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Introduction

• A breakthrough was obtained for computing high-dimensional in-

tegrals by means of randomized Quasi-Monte Carlo (RQMC) me-

thods for integrands with mixed first derivatives (Kuo-Sloan 05).

• RQMC methods for the numerical quadrature in stochastic optimi-

zation models replace the stochastic parameter by a finite number

of (random) scenarios having equal probabilities and lead to large

scale approximating programs.

• Stochastic two-stage mixed-integer optimization models lead to

discontinuous integrands, where the specific structure of polyhe-

dral continuity regions and discontinuity facets is hidden.

• For RQMC methods on discontinuous integrands of the form

g(x)1lB(x) on [0, 1]d, where g has finite HK variation and B

is convex polyhedral, He-Wang 15 obtained the convergence rate

O(n−
1
2−

1
4d∗−2+δ)

where d∗ is the number of coordinate axes which are not parallel

to the discontinuity faces of B and δ > 0 is small.



Mixed-integer two-stage stochastic programs

min
{
〈c, x〉+

∫
Rd

Φ(q(ξ), h(ξ)− V x)ρ(ξ)dξ : x ∈ X
}
,

Φ(u, t) := inf
{
〈u1, y1〉+ 〈u2, y2〉 : W1y1 +W2y2 ≤ t, y1 ∈ Rm1, y2 ∈ Zm2

}
for all (u, t) ∈ Rm1+m2×Rr, with c ∈ Rm, a closed subset X of Rm, (r,m1) and
(r,m2)-matrices W1 and W2, (r,m)-matrix V , affine functions q(ξ) ∈ Rm1+m2,
h(ξ) ∈ Rr, and a probability density ρ on Rd.
Assumptions:
(B1) The matrices W1 and W2 have only rational elements.
(B2) For each pair (x, ξ) ∈ X × Rd it holds that h(ξ)− V x ∈ T , where

T := {t ∈ Rr : ∃(y1, y2) ∈ Rm1 × Zm2 such that W1y1 +W2y2 ≤ t} .

(B3) For each ξ ∈ Rd the recourse cost q(ξ) belongs to the dual feasible set

U :=
{
u = (u1, u2) ∈ Rm1+m2 : ∃v ∈ Rr

− such that W>
1 v = u1, W

>
2 v = u2

}
.

(B4) The number of integer decisions is finite.

Proposition:
Assume (B1)–(B4). The function Φ is finite and lower semicontinuous on U ×T
and there exists finitely many Borel sets Uν × Bν, ν ∈ N , covering U × T such
that their closure is convex polyhedral and Φ is bilinear in (u, t) on each Uν×Bν.
Φ may have points of discontinuity at the boundaries of Uν ×Bν.



Example: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:

min→ max, m = 2, m1 = 0, m2 = 4, d = s = 2, X = [−5, 5]2,

c = (1.5, 4), h(ξ) = ξ, q(ξ) ≡ q = (16, 19, 23, 28), yi ∈ {0, 1},
i = 1, 2, 3, 4, P ∼ U({5, 10, 15}2) (discrete)

V (ξ) ≡ V =
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Illustration of the expected recourse function with discrete uniform probability distribution



Quasi-Monte Carlo methods

We consider the approximate computation of

Id(g) =

∫
[0,1]d

g(x)dx

by a Quasi-Monte Carlo (QMC) method

Qn(g) =
1

n

n∑
j=1

g(xj)

with (deterministic) points xj, j = 1, . . . , n, from [0, 1]d.

Worst-case quadrature error in a normed space (Gd,‖ · ‖):

en(Gd) = sup
‖g‖≤1

|Qn(g)− Id(g)|

The convergence rate en(Gd) = O(n−1(log n)d−1) can be achieved in

suitable normed spaces Gd like BVHK([0, 1]d).

Quasi-Monte Carlo methods often have good convergence properties

if the integrands have low effective dimension.



Randomized QMC methods

Randomized versions of QMC point sets have the properties that

(Owen 95, L’Ecuyer-Lemieux 02, Dick-Pillichshammer 10)

(i) each point of the randomized point set has a uniform distribution

over [0, 1)d (uniformity), and

(ii) the QMC properties are preserved under the randomization with

probability one (equidistribution).

