈ N, such that T = ⋃

i∈N Bi , and the closures of Bi are convex polyhedral with
facets parallel to suitable facets of K = W1(R

m1) + R
r+.

The function � is lower semicontinuous on U × T and there exist (r ,m1) matrices
C j , j = 1, . . . , �, � ∈ N, such that

�(u, t) = min
y2∈Zi (t)

(〈u2, y2〉 + max
j=1,...,�

〈C ju1, t − W2y2〉) ((u, t) ∈ U × Bi ), (8)

where Zi (t) = Z(t) is fixed for t ∈ Bi , i ∈ N. � is continuous on U × Bi for each
i ∈ N and there exists a constant C > 0 such that

|�(u, t)| ≤ C max{1, ‖t‖}max{1, ‖u‖} (9)

holds for all pairs (u, t) ∈ U × T .

Proof The existence of the sets Bi and their properties are discussed after Eq. (6). The
lower semicontinuity of � follows from general results in parametric optimization,
for example, [4, Theorem 4.2.1]. Next we prove the representation (8) of �. Due to
the above construction the set Z(t) remains constant for all t ∈ Bi . Hence, Zi (t) is
well defined and

�(u, t) = inf
y2∈Zi (t)

(〈u2, y2〉 + inf
y1∈R

m1
{〈u1, y1〉 : W1y1 ≤ t − W2y2}) (10)

holds for every (u, t) ∈ U × Bi and i ∈ N . Due to Lemma 1 there exist (r ,m1)

matrices C j , j = 1, . . . , �, such that

inf
y1∈R

m1
{〈u1, y1〉 : W1y1 ≤ t − W2y2} = max

j=1,...,�
〈C ju1, t − W2y2〉 ((u, t) ∈ U × Bi ).
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The first infimum in (10) is lower bounded and, thus, attained. Hence, one obtains

�(u, t) = min
y2∈Zi (t)

(〈u2, y2〉 + max
j=1,...,�

〈C ju1, t − W2y2〉)

for every pair (u, t) ∈ U × Bi . For the remaining statements we refer to [43]. 
�

For more information on the continuity properties of � on U × Bi for any i ∈ N ,
we refer to [43]. Next we state our main representation result of the function �.

Proposition 1 Assume (A1) and (A2). The function � is finite and lower semicontin-
uous on U × T . There exists a finite decomposition of U × T consisting of Borel sets
Uν × Bν , ν ∈ N , such that their closures are convex polyhedral and � is bilinear on
each Uν × Bν . More precisely, there exist (r ,m1) matrices Cν and elements zν ∈ Z

m2

such that � is of the form

�(u, t) = 〈u2 − W�
2 Cνu1, zν〉 + 〈Cνu1, t〉 (11)

for each (u, t) ∈ Uν × Bν . The function � may have kinks or discontinuities at the
boundaries of Uν × Bν , ν ∈ N .

Proof We start from the representation (8) of� on U×Bi for some i ∈ N and derive a
further partitionofU×Bi . To this endweconsider the sets Ni (t) = {k : zk ∈ Zi (t)} and
Vil(t) = {v ∈ R

m2 : 〈v, zl〉 ≤ 〈v, zk〉, k ∈ Ni (t)}, for t ∈ Bi , l ∈ Ni (t). In addition,
we consider the (r ,m1) matrices C j and the polyhedral cones K j , j = 1, . . . , �,
appearing in Lemma 2. More precisely, we need the projections pr1 and pr2 from
R
m1+r to R

m1 and R
r , respectively, and the fact that pr1(K j ) and pr2(K j ) are also

polyhedral cones for each j = 1, . . . , �. For each i ∈ N we define the following
subsets of U and of Bi :

Ui jl = {u = (u1, u2) ∈ U : u1 ∈ pr1(K j ), u2 − W�
2 C ju1 ∈ Vil},

Bi jl = {t ∈ Bi : t ∈ W2zl + pr2(K j )}

for all i ∈ N , j = 1, . . . , � and l ∈ Ni . For any (u, t) ∈ Ui jl × Bi jl we obtain

�(u, t) = min
k∈Ni

(〈u2, zk〉 + 〈C ju1, t − W2zk〉) = min
k∈Ni

〈u2 − W�
2 C ju1, zk〉 + 〈C ju1, t〉

= 〈u2 − W�
2 C ju1, zl 〉 + 〈C ju1, t〉

starting from (8) in Lemma 2, using Lemma 1 and the definition of Vil . Finally, we
introduce a new index ν varying in a new (finite) index setN and a bijective mapping
ν ↔ (i, j, l). By writing Uν instead of Ui jl and Bν instead of Bi jl we arrive at (11)
by noting that Cν = C j and zν = zl if ν ↔ (i, j, l). We also note that the setsUν and
the closures of Bν are convex polyhedral. 
�
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When defining the two-stage mixed-integer integrand f : R
m × R

d → R by

f (x, ξ) =
{ 〈c, x〉 + �(q(ξ), h(ξ) − T (ξ)x), h(ξ) − T (ξ)x ∈ T , q(ξ) ∈ U ,

+∞, otherwise.
(12)

problem (1) may be rewritten as

min

{∫

Rd
f (x, ξ)P(dξ) : x ∈ X

}
. (13)

We introduce the additional assumption

(A3) For each pair (x, ξ) ∈ X × R
d it holds (q(ξ), h(ξ) − T (ξ)x) ∈ U × T .

Condition (A3) refers to the standard requirements relatively complete recourse and
dual feasibility (see [49, Section 2.1]). The structural result for � in Proposition 1
leads to the following representation of the integrand f .

Proposition 2 Assume (A1)–(A3) and let x ∈ X. Then the integrand f is lower semi-
continuous on X × R

d and f (x, ·) is finite and linear-quadratic on the sets

�ν(x) = {ξ ∈ R
d : q(ξ) ∈ Uν, h(ξ) − T (ξ)x ∈ Bν} (14)

for each ν ∈ N , where N , Uν and Bν are defined in Proposition 1.
The function f (x, ·) is of the form

f (x, ξ) = 〈c, x〉 + 〈q2(ξ) − W�
2 Cνq1(ξ), zν〉 + 〈Cνq1(ξ), h(ξ) − T (ξ)x〉 (15)

on the sets �ν(x), where the (r ,m1) matrix Cν and zν ∈ Z
m2 are explained in Propo-

sition 1. The functions f (x, ·) may have points of discontinuity or nondifferentiability
at the boundaries of �ν(x). The union of all �ν(x) equals R

d and their closures are
convex polyhedral. Moreover, the estimate

| f (x, ξ)| ≤ Ĉ max{1, ‖x‖}max{1, ‖ξ‖2} (16)

is valid for every pair (x, ξ) ∈ X × R
d and some constant Ĉ > 0.

Proof The sets �ν(x), ν ∈ N , form a partition of R
d into Borel sets whose closures,

denoted by cl�ν(x), are of the form

cl�ν(x) = {ξ ∈ R
d : q(ξ) ∈ Uν, h(ξ) − T (ξ)x ∈ cl Bν}

and, thus, are convex polyhedral, since h(·), T (·) and q(·) are affine functions, cl Bν ,
the closure of Bν , is convex polyhedral and Uν is convex polyhedral, too. The lower
semicontinuity of f follows from Lemma 2.

The representation (15) of f (x, ξ) for every pair (x, ξ) ∈ X × �ν(x) and ν ∈ N
follows immediately from (11). Since q1(·), q2(·), h(·) and T (·) are affine functions
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of ξ , the second summand of (15) is an affine function of ξ while the third represents
a quadratic function. The final statement follows from (9) and the estimate

| f (x, ξ)| ≤ |〈c, x〉| + |�(q(ξ), h(ξ) − T (ξ)x)|
≤ ‖c‖‖x‖ + C max{1, ‖h(ξ) − T (ξ)x‖}max{1, ‖q(ξ)‖}
≤ Ĉ max{1, ‖x‖}max{1, ‖ξ‖2}

after a few calculations for all pairs (x, ξ) ∈ X × R
d and some constant Ĉ > 0. 
�

3 ANOVA decomposition and effective dimension

The analysis of variance (ANOVA) decomposition of a function was first proposed as
a tool in statistical analysis (see [18] and the survey [53]). Later it was often used for
the analysis of quadrature methods mainly on [0, 1]d . Here, we make use of it on R

d

equipped with a probability density function ρ given in product form

ρ(ξ) =
d∏

k=1

ρk(ξk) (∀ξ = (ξ1, . . . , ξd) ∈ R
d). (17)

As in [15] we consider the weighted Lp space over R
d , i.e., Lp,ρ(Rd), with the norm

‖ f ‖p,ρ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(∫
Rd

| f (ξ)|pρ(ξ)dξ

) 1
p

if 1 ≤ p < +∞,

ess sup
ξ∈Rd

ρ(ξ)| f (ξ)| if p = +∞.

Let f ∈ L1,ρ(Rd). The ANOVA projection Pk , k ∈ D = {1, . . . , d}, is defined by

Pk f (ξ) :=
∫ ∞

−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ R

d). (18)

Clearly, the function Pk f is constant with respect to ξk . For u ⊆ D we use |u| for its
cardinality, −u for D\u and define the higher order ANOVA projection by

Pu f =
(∏
k∈u

Pk
)
( f ), (19)

where the product sign means composition. Due to Fubini’s theorem the ordering
within the product is not important and Pu f is constant with respect to all ξk , k ∈ u.
The ANOVA decomposition of f ∈ L1,ρ(Rd) is of the form [26,56]

f =
∑
u⊆D

fu , (20)
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where each ANOVA term fu depends only on ξu , i.e., on the variables ξ j with indices
j ∈ u, and satisfies the property Pj fu = 0 for all j ∈ u. It admits the recurrence
relation

f∅ = PD f , f{k} = P−{k} f , k ∈ D, fu = P−u f −
∑
v⊂u

fv , u ⊆ D .

It is known from [26] that the ANOVA terms are given explicitly in terms of the
ANOVA projections by

fu =
∑
v⊆u

(−1)|u|−|v|P−v f = P−u( f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u( f )), (21)

where P−u and Pu−v mean integration with respect to ξ j , j ∈ D\u and j ∈ u\v,
respectively. The first representation shows that lower order ANOVA terms fu with
small |u| are given by higher order projections. The second representation reveals that
the ANOVA term fu is essentially as smooth as the ANOVA Projection P−u( f ) due
to the Inheritance theorem [15, Theorem 2].

If f belongs toL2,ρ(Rd), the projections Pu f and theANOVA terms fu also belong
to L2,ρ(Rd), and the system { fu}u⊆D is orthogonal in L2,ρ(Rd) (see e.g. [56]).

Let the variance of f be given by

σ 2( f ) = ‖ f − PD( f )‖22,ρ = ‖ f ‖22,ρ − (PD( f ))2 =
∑

∅�=u⊆D

‖ fu‖22,ρ . (22)

To avoid trivial cases we assume σ( f ) > 0 in the following. The normalized ratios
σ 2
u ( f )/σ 2( f ), where σu( f ) = ‖ fu‖2,ρ , serve as indicators for the importance of the

variable ξu in f . They are used to define sensitivity indices of a set u ⊆ D for f in
[52] and the dimension distribution of f in [31,41].

For small ε ∈ (0, 1) (ε = 0.01 is suggested in a number of papers), the effective
superposition (truncation) dimension dS(ε) ∈ D (dT (ε) ∈ D) of f is defined by

dS(ε) = min
{
s ∈ D :

∑
0<|u|≤s

σ 2
u ( f )

σ 2( f )
≥ 1 − ε

}
(23)

dT (ε) = min
{
s ∈ D :

∑
u⊆{1,...,s}

σ 2
u ( f )

σ 2( f )
≥ 1 − ε

}
. (24)

We note that the effective superposition dimension dS(ε) is important for the error
analysis of Quasi-Monte Carlo methods, but its computation is complicated. The
effective truncation dimension is computationally accessible (see [52,56]). Note also
that dS(ε) ≤ dT (ε) holds and the estimate

max
{∥∥∥ f −

∑
|u|≤dS(ε)

fu
∥∥∥
2,ρ

,

∥∥∥ f −
∑

u⊆{1,...,dT (ε)}
fu
∥∥∥
2,ρ

}
≤ √

εσ ( f ) (25)
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370 H. Leövey, W. Römisch

is valid (see [13,56]). The estimate (25) means that the truncated ANOVA decom-
position of f containing all ANOVA terms fu until |u| ≤ dS(ε) (or |u| ≤ dT (ε))
represents an approximation of f . The importance of (25) is due to the fact that lower
order ANOVA terms of f may have smoothness properties even if f is known to be
nondifferentiable or discontinuous (see [14,15]). In that case (25) may be used in error
estimates by exploiting the eventual smoothness of the lower order ANOVA terms.

To formulate smoothness conditions we follow [15] and use the notation Di f ,
i ∈ D, to denote the classical partial derivative ∂ f

∂ξi
. For amulti-indexα = (α1, . . . , αd)

with αi ∈ N0 we set

Dα f =
d∏

i=1

Dαi
i f = ∂ |α| f

∂ξ
α1
1 · · · ∂ξ

αd
d

,

and call Dα f the partial derivative of order |α| = ∑d
i=1 αi . A real-valued function g

on R
d is called weak derivative of order |α| if it is measurable on R

d and satisfies

∫

Rd
g(ξ)v(ξ)dξ = (−1)|α|

∫

Rd
f (ξ)(Dαv)(ξ)dξ for all v ∈ C∞

0 (Rd), (26)

where C∞
0 (Rd) denotes the space of infinitely differentiable functions with compact

support in R
d and Dαv the classical derivative of v. We will use the same symbol for

the weak derivative as for the classical one, i.e., we set Dα f = g if (26) is satisfied,
since classical derivatives are also weak derivatives. The latter holds because classical
derivatives satisfy (26) which is just the multivariate integration by parts formula in
the classical sense. We consider in the next sections the mixed Sobolev space

W(1,...,1)
2,ρ,mix(R

d) =
{
f ∈ L2,ρ(Rd) : Dα f ∈ L2,ρ(Rd) if αi ≤ 1, i ∈ D

}
. (27)

of functions on R
d having mixed weak first order derivatives that are quadratically

integrable. In [54] such spaces are called Sobolev spaces with dominating mixed
smoothness.

4 ANOVA decomposition of two-stagemixed-integer integrands

According to Proposition 2 two-stage mixed-integer integrands are discontinuous and
piecewise linear-quadratic, hence, may be written in the form

fx (ξ) := f (x, ξ) = 〈Aν(x)ξ, ξ 〉 + 〈bν(x), ξ 〉 + cν(x) (28)

for all (x, ξ) ∈ X ×�ν(x) and some symmetric (d, d)-matrices Aν(·), d-dimensional
vectors bν(·) and real numbers cν(·), which are all affine functions of x . The Borel
sets �ν(x), ν ∈ N are defined by (14) and have convex polyhedral closures.

In addition to the conditions (A1)–(A3) we need to impose:
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(A4) The probability distribution P has finite fourth order absolute moments.
Due to (16) the two-stage stochastic mixed-integer program (1) is already well
defined if P has finite second order moments. However, the stronger condition
(A4) together with the next one enable the use of the concepts from Sect. 3.

(A5) P has a density ρ with respect to the Lebesgue measure on R
d and ρ admits

product form

ρ(ξ) =
d∏

i=1

ρi (ξi ) (ξ = (ξ1, . . . , ξd) ∈ R
d),

where the densities ρi are positive and continuously differentiable, and ρi and
its derivative are bounded on R.
To apply the results in this section to general probability distributions P, one has
to decompose the dependence structure of P. The latter is always possible using
the multivariate distributional transform, which was first established in [44] in
case that the conditional distribution functions of P are absolutely continuous.
Later the distributional transform was extended to the general case (see [45]).

(A6) For each face F of dimension greater than zero of the convex polyhedral sets
cl�ν(x), ν ∈ N , the affine hull aff(F) of F does not parallel any coordinate
axis in R

d for each x ∈ X (geometric condition).
Recall that a face F of a polyhedron P in R

d is defined by F = {ξ ∈ P :
〈a, ξ 〉 = b} for some a ∈ R

d and b ∈ R such that P is contained in the
halfspace {ξ ∈ R

d : 〈a, ξ 〉 ≤ b}. The face F is said to be defined by the
inequality 〈a, ξ 〉 ≤ b. Clearly, each face is itself a polyhedron. The dimension
dim(P) of a polyhedron P is the dimension of its affine hull aff(P). A facet F
of a polyhedron P with P �= F is a face of dimension dim(P) − 1. Vertices of
polyhedra are faces of dimension zero. For a short review of basic polyhedral
theory we refer the reader to [20].
If F is any face of a polyhedron cl�ν(x) for some ν ∈ N defined by the
inequality 〈g, ξ 〉 ≤ a for some g ∈ R

d and a ∈ R, then (A6) means that all
components of g do not vanish. Condition (A6) is stronger than the geometric
condition imposed in [29] and important for deriving the results in this section.
It will be illustrated in Example 1 and further discussed in Sect. 6. Since the
polyhedra cl�ν(x) are not explicitly given, condition (A6) has implicit charac-
ter.

In the following we consider the ANOVA decomposition of f = fx (see (20)) for
any fixed x ∈ X and show that lower order ANOVA terms of f are smoother than the
function f itself. Since the ANOVA terms are given in terms of (ANOVA) projections
Pu (see (21)), we study first properties of projections.

For u ⊂ D = {1, . . . , d} we define the mapping �u : R
d → R

d−|u| by

�uξ := ξ−u, where ξ = (ξu, ξ−u) and ξ−u
s := (su, ξ−u), where s ∈ R

|u|.

If u = {k} for some k ∈ D we write ξ−k and ξ−k
s with s ∈ R.