Examples of randomization techniques are
(a) random shifts of lattice rules,
(b) scrambling, i.e., random permutations of the integers in Zb =
{0, 1, . . . , b− 1} applied to the digits in b-adic representation,
(c) affine scrambling which generates random digits by random linear
transformations of the original digits, where the elements of all ma-
trices and vectors are chosen randomly, independently and uniformly
over Zb.
Properties (i) and (ii) enable error estimates and lead to improved convergence
results compared to the original QMC method.



Weighted tensor product Sobolev spaces

Gd =W (1,...,1)
2,γ,mix([0, 1]d) =

d⊗
i=1

W 1
2,γi

([0, 1]),

where W 1
2,γi

([0, 1]) is the Sobolev space of absolutely continuous functions h on
[0, 1] with derivative h′ ∈ L2([0, 1]). Its inner product is

〈h, h̃〉 =
(∫ 1

0

h(t)dt
)(∫ 1

0

h̃(t)dt
)

+ γ−1i

∫ 1

0

h′(t)h̃′(t)dt .

The weighted norm ‖g‖γ =
√
〈g, g〉γ and inner product of Gd are given by

〈g, g̃〉γ =
∑
u⊆D

γ−1u

∫
[0,1]|u|

Iug(tu)Iug̃(tu)dtu,

where D = {1, . . . , d}, the weights γi are positive nonincreasing, and

Iug(tu) =

∫
[0,1]d−|u|

∂|u|

∂tu
g(t)dt−u and γu =

∏
i∈u

γi

for u ⊆ D, where γ∅ = 1. For u ⊆ D we use the notation |u| for its cardinality,
−u for D \ u and tu for the |u|-dimensional vector with components tj, j ∈ u.
Moreover, Gd is a reproducing kernel Hilbert space with the kernel

Kd,γ(t, s) =
d∏
i=1

(
1 + γi(0.5B2(|ti − si|) +B1(ti)B1(si))

)
(t, s ∈ [0, 1]d),

where B1(t) = t− 1
2 and B2(t) = t2 − t+ 1

6 .
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Comparison of n = 27 MC Mersenne Twister points and randomly binary shifted Sobol’ points
in dimension d = 500, projection onto the 8. and 9. components

Randomly scrambled Sobol’ sequences admits the following con-

vergence rate of the root mean square error on W (1,...,1)
2,γ,mix([0, 1]d)

sup
‖g‖γ≤1

√
E|Qn(ω)(g)− Id(g)|2 ≤ Cd n

−3
2(log n)

d−1
2 .

(Dick-Pillichshammer 10)

Usually a rate close to O(n−1) is observable unless the sample sizes become huge.



Randomly shifted lattice rules

Is the random vector 4 uniformly distributed on [0, 1]d, we consider

Qn(ω)(g) =
1

n

n∑
j=1

g
({(j − 1)

n
g +4(ω)

})
.

({z} means taking componentwise the fractional part of z)

Let n ∈ N be prime and g ∈ W (1,...,1)
2,γ,mix([0, 1]d).

Then g ∈ Zd+ can be constructed componentwise such that for each

δ ∈ (0, 1
2] there exists a constant C(δ) > 0 with

sup
‖g‖γ≤1

√
E|Qn(ω)(g)− Id(g)|2 ≤ C(δ)n−1+δ ,

where the constant C(δ) increases if δ decreases, but does not depend

on the dimension d if the sequence (γj) satisfies

∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3
).

(Sloan-Kuo-Joe 02, Kuo 03, Nuyens-Cools 06)



Transformation of integrals for general densities ρ

We consider the function f : Rd → R and the integral∫
Rd
f (ξ)ρ(ξ)dξ .

Although there are general distributional transforms for probability distributions
from Rd to [0, 1]d based on using conditional distributions (Rosenblatt 52, Rüschen-

dorf 09) we consider here a more restrictive two-step procedure:

Step 1: Transformation of the multivariate density function ρ on Rd

into a product-density ρ(ξ) =
∏d

k=1 ρk(ξk) with d independent one-

dimensional marginal densities ρk.
Example: If P is normal with mean 0 and nonsingular covariance matrix Σ, then for any matrix
A with Σ = AA> the density of P ◦ A has product form.