First we derive bounds for Pu f where f is given by (28).
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Proposition 3 Let (A1)–(A5) be satisfied, x ∈ X be fixed, u ⊂ D and we consider an
integrand f = fx of the form (28). Then there exists a constant Ĉ > 0 such that

|Pu f (ξ−u)| ≤ Ĉ max{1, ‖x‖}max{1, ‖ξ−u‖2} (29)

holds for all ξ−u ∈ �u(R
d).

Proof Using the representation u = {i1, . . . , i|u|) and the definition (19) of Pu f , we
obtain from (16)

Pu f (ξ
−u) =

∫

R|u|
f (su, ξ−u)

|u|∏
k=1

ρik (sik )ds
u

≤ C max{1, ‖x‖}
∫

R|u|
max{1, ‖su‖2 + ‖ξ−u‖2}

|u|∏
k=1

ρik (sik )ds
u

≤ C max{1, ‖x‖}
(
1 + ‖ξ−u‖2 +

∫

R|u|

|u|∑
j=1

s2i j

|u|∏
k=1

ρik (sik )dsi1 · · · dsi|u|
)

= C max{1, ‖x‖}
(
1 + ‖ξ−u‖2 +

|u|∑
j=1

∫

R

s2i j ρi j (si j )dsi j

)

≤ Ĉ max{1, ‖x‖}max{1, ‖ξ−u‖2}

for some positive constant Ĉ and all ξ−u ∈ �u(R
d). 
�

Next we study continuity and differentiability properties of projections and we start
with first order projections Pk f of f = fx for some k ∈ D. We know that

ξ−k
s ∈

⋃
ν∈N

�ν(x) = R
d (30)

holds for fixed ξ−k and every s ∈ R. According to (18) we have

(Pk f )(ξ
−k) =

∫ ∞
−∞

f (ξ−k
s )ρk(s)ds =

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd )ρk(s)ds.

Due to (30) there exists a finite subset N̂ = N̂ (ξ−k) of N such that the one-
dimensional affine subspace {ξ−k

s : s ∈ R} intersects the sets �ν(x) for ν ∈ N̂ ,
where cl�ν(x) and its adjacent sets have a common facet for every ν ∈ N̂ . Hence,
there exists a partition of R into subintervals Iν = Iν(ξ−k), ν ∈ N̂ , such that
ξ−k
s ∈ �ν(x) for all s ∈ Iν and ν ∈ N̂ . We obtain the following representation
of Pk f by setting f ν(x, ξ−k

s ) := 〈Aν(x)ξ−k
s , ξ−k

s 〉 + 〈bν(x), ξ−k
s 〉 + cν(x) and using

the identity ξ−k
s = ξ−k

0 + s ek with ek denoting the element of R
d having components
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δik , i = 1, . . . , d:

(Pk f )(ξ
−k) =

∑

ν∈N̂

∫

Iν
f ν(x, ξ−k

s )ρk(s)ds

=
∑

ν∈N̂

(
f ν(x, ξ−k

0 )

∫

Iν
ρk(s)ds + 〈Aν(x)ek, ek〉

∫

Iν
s2ρk(s)ds

+〈2Aν(x)ξ
k
0 + bν(x), ek〉

∫

Iν
sρk(s)ds

)

=
∑

ν∈N̂

2∑
j=0

p j,ν(ξ
−k; x)

∫

Iν
s jρk(s)ds (31)

=
∑

ν∈N̂

2∑
j=0

p j,ν(ξ
−k; x)

∫ sν+1(ξ
−k )

sν (ξ−k )

s jρk(s)ds (32)

where we define sν = sν(ξ−k) = inf Iν(ξ−k) and sν+1 = sν+1(ξ
−k) = sup Iν(ξ−k).

The functions p j,ν(·; x) are (d − 1)-variate polynomials in ξ−k of degree 2 − j
with coefficients being affine functions of x . If sν is finite, the point ξ−k

sν belongs to
the common facet of cl�ν(x) and cl�ν−1(x). Let gν = (gν,1, . . . , gν,d) ∈ R

d and
aν ∈ R be selected such that the facet is defined by the inequality

〈gν, ξ 〉 =
d∑

i=1

gν,iξi ≤ aν .

Hence, for finite sν we obtain

〈gν, ξ
−k
sν 〉 =

d∑
i=1
i �=k

gν,iξi + gν,ksν = aν .

Since gν,k �= 0 due to condition (A6), we arrive at the representation

sν = sν(ξ
−k) = 1

gν,k

⎛
⎜⎜⎝−

d∑
i=1
i �=k

gν,iξi + aν

⎞
⎟⎟⎠ . (33)

Since the points sν = sν(ξ−k) are affine functions of ξ−k and the integrands f ν(·, ξ−k)

are linear-quadratic in Iν(ξ−k), classical results on integrals depending on parameters
may be used to derive continuity and continuous differentiability of the projections
Pk f at any ξ̄−k ∈ �k(R

d) as functions of ξ−k if the index set N̂ (ξ k) does not change
in some neighborhood of ξ̄−k . In order to study the continuity of Pk f also at points
ξ̄−k where the index sets N̂ (ξ−k) do change in any neighborhood of ξ̄−k , we introduce
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some additional notation. Let Bε(ξ̄
−k) denote the open ball around ξ̄−k with radius

ε > 0 and let

P(ξ̄−k) := {
cl�ν(x) : ξ̄−k

s ∈ cl�ν(x) for some s ∈ R
}

(34)

Pε(ξ̄
−k) := {

cl�ν(x) : ξ−k
s ∈ cl�ν(x) for some s ∈ R, ξ−k ∈ Bε(ξ̄

−k)
}
(35)

denote sets of convex polyhedra cl�ν(x) that are met by the one-dimensional affine
subspace {ξ−k

s : s ∈ R}. Because any such subspace {ξ−k
s : s ∈ R} for some ξ−k ∈

Bε(ξ̄
−k) is a parallel translation of {ξ̄−k

s : s ∈ R}, ε0 can be chosen small enough such
that P(ξ−k) ⊆ P(ξ̄−k) holds for every ξ−k ∈ Bε0(ξ̄

−k). Therefore we have

P(ξ̄−k) = Pε0(ξ̄
−k). (36)

Since the polyhedra cl�ν(x) are convex, the sets {ξ−k
s ∈ cl�ν(x) : s ∈ R} are convex,

too, and, hence, represent either an interval or a single point if cl�ν(x) belongs to
P(ξ−k). The latter is only possible if the one-dimensional affine spacemeets a vertex or
an edge (i.e., faces of dimension zero or one) of cl�ν(x). The subset ofRd that contains
all vertices and edges of all such polyhedra cl�ν(x) has Lebesgue measure zero in
R
d . If the set {ξ−k

s ∈ cl�ν(x) : s ∈ R} is an interval Iν , the set {ξ−k
s : s ∈ int Iν}

belongs to the interior of cl�ν(x). Otherwise, the interval Iν belongs to a facet of
cl�ν(x) which in turn is parallel to the canonical basis element ek contradicting the
geometric condition (A6).

Proposition 4 Let (A1)–(A6) be satisfied, x ∈ X be fixed, k ∈ D and we consider
an integrand f = fx of the form (28). Then its kth projection Pk f is continuous
on �k(R

d) and first order continuously differentiable on �k(R
d)\M, where M is a

closed set that is contained in the union of finitely many hyperplanes of dimension at
most d − 2 and, thus, has Lebesgue measure zero in R

d−1. Moreover, the estimate

∣∣∣∣
∂Pk f

∂ξr
(ξ−k)

∣∣∣∣ ≤ Ĉ max{1, ‖x‖}max{1, ‖ξ−k‖2} (37)

holds for almost every ξ−k ∈ �k(R
d), for all r ∈ D, r �= k, and some constant Ĉ > 0.

Proof Let x ∈ X , k ∈ D and ξ̄−k ∈ �k(R
d). First we prove continuity of Pk f at ξ̄−k

and distinguish the following two cases:

(i) There exists ε0 > 0 such that P(ξ−k) = P(ξ̄−k) for all ξ−k ∈ Bε0(ξ̄
−k).

(ii) For each ε > 0 there exists ξ−k ∈ Bε(ξ̄
−k) such that P(ξ−k) � P(ξ̄−k).

In case (i) we know that the function ξ−k �→ f (ξ−k
s ) = f (ξ1, . . . , ξk−1, s, ξk+1, . . . ,

ξd) is continuous in Bε0(ξ̄
−k) for all s ∈ R except at the points sν , ν ∈ N̂ (ξ̄−k).