Step 2: Let ρk denote the independent marginal densities and φk the

marginal distribution functions of the probability distribution P . With

the transformations xk = φk(ξk), k ∈ D, one obtains∫
Rd
f (ξ)

d∏
k=1

ρk(ξk)dξ =

∫
[0,1]d

f (φ−1
1 (x1), . . . , φ−1

d (xd))dx1 · · · dxd



ANOVA decomposition and effective dimension

We consider a multivariate function f : Rd → R and intend to com-

pute the mean of f (ξ), i.e.

E[f (ξ)] = Id,ρ(f ) =

∫
Rd
f (ξ1, . . . , ξd)ρ(ξ1, . . . , ξd)dξ1 · · · dξd ,

where ξ is a d-dimensional random vector with density

ρ(ξ) =

d∏
k=1

ρk(ξk) (ξ ∈ Rd).

We are interested in a representation of f consisting of 2d terms

f (ξ) = f0 +

d∑
i=1

fi(ξi) +

d∑
i,j=1
i<j

fij(ξi, ξj) + · · · + f12···d(ξ1, . . . , ξd).

The previous representation can be more compactly written as

(∗) f (ξ) =
∑
u⊆D

fu(ξ
u) ,

where D = {1, . . . , d} and ξu contains only the components ξj with

j ∈ u and belongs to R|u|. Here, |u| denotes the cardinality of u.



Next we make use of the space L2,ρ(Rd) of all square integrable func-

tions with inner product

〈f, f̃〉ρ =

∫
Rd
f (ξ)f̃ (ξ)ρ(ξ)dξ .

A representation of the form (∗) of f ∈ L2,ρ(Rd) is called ANOVA

decomposition of f if∫
R
fu(ξ

u)ρk(ξk)dξk = 0 (for all k ∈ u and u ⊆ D).

The ANOVA terms fu, ∅ 6= u ⊆ D, are orthogonal in L2,ρ(Rd), i.e.

〈fu, fv〉ρ =

∫
Rd
fu(ξ)fv(ξ)ρ(ξ)dξ = 0 if and only if u 6= v,

The ANOVA terms fu allow a representation in terms of (so-called)

(ANOVA) projections, i.e. for ξk = Πkξ = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd)

(Pkf )(ξk) =

∫ ∞
−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (k ∈ D).

and

Puf (ξu) =
(∏
k∈u

Pk

)
f (ξu) (ξu = Πuξ, u ⊆ D).



Then it holds (Kuo-Sloan-Wasilkowski-Woźniakowski 10):

fu =
(∏
j∈u

(I − Pj)
)
P−u(f ) = P−u(f ) +

∑
v(u

(−1)|u|−|v|P−v(f ) ,

(−u denotes the complement D \ u).

We consider the variances of f and fu

σ2(f ) = ‖f − Id,ρ(f )‖2
2,ρ und σ2

u(f ) = ‖fu‖2
2,ρ

and obtain

σ2(f ) = ‖f‖2
L2
− (Id,ρ(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .

The quotients
σ2
u(f )

σ2(f )
(u ⊆ D)

are called global sensitivity indices for the importance of the group ξj,

j ∈ u, of variables of f . For small ε ∈ (0, 1) (e.g. ε = 0.01)

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f )

σ2(f )
≥ 1− ε

}
is called effective (superposition) dimension of f .



The following estimate is valid

(+)
∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
≤
√
εσ(f ) ,

i.e., the function f is approximated by a truncated ANOVA decompo-

sition which contains all ANOVA terms fu such that |u| ≤ dS(ε).

If f is nonsmooth and the ANOVA terms fu, |u| ≤ dS(ε), are smoo-

ther than f , the estimate (+) means an approximate smoothing of f .

Unfortunately, the effective superposition dimension is hardly compu-

table in general, but an upper bound can be computed by finding the

smallest s ∈ D such that∑
v⊆{1,...,s}

σ2
v(f ) ≥ (1− ε)σ2(f ) .