Due to Proposition 2 the estimate

| f (ξ−k
s )| ≤ C max{1, ‖x‖}max{1, s2 + ‖ξ−k‖2}

≤ C max{1, ‖x‖}max{1, s2 + (ε0 + ‖ξ̄−k‖)2}
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holds for all (s, ξ−k) ∈ R×Bε0(ξ̄
−k) and some constant C > 0. The latter right-hand

side represents an integrable majorant for f (ξ−k
s ) and, hence, Lebesgue’s dominated

convergence theorem implies that Pk f is continuous at ξ̄−k .
In case (ii) we choose ε0 > 0 small enough such that the identity (36) is valid. We

consider the index set N̂ (ξ̄−k) of all intervals Iν(ξ̄−k) with left end points sν(ξ̄−k)

and allow explicitly that sν(ξ̄−k) = sν+1(ξ̄
−k) holds for some ν ∈ N̂ (ξ̄−k). Then the

representation

(Pk f )(ξ̄
−k) =

∑

ν∈N̂ (ξ̄−k )

2∑
j=0

p j,ν(ξ̄
−k; x)

∫ sν+1(ξ̄
−k )

sν (ξ̄−k )

s jρk(s)ds (38)

is valid, where sν(ξ̄−k) is given by (33). Now, let ξ−k ∈ Bε0(ξ̄
−k). Then Pk f (ξ−k)

may be represented by a subset of the set N̂ (ξ̄−k). Of course, all intervals Iν(ξ̄−k)

with sν(ξ̄−k) < sν+1(ξ̄
−k) appear also in the representation of Pk f (ξ−k) if ε0 is small

enough. Here, we used that N and, hence, N̂ (ξ̄−k) are finite. Those intervals with
sν(ξ̄−k) = sν+1(ξ̄

−k) may either disappear or appear with sν(ξ−k) < sν+1(ξ
−k).

If they disappear we set sν(ξ−k) = sν+1(ξ
−k) and include them formally into the

representation of Pk f (ξ−k) which is of the form

(Pk f )(ξ
−k) =

∑

ν∈N̂ (ξ̄−k )

2∑
j=0

p j,ν(ξ
−k; x)

∫ sν+1(ξ
−k )

sν (ξ−k)

s jρk(s)ds . (39)

Letting ξ−k in (39) tend to ξ̄−k and using the continuity of sν(·) and of p j,ν(·; x) for ν
belonging to the finite index set N̂ (ξ̄−k), a comparison with (38) proves the continuity
of Pk f at ξ̄−k in case (ii), too.

Finally, we return to case (i) and study differentiability properties of Pk f at such
points ξ−k ∈ �k(R

d). From (32) we obtain for r ∈ D, r �= k, that

∂Pk f

∂ξr
(ξ−k)=

∑

ν∈N̂

( 1∑
j=0

∂

∂ξr
p j,ν(ξ

−k; x)
∫ sν+1(ξ

−k )

sν (ξ−k )

s jρk(s)ds +
2∑
j=0

p j,ν(ξ
−k; x)

(40)

·
( gν,r

gν,k
s jν (ξ−k)ρk(sν(ξ

−k)) − gν+1,r

gν+1,k
s jν+1(ξ

−k)ρk(sν+1(ξ
−k))

))

(41)

holds, where the corresponding term in (41) vanishes if sν and sν+1, respectively, are
not finite. Hence, Pk f is first order continuously differentiable at points ξ−k satisfying
(i) and, thus, on �k(R

d) except at all boundary points of the polyhedra �k�ν(x),
ν ∈ N . All boundaries are contained in a finite union of hyperplanes of dimension at
most d − 2 which has Lebesgue measure 0 in R

d−1.
To prove the estimate (37)we fix n ∈ N̂ . To bound the first summand in (40)we note

that ∂
∂ξr

p j,ν(ξ
−k; x) is linear in ξ−k for j = 0 and constant for j = 1. The integral
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∫ sν+1(ξ
−k )

sν (ξ−k )
s jρk(s)ds is bounded by 1 for j = 0 and by a constant for j = 1. To bound

the second summand in (40) and (41) we observe that the first factor p j,ν(ξ
−k; x) of

each summand is boundedby a constant for j = 2, by a constant times‖ξ−k‖ for j = 1,
and by a constant times ‖ξ−k‖2 for j = 0. The second factor is bounded by a constant
for j = 0, by a constant times ‖ξ−k‖ for j = 1, and by a constant times ‖ξ−k‖2 for
j = 2. Furthermore, the coefficients of the polynoms p j,ν are affine functions of x ,
thus, can be bounded by a constant times max{1, ‖x‖}. Altogether, both summands
can be estimated from above by a constant times max{1, ‖x‖}max{1, ‖ξ−k‖2}, where
the constant depends on ν and r . Finally, we note that ν and r vary in finite sets and
arrive at the desired estimate (37). 
�
Remark 1 When looking at the formula for the first order partial derivative of Pk f in
the proof of Proposition 4 given in (40), (41), it becomes evident that the first order
differentiability result on�k(R

d)\M can be extended to twice partial differentiability
if the conditions (A1)–(A6) are satisfied. Moreover, we state without recording the
elementary proof and analogous arguments as in the last part of the preceding proof
that the estimate

∣∣∣∣
∂2Pk f

∂ξr∂ξq
(ξ−k)

∣∣∣∣ ≤ C̄ max{1, ‖x‖}max{1, ‖ξ−k‖2} (42)

holds for all ξ−k ∈ �k(R
d)\M , all q, r ∈ D\{k} and some constant C̄ > 0.

The following example shows that the geometric condition (A6) is indispensable
for Proposition 4 to hold true.

Example 1 Let d = 2 and P denote a two-dimensional probability distribution with
independent continuous marginal densities ρk , k = 1, 2. We consider the two convex
polyhedral cones (see the picture below)

K1 = {(t1, t2) ∈ R
2 : 0 ≤ t2 ≤ t1}, K2 = {(t1, t2) ∈ R

2 : 0 ≤ t1, t2 ≤ t1, −2t1 ≤ t2}

K1

K2
0

t2

t1

and the infimal functions

�i (t) =
{
1, t ∈ intKi

0, otherwise
(i = 1, 2),
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which are piecewise constant lower semicontinuous functions. Both are simple (but
typical) infimal value functions for pure integer optimization models.

Let the integrands fi be defined by

fi (ξ) = �i (ξ − T x),

where we let for simplicity x = 0.
Then its kth first order ANOVA projections Pk fi are

(Pk fi )(ξ
−k) =

∫ +∞

−∞
�i (ξ

−k
s )ρk(s)ds,

where ξ−k ∈ R, k ∈ {1, 2}. We obtain for i = 1

P1 f1(ξ
−1) = P1 f1(ξ2) =

{∫ +∞
ξ2

ρ1(s)ds, 0 ≤ ξ2,

0, otherwise,

P2 f1(ξ
−2) = P2 f1(ξ1) =

{∫ ξ1
0 ρ2(s)ds, 0 ≤ ξ1,

0, otherwise.

Hence, in general P1 f1 isn’t continuous, but P2 f1 is continuous on R. The reason is
that a facet of K1 is parallel to the t1-axis. For i = 2 we have

P1 f2(ξ
−1) = P1 f2(ξ2) =

{∫ +∞
ξ2

ρ1(s)ds, ξ2 ≥ 0,∫ +∞
1
2 ξ2

ρ1(s)ds, otherwise,

P2 f2(ξ
−2) = P2 f2(ξ1) =

{∫ ξ1
−2ξ1

ρ2(s)ds, 0 ≤ ξ1,

0, otherwise,

and, thus, P1 f2 and P2 f2 are continuous and piecewise continuously differentiable.
For a discussion of the geometric condition (A6) we refer the reader to Sect. 6.

Using Proposition 4 we show now that second order projections Pu f , of f with
u � D, |u| = 2, are even continuously differentiable on the entire space �uR

d .
For k, l ∈ D, k �= l, we consider Pk f and its projection Pl Pk f , i.e., the second order

projection Pu f of f with u = {k, l}. The function Pk f is given on the space �kR
d

which is subdivided into the sets �k(�ν), i.e., the kth projections of the original sets
�ν , ν ∈ N̂ , in R

d . The closures �k(cl�ν) of the sets �k(�ν) are convex polyhedral
and have dimension d − 1 [3, Proposition 2.1]. We obtain

Pu f (ξ
−u) = Pl(Pk f )(ξ

−u) =
∫ +∞

−∞
Pk f (ξ

−u
s )ρl(s)ds,

where ξ−u = �uξ and ξ−u
s = �kξ

−l
s , s ∈ R, and know that

ξ−u
s ∈

⋃

ν∈N̂
�k(�ν) = �kR

d
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holds for each s ∈ R. Hence, similar as before Proposition 4 for ξ−k , for given ξ−u

there exist a finite index setN1 = N1(ξ
−u) and intervals I1,ν with s1,ν = inf I1,ν and

s1,ν+1 = sup I1,ν for ν ∈ N1 such that

Pu f (ξ
−u) =

∑
ν∈N1(ξ−u)

∫

I1,ν (ξ−u)

Pk f (ξ
−u
s )ρl(s)ds

=
∑

ν∈N1(ξ−u)

∫ s1,ν+1(ξ
−u)

s1,ν (ξ−u)

Pk f (ξ
−u
s )ρl(s)ds, (43)

where the first and the last interval are unbounded and the finite points s1,ν belong to
common facets Gν of two adjacent convex polyhedra of the form �k(cl�ν). All such
facets are kth projections of certain faces Fν of the polyhedra cl�ν , i.e., �k(Fν) =
Gν (see [20, Theorem 16] or [59, Lemma 7.10]). If the faces Fν are defined by the
inequalities 〈g1,ν, ξ 〉 ≤ a1,ν , the points s1,ν may be represented in the form

s1,ν = s1,ν(ξ
−u) = 1

g1,ν,l

⎛
⎜⎝a1,ν −

d∑
i=1
i /∈u

g1,ν,iξi

⎞
⎟⎠

as in (33). Note that g1,ν,l �= 0 holds due to condition (A6).
To state our next result, we need the following notion. A real function g on R

d is
called locally Lipschitz continuous on lines if for each k ∈ D the function t �→ g(ξ−k

t )

is Lipschitz continuous in t on compact subsets of R for almost every ξ−k ∈ �kR
d .