This relies on a particular integral representation of the left-hand side,

where the occuring integrals are computed approximately by means of

Monte Carlo or Quasi-Monte Carlo methods based on large samples.



ANOVA terms of mixed-integer two-stage integrands

Example:
Let d = 3, P denote a three-dimensional probability distribution with indepen-
dent continuous marginal densities ρi and marginal distribution functions ϕi,
i = 1, 2, 3. We consider the convex polyhedral cone

K = {(t1, t2, t3) ∈ R3 : 0 ≤ t3 ≤ t1, 0 ≤ t2 ≤ t3, 0 ≤ t1 ≤ t2}
and the infimal function

Φ(t) =

{
1 , t ∈ intK
0 , otherwise,

which is piecewise constant and lower semicontinuous. The infimal value function
is simple, but typical for pure integer optimization models.
Let the integrand f be defined by

f(ξ) = Φ(ξ − V x),

where we let for simplicity x = 0.
Then its kth first order ANOVA projection Pkf is

(Pkf)(ξk) =

∫ +∞

−∞
Φ(ξks )ρk(s)ds,

where ξk ∈ ΠkR3, k ∈ {1, 2, 3}, and

Π1(K) = {(t2, t3) ∈ R2 : 0 ≤ t2 ≤ t3}, Π2(K) = {(t1, t3) ∈ R2 : 0 ≤ t3 ≤ t1}
Π3(K) = {(t1, t2) ∈ R2 : 0 ≤ t1 ≤ t2}.



We obtain

P1f(ξ1) = P1f(ξ2, ξ3) =

{ ∫ ξ3
ξ2
ρ1(s)ds = ϕ1(ξ3)− ϕ1(ξ2) , 0 ≤ ξ2 ≤ ξ3,

0 , otherwise,

P2f(ξ2) = P2f(ξ1, ξ3) =

{ ∫ ξ1
ξ3
ρ2(s)ds = ϕ2(ξ1)− ϕ2(ξ3) , 0 ≤ ξ3 ≤ ξ1,

0 , otherwise,

P3f(ξ3) = P3f(ξ1, ξ2) =

{ ∫ ξ2
ξ1
ρ3(s)ds = ϕ3(ξ2)− ϕ3(ξ1) , 0 ≤ ξ1 ≤ ξ2,

0 , otherwise,

and, hence, all first order projections are continuous and piecewise differentiable.
Next we consider the second order projections Puf , u ⊂ {1, 2, 3}, |u| = 2. For
example, one obtains that

P13f(ξ2) =

{ ∫ ξ2
0 (ϕ3(ξ2)− ϕ3(t))ρ1(t)dt , ξ2 ≥ 0

0 , otherwise,

is at least continuously differentiable on Π{1,3}(K) = R. The same is true for
the other second order projections. Of course, first and second order ANOVA
projections gain further smoothness if the densities get smoother. Hence, the
first order ANOVA terms of f belong at least to C1(R).
Note that all facets of K do not parallel any coordinate axis in R3.



We consider the objective function

f (ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− V x)

of our two-stage mixed-integer stochastic program for fixed x ∈ X .

We know that f is linear-quadratic in ξ on the Borel sets Ξν(x) =

{ξ ∈ Rd : q(ξ) ∈ Uν, h(ξ) ∈ V x + Bν}, ν ∈ N , covering Rd such

that their closures are convex polyhedral.

Assumptions:
(B5) The density ρ has fourth order absolute moments.

(B6) ρ(ξ) =
∏d

k=1 ρk(ξk) with ρk ∈ C1(R), k ∈ D.

(B7) All facets of the convex polyhedral sets cl Ξν(x) do not parallel

any coordinate axis in Rd for any fixed x ∈ X (geometric condition).

Theorem:
Assume (B1)–(B7). Then the ANOVA terms fu, |u| ≤ 2, u ⊂ D, of

f have all mixed first Sobolev derivatives.

Proposition: If ρ is multivariate normal with nonsingular covariance

matrix Σ, the geometric condition (B7) is satisfied almost everywhere

with respect to the Haar measure over the topological group of d× d
real orthogonal matrices needed to transform Σ into diagonal form.