Proposition 5 Let (A1)–(A6) be satisfied, x ∈ X be fixed and consider the integrand
f = fx in (28). For any k, l ∈ D, k �= l, u = {k, l}, the (ANOVA) projection Pu f is
continuously differentiable on�u(R

d). In addition, the partial derivatives ∂Pu f
∂ξr

(ξ−u)

are locally Lipschitz continuous on lines and there exists C > 0 such that

∣∣∣∣
∂Pu f

∂ξr
(ξ−u)

∣∣∣∣ ≤ C max{1, ‖x‖}max{1, ‖ξ−u‖2} (44)

holds for every ξ−u ∈ �u(R
d) and r ∈ −u.

Proof Let M be the closed set in Proposition 4. We consider k, l ∈ D with k �= l and
set u = {k, l}. From Proposition 4 we know that Pk f is continuously differentiable
at any ξ̄−k ∈ �k(R

d)\M . Hence, for any such ξ̄−k and ξ̄−u = �l ξ̄
−k we know that

Pk f is continuously differentiable at ξ̄−u
s ∈ �k(R

d) if ξ̄−u
s /∈ M . Since ξ̄−u

s ∈ M
happens only at the finitely many points s = s1,ν(ξ̄−u) due to (A6) and the bound (37)
is valid, we can use Lebesgue’s theorem on dominated convergence. We conclude that
Pu f is continuously differentiable at ξ̄−u and the identity

∂Pu f

∂ξr
(ξ̄u) =

∫ ∞

−∞
∂Pk f

∂ξr
(ξ̄us )ρl(s)ds (45)
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holds for any r ∈ −u. To prove that Pu f is continuously differentiable at any ξ̄−u ∈
�u(R

d) we proceed as in the proof of Proposition 4 and consider the set P1(ξ̄
−u) of

all convex polyhedra �k(�ν) such that ξ̄−u
s ∈ �k(�ν) for some s ∈ R. The first case

in the proof of Proposition 4 corresponds to the result (45). In the second case we
know that for each ε > 0 there exists ξ−u ∈ Bε(ξ̄

−u) such that

P1(ξ
−u) � P1(ξ̄

−u) (46)

and the representation

Pu f (ξ
−u) =

∑

ν∈N1(ξ̄−u)

∫ s1,ν+1(ξ̄
−u)

s1,ν (ξ̄−u)

Pk f (ξ
−u
s )ρl(s)ds, (47)

holds according to (43). We choose ε > 0 small enough such that the relation
s1,ν(ξ̄−u) < s1,ν+1(ξ̄

−u) in the representation (47) leads to s1,ν(ξ−u) < s1,ν+1(ξ
−u),

too. Those ν ∈ N1(ξ̄
−u)with s1,ν(ξ̄−u) = s1,ν+1(ξ̄

−u)may either disappear or appear
with s1,ν(ξ−u) < s1,ν+1(ξ

−u). If they disappear we set s1,ν(ξ−u) = s1,ν+1(ξ
−u) and

include them formally into the representation of Pu f (ξ−u) which is of the form

Pu f (ξ
−u) =

∑

ν∈N1(ξ̄−u)

∫ s1,ν+1(ξ
−u)

s1,ν (ξ−u)

Pk f (ξ
−u
s )ρl(s)ds.

In a small ball around ξ−u this representation doesn’t change. Hence, Pu f is differ-
entiable at ξu and we obtain for any r ∈ −u

∂Pu f

∂ξr
(ξ−u) =

∑

ν∈N1(ξ̄−u)

(∫ s1,ν+1(ξ
−u)

s1,ν (ξ−u)

∂Pk f

∂ξr
(ξ−u

s )ρl(s)ds

+∂si,ν+1

∂ξr
Pk f (ξ

−u
si,ν+1

)ρl(si,ν+1) − ∂si,ν
∂ξr

Pk f (ξ
−u
si,ν )ρl(si,ν)

)

(48)

=
∑

ν∈N1(ξ̄−u)

∫ s1,ν+1(ξ
−u)

s1,ν (ξ−u)

∂Pk f

∂ξr
(ξ−u

s )ρl(s)ds

=
∫ ∞

−∞
∂Pk f

∂ξr
(ξ−u

s )ρl(s)ds, (49)

where the summands in (48) cancel successively, and the first and the last term in (48)
vanish by definition. Letting ξ−u converge to ξ̄−u in the right-hand side of (49) proves
the continuous differentiability of Pu f at ξ̄u , where the partial derivative with respect
to ξr is given by (45).

To show that the partial derivatives ∂Pu f
∂ξr

are locally Lipschitz continuous on lines,

we consider first the partial derivative of the first order projection ∂Pk f
∂ξr

(ξ−k) given
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by the Eqs. (40) and (41). Let p ∈ −u. We fix all components of ξ−k except the pth
component ξp. The representation (40) and (41) of ∂Pk f

∂ξr
(ξ−k) is valid for all ξp ∈ R

except at finitelymany points ξ̄p,ν , ν = 1, . . . , Np = Np(ξ
−{k,p}).We assume that the

points are ordered with respect to the natural order and observe that in each of the open
intervals Ip,0 = (−∞, ξ̄p,1), Ip,ν = (ξ̄p,ν , ξ̄p,ν+1) and Ip,Np = (ξ̄p,Np ,+∞) the

partial derivative ∂Pk f
∂ξr

(ξ−k) is equal to a sum of products of functions that are locally

Lipschitz continuous with respect to ξp. Hence,
∂Pk f
∂ξr

(ξ−k) is Lipschitz continuous on
each bounded part of Ip,0 and Ip,Np , and on each interval Ip,ν , ν = 1, . . . , Np − 1,

respectively. Now, let IB denote a bounded interval and let ξp, ξ̃p ∈ IB , ξp < ξ̃p.
We choose ε > 0 and κ ≤ μ such that ξ̄p,κ−1 < ξp + ε < ξ̄p,κ − ε < ξ̄p,μ + ε <

ξ̃p − ε < ξ̃p ≤ ξ̄p,μ+1 and denote by ξ−u
ε and ξ̃−u−ε the elements in R

d−2 in which
the pth components are ξp + ε and ξ̃p − ε, respectively, and all other components be
fixed. Similarly, we introduce the notations ξ−u

s,±ε and ξ̄−u
s,ν,±ε. Then we obtain

∣∣∣∣
∂Pu f

∂ξr
(ξ−u

ε ) − ∂Pu f

∂ξr
(ξ̃−u−ε )

∣∣∣∣ ≤
∫ ∞

−∞

(∣∣∣∣
∂Pk f

∂ξr
(ξ−u

s,ε ) − ∂Pk f

∂ξr
(ξ̄−u

s,κ,−ε)

∣∣∣∣

+
μ−1∑
ν=κ

∣∣∣∣
∂Pk f

∂ξr
(ξ̄−u

s,ν,ε) − ∂Pk f

∂ξr
(ξ̄−u

s,ν+1,−ε)

∣∣∣∣

+
∣∣∣∣
∂Pk f

∂ξr
(ξ̄−u

s,μ,ε) − ∂Pk f

∂ξr
(ξ̃−u

s,−ε)

∣∣∣∣
)

ρl(s)ds

+
μ∑

ν=κ

∣∣∣∣
∂Pu f

∂ξr
(ξ̄−u

ν,−ε) − ∂Pu f

∂ξr
(ξ̄−u

ν,ε )

∣∣∣∣ .

Using the local Lipschitz continuity property of ∂Pk f
∂ξr

on the intervals Ip,ν with (max-
imal) Lipschitz modulus L > 0, we may continue the estimate

∣∣∣∣
∂Pu f

∂ξr
(ξ−u

ε ) − ∂Pu f

∂ξr
(ξ̃−u−ε )

∣∣∣∣ ≤ L
∫ ∞
−∞

(
|ξp − ξ̄p,κ + 2ε| +

μ−1∑
ν=κ

|ξ̄p,ν − ξ̄p,ν+1 + 2ε|

+|ξ̄p,μ − ξ̃p + 2ε|
)
ρl (s)ds

+
μ∑

ν=κ

∣∣∣∣
∂Pu f

∂ξr
(ξ̄−u

ν,−ε) − ∂Pu f

∂ξr
(ξ̄−u

ν,ε )

∣∣∣∣ .