RQMC convergence and error analysis

Assume f ∈ Fd =
⊗d

i=1W
1
2,γi,ψi

(R), where W 1
2,γi,ψi

(R) is the Sobolev

space of functions h ∈ L2,ρi(R), which are absolutely continuous with

derivative h′ ∈ L2,ψi(R), and norm

‖h‖2
γi,ψi

=
(∫

R
h(ξ)ρi(ξ)dξ

)2

+
1

γi

∫
R

(h′(ξ)ψi(ξ))2dξ .

The functions ψi, i = 1, . . . , d, are selected such that the function

g = f (ϕ−1
1 (·), . . . , ϕ−1

d (·))
belongs to Gd and Fd is a complete tensor product Sobolev space
(Kuo-Sloan-Wasilkowski-Waterhouse 10, Nichols-Kuo 14).
The QMC error may be estimated as follows:∣∣∣ ∫

Rd

f(ξ)ρ(ξ)dξ − n−1
n∑
j=1

f(ξj)
∣∣∣ =

∣∣∣ ∫
[0,1]d

g(x)dx− n−1
n∑
j=1

g(xj)
∣∣∣

≤
∑

0<|u|≤d

∣∣∣ ∫
[0,1]|u|

gu(x
u)dxu − n−1

n∑
j=1

gu(x
j)
∣∣∣,

where xj = (xj1, . . . , x
j
d), xji = ϕ−1

i (ξji ) ∈ (0, 1)d, i = 1, . . . , d,

j = 1, . . . , n, are the QMC points.



If the points xj, j = 1, . . . , n, are randomly shifted lattice points, n
is prime and δ ∈ (0, 1

2], we may continue(
E
∣∣∣ ∫

[0,1]d
g(x)dx− n−1

n∑
j=1

g(xj)
∣∣∣2) 1

2 ≤ C(δ)n−1+δ +

∑
|u|>dS(ε)

(
E
∣∣∣ ∫

[0,1]|u|
gu(x

u)dxu − n−1
n∑
j=1

gu(x
j)
∣∣∣2) 1

2

≤ C(δ)n−1+δ +O(
√
ε)

if the ANOVA terms gu, |u| ≤ dS(ε), belong to Gd and the sequence

(γj) is selected properly.

The condition gu ∈ Gd is satisfied if fu ∈ Fd.



Numerical results

The optimization model contains the electrical load ξδ and the elec-

tricity price ξc as stochastic parameters. Both are components of the

random vector

ξ = (ξδ,1, ξc,1, . . . , ξδ,T , ξc,T )>.

The time horizon consists of T intervals. At each time period t ∈
{1, . . . , T} the load has to be covered. During peak load periods load

covering requires electricity trading based on bilateral contracts with

fixed prices or day-ahead trading with stochastic prices. Peak/offpeak

load periods typically require to switch on/off (cycling) units.

A two-stage electricity production and trading model is of the form

min
{ T∑

t=1

〈ct, xt〉 +

∫
RT

Φ(q(ξ), h(ξ)− V x)P (dξ) : x ∈ X
}

Φ(q, h) = inf
{ T∑

t=1

〈qt, yt〉 :Wy + V x ≥ h, y ∈ Y
}
,

where xt denotes the outputs of the base load units with costs ct. The

set X contains capacity limits and eventual ramping constraints at t.



The vector yt of second-stage decisions contains the 0-1 decisions and

outputs of cycling units, and the amounts of trading. The constraint

Wy + V x ≥ h(ξ) describes load covering at any t and minimum

up/down times of the cycling units. The constraint y ∈ Y describes

capacity limits, ramping constraints and integer requirements. P de-

notes the probability distribution of ξ on R2T .

We assume that the centered stochastic load-price process

{ξ̄t = (ξ̄δ,t, ξ̄c,t)}Tt=1 may be modeled as linear multivariate time series

ARMA(p,q)

ξ̄t +

p∑
i=1

Aiξ̄t−i =

q∑
i=0

Biηt−i , t = 1, . . . , T,

with independent standard normal innovations ηt, t = 1, . . . , T , and

suitable matrices Ai and Bi (Eichhorn-Römisch-Wegner 05).