Next we let ε tend to zero and make use of the continuity of ∂Pu f
∂ξr

. This leads to

∣∣∣∣
∂Pu f

∂ξr
(ξ−u) − ∂Pu f

∂ξr
(ξ̃−u)

∣∣∣∣ ≤ L

⎛
⎝(ξ̄p,κ − ξp) +

μ−1∑
ν=κ

(ξ̄p,ν+1 − ξ̄p,ν ) + (ξ̃p − ξ̄p,μ)

⎞
⎠

= L(ξ̃p − ξp) = L|ξp − ξ̃p|

and, hence, to the desired Lipschitz continuity property on lines.
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For r ∈ −u and ξ−u ∈ �u(R
d) we conclude finally from (49) and (37) that

∣∣∣∣
∂Pu f

∂ξr
(ξ−u)

∣∣∣∣ ≤ Ĉ max{1, ‖x‖}
∫ ∞

−∞
max{1, s2 + ‖ξ−u‖2}ρl(s)ds

≤ Ĉ max{1, ‖x‖}
(∫ ∞

−∞
max{1, s2}ρl(s)ds + max{1, ‖ξ−u‖2}

)

≤ C max{1, ‖x‖}max{1, ‖ξ−u‖2}

and, thus, (44) holds for some sufficiently large constant C > 0. 
�
The following is our main result in this section. It states that the first and second

order ANOVA terms of f have mixed weak first order partial derivatives.

Theorem 1 Let (A1)–(A6) be satisfied, x ∈ X be fixed and we consider an integrand
f = fx of the form (28). Then all first and second order ANOVA terms fu, 0 �= |u| ≤ 2,
u ⊆ D, are first order continuously differentiable and have second order mixed weak
first order derivatives that belong toL2,ρ(Rd). Hence, they belong to themixed Sobolev

space W(1,...,1)
2,ρ,mix(R

d).

Proof Due to Proposition 5 all second order projections Pu f of f with |u| = 2 are
continuously differentiable and their partial derivatives are locally Lipschitz continu-
ous on lines on �u(R

d). These properties carry over to higher order projections Pv f
with 2 < |v| < d. While the continuous differentiability follows from the dominated
convergence theorem using the bound (44), the local Lipschitz continuity on lines of
the partial derivatives is a consequence of Proposition 5 and of the following estimate
for subsets u, v of D with u ⊂ v and 2 = |u| < |v|:

∣∣∣∣
∂Pv f

∂ξr
(ξ−v) − ∂Pv f

∂ξr
(ξ̃−v)

∣∣∣∣ =
∣∣∣∣Pv−u

∂Pu f

∂ξr
(ξ−v) − Pv−u

∂Pu f

∂ξr
(ξ−v)

∣∣∣∣

≤
∫

R|v−u|

∣∣∣∣
∂Pu f

∂ξr
(ξ−v, sv−u) − ∂Pu f

∂ξr
(ξ̃−v, sv−u)

∣∣∣∣
∏

j∈v−u

ρ j (s j )ds j .

According to (21) the ANOVA terms of f are given by

fu = P−u( f ) +
∑
v�u

(−1)|u|−|v|P−v( f )

for all nonempty subsets u of D. Hence, all ANOVA terms fu of f for |u| < d −
1 are continuously differentiable on �u(R

d). The non-vanishing first order partial
derivatives of the first and second order ANOVA terms are of the form

Dl f{l}(ξl) = ∂ f{l}
∂ξl

(ξl) = ∂P−{l} f
∂ξl

(ξl)

Dl f{l,k}(ξl , ξk) = ∂ f{l,k}
∂ξl

(ξl , ξk) = ∂P−{l,k} f
∂ξl

(ξl , ξk) − ∂P−{l} f
∂ξl

(ξl),
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for any l, k ∈ D. Hence, the functions Dl f{l,k} and Dk f{l,k} are locally Lipschitz
continuous with respect to each of the two variables ξl and ξr independently when the
other variable is fixed almost everywhere. Hence, Dl f{l,k} and Dk f{l,k} are partially
differentiable with respect to ξk and ξl , respectively, in the sense of Sobolev (see, for
example, [10, Section 4.2.3]). Furthermore, the mixed weak first derivatives coincide
with the mixed first classical derivatives at some point if the latter exist at this point.
We know from Remark 1 that second order classical mixed first derivatives of Pk f
and, thus, of all projections Pv f with |v| ≤ d − 1 exist almost everywhere due
to the dominated convergence theorem. Hence, the classical mixed first derivatives

Dlk f{l,k} = ∂2 f{l,k}
∂ξk∂ξl

exist almost everywhere and coincide there with the mixed weak
first derivatives. The bound (42) then implies that the estimate

|Dlk f{l,k}(ξl , ξk)| ≤ C max{1, ‖x‖}max{1, ξ2l + ξ2k }

is valid for almost every pair (ξl , ξk) ∈ �−{l,k}Rd , any l, k ∈ D, any x ∈ X and some
constant C > 0. We conclude that Dlk f{l,k} belongs to L2,ρ(Rd) for all l, k ∈ D due
to (A4). 
�
Remark 2 Let f (k) denote the kth order ANOVA approximation

f (k) =
∑

0<|u|≤k
u⊂D

fu (50)

of the two-stage mixed-integer integrand f (see (28)) for some 1 ≤ k < d. Theorem 1
furnishes conditions implying that f (2) has allmixedweakfirst order partial derivatives
and our next Remark discusses its extension to f (k) for k > 2. According to (20) and
to the orthogonality of the ANOVA terms fu in L2,ρ one has

‖ f − f (k)‖22,ρ =
∑
|u|>k

‖ fu‖22,ρ .

If the effective superposition dimension dS(ε) of f (see (23)) is at most k, the mean
square error of the integrands f and f (k) satisfies

‖ f − f (k)‖22,ρ ≤ εσ 2( f )

due to (25). For a discussion of techniques for determining and reducing the effective
superposition dimension in case of (log)normal probability distributions we refer to
[31,41,56–58].

Remark 3 If in addition to (A1)–(A6) the densities ρi , i ∈ D, have also continuous
derivatives of order k ≥ 1 and all derivatives are bounded on R, the result in Remark 1
extends to mixed first derivatives of order k + 1 for Pj f on � j (R

d)\M , j ∈ D. With
the techniques used in Proposition 5 this allows to prove that Pu f has second order
mixed first derivatives if |u| = 3 and, more general, that Pu f has kth order mixed
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first derivatives which are locally Lipschitz continuous on lines if |u| = k + 1. The
corresponding bounds for the mixed derivatives can be proved, too. Finally, Theorem
1 extends to the existence of kth order mixed weak first derivatives for Pu f if |u| = k,
k ≤ d

2 . The representation (21) of ANOVA terms then implies that fu with |u| = k

belongs toW(1,...,1)
2,ρ,mix(R

d) for 1 ≤ k ≤ d
2 − 1.

An important consequence is that Theorem 2 in Sect. 5 remains valid for two-stage
mixed-integer integrands with effective superposition dimension 2 ≥ dS(ε) = k ≤
d
2 − 1 for some ε > 0 by arguing with kth order ANOVA approximations.

Remark 4 For the special case of linear two-stage integrands f it is shown in [29]
that Pk f is continuously differentiable on R

d and has mixed weak first derivatives of
order 2. Under the assumptions imposed in [29] we obtain in this case from Remark
3 that the projection Pu f with |u| = k has mixed weak first derivatives of order k + 1
for 1 ≤ k ≤ d

2 and the ANOVA term fu with |u| = k belongs to W(1,...,1)
2,ρ,mix(R

d) for

1 ≤ k ≤ d
2 .

5 Error analysis for randomly shifted lattice rules

In this section we provide an error analysis for randomly shifted lattice rules. Conver-
gence results for this method are known for integrands from weighted tensor product
Sobolev spaces on [0, 1]d (see [8,23]). Since typical integrands in stochastic program-
ming are defined on R

d , we introduce first appropriate Sobolev spaces.
Following [26,36] we start with the weighted Sobolev spaces W 1

2,γi ,ρi ,ψi
(R) of

functions h ∈ L2,ρi (R) that are absolutely continuous with derivatives h′ ∈ L2,ψi (R)

and positive continuous weight functions ψi , i ∈ D = {1, . . . , d}. They are endowed
with the weighted inner product

〈h, h̃〉γi ,ψi =
( ∫

R

h(ξ)ρi (ξ)dξ
)( ∫

R

h̃(ξ)ρi (ξ)dξ
)

+ 1

γi

∫

R

h′(ξ)h̃′(ξ)ψ2
i (ξ)dξ ,

where for each i ∈ D the weight γi is positive. We know that for any x, x̃ ∈ R

∫ x̃

x
ψ−2
i (t)dt < ∞ .

The latter condition implies that the weighted Sobolev space is complete [22] and,
thus, a Hilbert space. Furthermore, it is known that there exists a reproducing kernel,
i.e., a function Ki (x, x̃) = 1 + γiηi (x, x̃) for x, x̃ ∈ R, where

ηi (x, x̃) =
∫ min{x,x̃}

−∞
φi (t)

ψ2
i (t)

dt +
∫ +∞

max{x,x̃}
1 − φi (t)

ψ2
i (t)

dt −
∫ +∞

−∞
φi (t)(1 − φi (t))

ψ2
i (t)

dt,

and φi is the distribution function of the density ρi (see [36, Lemma 1]). This means
that Ki : R×R → R satisfies Ki (·, x) ∈ W 1

2,γi ,ρi ,ψi
(R) and 〈h, Ki (·, x)〉γi ,ψi = h(x)
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for all x ∈ R and h ∈ W 1
2,γi ,ρi ,ψi

(R). For more information on reproducing kernel
Hilbert spaces we refer to the seminal paper [2] and to the monograph [6]. It is known
from [2] that the weighted tensor product Sobolev space

Fd = W(1,...,1)
2,γ,ρ,ψ,mix(R

d) =
d⊗

i=1

W 1
2,γi ,ρi ,ψi

(R)

is also a kernel reproducing Hilbert space with the reproducing kernel

Kd,γ,ρ,ψ (ξ, ξ̃ ) =
d∏

i=1

(1 + γiηi (ξi , ξ̃i )) =
∑

∅�=u⊆D

γu
∏
i∈u

ηi (ξi , ξ̃i ) .

The inner product of Fd is given by

〈 f , f̃ 〉γ,ψ =
∑
u⊆D

γ −1
u

∫

R|u|
Iu,ρ( f )(ξu)Iu,ρ( f̃ )(ξu)

∏
i∈u

ψ2
i (ξi )dξu,

where the integrands Iu,ρ( f )(ξu) and the weights γu are defined by

Iu,ρ( f )(ξu) =
∫

R|−u|
∂ |u| f
∂ξu

(ξ)
∏
i∈−u

ρi (ξi )dξ−u and γu =
∏
i∈u

γi , γ∅ = 1 .

In the QMC literature, this is called the unanchored setting with product weights.
In order to apply QMC methods to the computation of integrals

Iρ( f ) =
∫

Rd
f (ξ)ρ(ξ)dξ =

∫

Rd
f (ξ)

d∏
i=1

ρi (ξi )dξ

with f ∈ Fd the Hilbert space Fd has to be transformed to a Hilbert space Gd of
functions g on [0, 1]d by the isometry

f ∈ Fd ⇐⇒ g(·) = f (�−1(·)) ∈ Gd ,

where �−1(t) = (φ−1
1 (t1), . . . , φ

−1
d (td)), t ∈ [0, 1]d . The reproducing kernel and

inner product of Gd are

Kd,γ (t, t̃) = Kd,γ,ρ,ψ (�−1(t),�−1(t̃)) (t, t̃ ∈ [0, 1]d)
〈g, g̃〉γ = 〈 f (�−1(·)), f̃ (�−1(·))〉γ = 〈 f , f̃ 〉γ,ψ .

The choice of the weight functions ψi depends on the marginal densities ρi , i ∈ D.
We refer to [25,36] for a discussion of this aspect and for a list of marginal densities
and the corresponding weight functions.
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Now, we consider randomly shifted lattice rules for numerical integration in Gd

(see [23,50]). Let Zn = {z ∈ N : 1 ≤ z ≤ n, gcd (z, n) = 1} denote the set of
natural numbers between 1 and n that are relatively prime to n. Given a generating
vector g ∈ Zd

n and a random shift vector � which is uniformly distributed in [0, 1]d ,
the shifted lattice rule points are t j = { jg

n + �}, j = 1, . . . , n, where the braces
indicate taking componentwise the fractional part. The corresponding randomized
QMC method on Gd is of the form

Qn,d(g) = 1

n

n∑
j=1

g(t j ) (g ∈ Gd , n ∈ N) (51)

and its shift-averaged worst-case error can be computed using the reproducing kernel.
Let ϕ(n) denote the cardinality of Zn , thus, ϕ(n) = n if n is prime, and ξ j = �−1(t j )
for j = 1, . . . , n. Then we obtain from [36, Theorem 8] that a generating vector
g ∈ Zd

n can be constructed by a component-by-component algorithm such that for
each δ ∈ (0, 1

2 ] there exists C(δ) > 0 (not depending on d) with

(
E
∣∣Iρ( f ) − Qn,d( f (�

−1(·)))∣∣2) 12 ≤ C(δ)‖ f ‖γ,ψ ϕ(n)−1+δ (52)

if the following condition
∞∑
i=1

γ
1

2(1−δ)

i < ∞ (53)

on the weights is satisfied and f belongs to Fd . To state our next result we denote
by v(P) the infimal value of (1) and by v(Qn,d) the infimum if the integral in (1) is
replaced by the randomly shifted lattice rule (51) with sample size n.

Theorem 2 Let (A1)–(A6) be satisfied, the densities ρi , i ∈ D, be k ≥ 2 times dif-
ferentiable and all derivatives be bounded on R and X be compact. Assume that all
integrands f = fx , x ∈ X, of the form (28) have effective superposition dimension
dS(ε) = k ≤ d

2 − 1 for some ε > 0 and that the kth order ANOVA approximation
f (k) of f (see (50)) belongs to Fd . Furthermore, we assume that Qn,d is a randomly
shifted lattice rule (51) satisfying (52). For each δ ∈ (0, 1

2 ] there exists Ĉ(δ) > 0 such
that (

E
∣∣v(P) − v(Qn,d)

∣∣2) 12 ≤ Ĉ(δ)ϕ(n)−1+δ + an , (54)

where the sequence (an) converges to zero and allows the estimate

an ≤ √
ε σ ( f ) (55)

with σ( f ) denoting the standard deviation of f (22).

The resultmeans that the sequence of random infima v(Qn,d ) converges in quadratic
mean to the true infimum with the optimal convergence rate O(ϕ(n)−1+δ) at least
until the error becomes very small. Theorem 2 can be proved by following the lines
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of the proof of [30, Theorem 3] for k = 2 with obvious modifications by using [27,
Proposition 4] and [42, Theorem 5]. We note that the differentiability properties of
the kth order ANOVA approximation f (k) of f discussed in Remark 3 motivate the
imposed condition for f (k).

6 Generic smoothness in the normal case

Let ξ be a d-dimensional normal random vector with mean μ and nonsingular covari-
ance matrix �. Then there exists an orthogonal matrix Q such that Q � Q� is a
diagonal matrix. Then the d-dimensional random vector η given by the transforma-
tion

ξ = Qη + μ or η = Q�(ξ − μ) (56)

is normal with zero mean and diagonal covariance matrix, i.e., η has independent
components. For fixed x ∈ X , let �ν(x), ν ∈ N , denote the decomposition (14) of
R
d into Borel sets whose closures are convex polyhedral. The transformed function

f̂ (x, η) = f (x, Qη + μ) is linear-quadratic on the sets Q��ν(x) − Q�μ, ν ∈ N ,
whose closures are again convex polyhedral.

The intersections of two adjacent convex polyhedral sets cl�ν(x) are facets, which
are contained in (d−1)-dimensional affine subspaces Hν(x), ν ∈ N . The space Hν(x)
can be described by an equation v�

Hν (x)ξ = bHν (x) with a d-dimensional nonzero vector
vHν (x) and a constant bHν (x) ∈ R. Since the number of facets of each polyhedral set
cl�ν(x) is finite, there are finitely many equations

v�
Hi,ν (x)ξ = bHi,ν (x), i ∈ Iν, ν ∈ N ,

that describe all (d − 1)-dimensional affine subspaces each containing at least one
facet of some polyhedron cl�ν(x). A d − k dimensional face of a given polyhedral
set cl�ν(x) is then a subset of an affine subspace described by a system of k linear
independent equations (intersection of k hyperplanes)

v�
Hi1,ν (x)ξ = bHi1,ν (x), . . . , v�

Hik ,ν (x)ξ = bHik ,ν (x)

or shortly Vkξ = b, where Vk is a (k, d)-matrix and b ∈ R
k . Under the lin-

ear transformation (56), the corresponding face of the transformed polyhedron
cl (Q��ν(x) − Q�μ) is a subset of an affine space described by the system

VkQη = b′, b′ := b − Qμ.

In order to make sure that the face of the transformed polyhedron does not parallel any
coordinate axis, it is sufficient to show that the system VkQη = b′ must be solvable
for each subset of k variables ηi1 , . . . , ηik in terms of the remaining components of η.
The latter condition is satisfied if each square submatrix of the (k, d)-matrix A = VkQ
is nonsingular or, equivalently, each minor of order r for 1 ≤ r ≤ k of the matrix A is
nonzero. Now, let 1 ≤ r ≤ k and Ar be any (r , r)-submatrix of A. Then Ar is given
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as product of r rows of the matrix Vk = (vil) and r columns of the matrix Q = (ql j ),
i.e.,

Ar = (ais jt ) =
(

d∑
α=1

vis lαqlα jt

)
(s, t = 1, . . . , r).