Let m and Σ denote mean and covariance matrix of ξ, respectively.



To generate RQMC samples for the load/price vector ξ with mean

m = E[ξ] ∈ R2T and covariance matrix Σ = E[(ξ−m)(ξ−m)>] in our

two-stage mixed-integer electricity portfolio optimization model, we

first decompose Σ by a suitable matrix A such that Σ = AA>. In this

way we obtain a standard normal random vector z = (z1, . . . , z2T )T

such that

ξ = Az + m.

If φ denotes the standard normal distribution function, then the vector

η = (η1, . . . , η2T )> with zi = φ−1(ηi), i = 1, . . . , 2T , is uniformly

distributed in [0, 1]2T . We used the triangular Cholesky matrix A =

LCh and the matrix A = UPCA of the principal component analysis

(PCA) factorization

UPCA =
(√

λ1u1 · · ·
√
λdud

)
with the eigenvalues λ1 ≥ · · · ≥ λd > 0 and eigenvectors u1, . . . , ud
of the covariance matrix Σ.

For our tests we used T = 100 and, hence, d = 2T = 200.



By computing the upper bounds of the effective dimension using 215

randomly scrambled Sobol’ points we obtained

dS(0.01) ≤ 2 with PCA and 2 < dS(0.01) ≤ 200 with CH .

Hence, principal component analysis leads to a strong reduction of the

effective dimension.

For the numerical tests n samples ηj ∈ [0, 1]d, j = 1, . . . , n, of

Mersenne Twister MC and of the two RQMC methods were generated

and inserted after the transformations zji = φ−1(ηji ), i = 1, . . . , 2T ,

and ξj = Azj + m, j = 1, . . . , n, into

min
{ T∑

t=1

〈ct, xt〉 +
1

n

n∑
j=1

Φ(q(ξj), h(ξj)− V x) : x ∈ X
}
.

For MC and randomly scrambled Sobol’ points we used n = 128, 256,

512 and for randomly shifted lattice rules n = 127, 257, 509 (since

prime numbers n are favorable for the latter). The Mersenne Twister

was also used for the random scrambling and the random shifts.



The relative root mean square error (RSME) of the optimal value of

the mixed-integer linear two-stage model is estimated by performing

10 runs of every experiment and repeat the process 30 times.
The lower and upper bounds of the boxes correspond to the first and third quartile and the line
in between to the median. Outliers not belonging to boxes are marked by plus signs.

The average convergence rates of the three methods are the theoretical

rate −0.5 for MC, about −0.9 for randomly shifted lattice rules und

−1.0 for randomly scrambled Sobol’ points if PCA factorization is

used.

An explanation for the much better behavior of both randomized QMC

methods is the approximate smoothing of integrands achieved by the

low effective dimension due to the use of PCA.

All three methods showed only average convergence rate −0, 5 if CH

is used. However, it is also visible that both randomized QMC methods

lead to smaller errors than MC.



Shown are the Log10 of relative RMSE for the optimal values of the two-stage model by using
the PCA factorization of the covariance matrix. Results for Mersenne Twister MC and

randomly scrambled Sobol’ QMC with 128, 256 and 512 points and randomly shifted lattice
rules QMC with 127, 257 and 509 lattice points.



Shown are the Log10 of relative RMSE for the optimal values of the two-stage model by using
the CH factorization of the covariance matrix. Results for Mersenne Twister MC and randomly
scrambled Sobol’ QMC with 128, 256 and 512 points and randomly shifted lattice rules QMC

with 127, 257 and 509 lattice points.



Conclusions

• Randomized Quasi-Monte Carlo methods are advantageous com-

pared to MC methods also for integrands having kinks or even

discontinuities at least in case of normal distributions and if the

effective dimension of the integrand is low.

• Instead of 104 MC samples one only needs about 102 samples for

randomly scrambled Sobol’ point sets and randomly shifted lattice

rules. The advantages consist in the improved accuracy for given

sample size or in shorter running times for smaller sample sizes.

The latter becomes crucial for high-dimensional models.
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