According to the Cauchy–Binet formula the minor |Ar | = det(Ar ) is of the form

|Ar | =
∑

1≤l1<l2<···<lr≤d

det

⎛
⎝

vi1l1 · · · vi1lr
. . . . . . . . . . .

vir l1 · · · vir lr

⎞
⎠ det

⎛
⎝
ql1 j1 · · · ql1 jr
. . . . . . . . . . . .

qlr j1 · · · qlr jr

⎞
⎠ .

In particular, theminor |Ar | = det(Ar ) can be interpreted as amultivariate polynomial
function where the variables are the entries of the r columns of Q, and the coefficients
are given in terms of the entries of the r selected rows of Vk . Hence, zeros of the
multivariate polynomial correspond to an orthogonal matrix Q for which condition
(A6) after the transformation is violated.

Next we argue that the multivariate polynomial |Ar | is non-constant. Assuming the
contrary means that all r -minors that can be obtained from the selected r rows of the
matrix Vk must be zero. This implies that those r rows are not linearly independent
which contradicts the construction of Vk . We also note that for any d − k dimensional
face with 1 ≤ k < d which defines a system Vkξ = b, a multivariate polynomial
|Ar | as considered above cannot contain all entries of a column of Q in its variables.
It follows that the equations on the entries of Q defining the matrix Q as orthogonal
cannot imply that |Ar | is a constant polynomial (as it is for the polynomial |Q| over
O(d, R)). For the following part we refer to [7] for an introductory presentation of the
Haarmeasure on topological groups. It is known that O(d, R) is a compact topological
group and a smooth manifold of dimension

(
d

2

)
= d(d − 1)

2
= d2 − d(d + 1)

2
,

where the first term on the right-hand side corresponds to the number of elements of a
matrix Q ∈ O(d, R) and the second term is the number of equations 〈Qi , Q j 〉 = δi, j ,
i, j ∈ D, i ≤ j , describing the orthonormality of the columns of Q. One important
fact of O(d, R) is that this group has two connected components, one for matrices
having determinant equal to 1 including the identity matrix, and the other one for
matrices having determinant equal to −1. The set of real orthogonal matrices having
determinant equal to 1 build a subgroup, called the special orthogonal group, and is
denoted by SO(d, R).

If a matrix Q belongs to SO(d, R), then by multiplying Q by the d × d matrix
I− = diag(1, . . . , 1,−1), we obtain det(I−Q) = −1 and, hence, I−Q belongs to
the connected component of O(d, R) having determinant equal to −1. The matrix I−
just creates a mirroring of the last coordinate without affecting the others. Therefore if
Q ∈ O(d, R) and Q = I−Q+, with Q+ ∈ SO(d, R), then Q transforms a polyhedron
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such that a face of the transformed polyhedron parallels a coordinate axis if and only
if Q+ parallels the same axis. Therefore, the set of orthogonal matrices transforming
a polyhedron such that a resulting face parallels some axis can be described as a set
SQ+ ⊂ SO(d, R) having this property, or a set SQ− ⊂ (O(d, R)\SO(d, R)) having
this property, where SQ− can be described as SQ− = I−SQ+ (that is, every matrix in
SQ− is given as a matrix in SQ+ multiplied by I−). By the invariance property of the
Haar measure λ over O(d, R), we have that λ(SQ−) = λ(I−SQ+) = λ(SQ+).

The restriction of the Haar measure over O(d, R) to its subgroup SO(d, R) coin-
cides with the Haar measure on SO(d, R) up to a normalization constant. Considering
now especially SQ+ , our aim is to show that the zero-set of themultivariate polynomial
|Ar | is a set of Haar measure zero over the group SO(d, R). The special orthogonal
group SO(d, R) allows a parametrization via hyperspherical coordinates. We follow
the presentation in [11, Chapter 1] and obtain that each Q ∈ SO(d, R) allows a
representation in the form

Q� =
d∏

i=1

d∏
j=i+1

Ti j (ϕi j ),

where the orthogonal matrices Ti j (ϕi j ) define a rotation in the coordinate plane ξ ′
i =

cosϕi jξi + sin ϕi jξ j , ξ ′
j = − sin ϕi jξi + cosϕi jξ j , ξ ′

l = ξl , l /∈ {i, j}, i < j , i, j =
1, . . . , d. The representation of Q in this form is unique for almost all values of the
angles ϕi j . The angles vary in 0 ≤ ϕid < 2π , 0 ≤ ϕi j < π , j = i + 1, . . . , d − 1,
i = 1, . . . , d. Moreover, the Haar measure on SO(d, R) is absolutely continuous with
respect to the Lebesgue measure with the density [11, Theorem 1.2.1]

cd

d−1∏
i=1

i∏
j=1

sin j−1 ϕ j i ,

where cd denotes some normalizing constant. By applying this parametrization to the
multivariate polynomial |Ar |, one obtains a non-constant analytic function. We recall
that the zero-set of a non-constantmultivariate analytic function has Lebesguemeasure
zero [35]. Therefore the restriction of the zero-set of the parametrized multivariate
polynomial |Ar | to the parametrization domain box of the special orthogonal group
has zero Lebesgue measure. Hence, the zero-set of the multivariate polynomial |Ar |
has measure zero with respect to the Haar measure over SO(d, R). By taking finite
unions of the corresponding sets of zero Haar measure over SO(d, R) with respect
to all r -minors of A and all transformed polyhedra cl (Q��ν(x) − Q�μ) having a
face parallel to some coordinate axis, the set of the corresponding special orthogonal
matrices has Haar measure zero. Since the latter set transformed by I− also has zero
Haar measure, we arrive at the following statement as a consequence of Theorem 1.

Theorem 3 Let (A1)–(A5) be satisfied, x ∈ X be fixed, f = f (x, ·) be given by
(28) and ξ be normally distributed with nonsingular covariance matrix �. After the
orthogonal transformation (56) of ξ the second order ANOVA approximation f (2) of
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f (see Remark 2) belongs to W(1,...,1)
2,ρ,mix(R

d) for all orthogonal matrices in O(d, R)

except for those belonging to a subset of O(d, R) having Haar measure zero.

According to Remarks 3 and 4 Theorem 3 remains valid for kth order ANOVA
approximations (50) of the integrand f for k ≤ d

2 − 1 in the two-stage mixed-integer
case and for k ≤ d

2 in the two-stage linear case.

7 Discussion of numerical experience and conclusions

In our numerical experiments reported in the companion paper [30] we compare two
randomized QMC methods, namely, randomly shifted lattice rules [38,50] and ran-
domly scrambled Sobol’ point sets (based on [19,51] and random linear scrambling
[33]) with Monte Carlo methods [34] by applying them to a two-stage stochastic
mixed-integer electricity portfolio optimization model. Its aim consists in minimiz-
ing the expected costs over a time horizon with T time intervals in the presence of
stochastic load and prices. The latter aremodelled asmultivariateARMA(1,1) process.
The resulting multivariate probability distribution is normal with covariance matrix
� of dimension d = 2T which is factorized in the form � = BB�. Two types of
factorizations B are used, namely, (i) standard Cholesky (CH) and (ii) principal com-
ponent analysis (PCA). Under PCA we obtained in our test runs with T = 100 that
the effective truncation dimension dT (ε) is equal to 2 for ε = 0.01 and the two-stage
mixed-integer integrand f . We also observed that under PCA the first variable accu-
mulates more than 90% of the total variance σ 2( f ). This means dS(0.01) = 2 and
indeed PCA is an excellent dimension reduction technique in this case. The average
of the estimated rates of convergence O(n−α) for the root mean square error of the
optimal values under PCA in our computational tests were approximately α = 0.91
for randomly shifted lattice rules, and α = 1.05 for the randomly scrambled Sobol’
points. This is clearly superior to the MC convergence rate α = 0.5. The same test
runs were performed by using CH instead of PCA for factorizing �. The average of
the estimated rates of convergence were O(n−0.5) for all three methods under CH
although the error constants of the randomized QMC methods seemed to be smaller.
An explanation for the worse rates is that the approximate smoothing effect due to the
eventual smoothness of lower order ANOVA terms does not occur since the effective
truncation dimension under CH always remained dT (0.01) = 200.

Compared to our earlier work in [29] we showed for linear two-stage integrands f
in the present paper that even ANOVA terms fu of order 2 ≤ |u| < d

2 have mixed
weak first partial derivatives (Remark 4) and that this property extends to two-stage
mixed-integer integrands for 2 ≤ |u| ≤ d

2 − 1 (Remark 3).
However, several questions still remain open. For example, a sufficient condition

is desirable implying that lower order ANOVA terms belong to the tensor product
Sobolev space Fd (see Theorem 2 in Sect. 5). Furthermore, a discussion of the geo-
metric condition (A6) in Sect. 6 beyond the case of normal probability distributions
is important.
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