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ABSTRACT

KEYWORDS: O&D revenue management,

seat inventory control, multistage stochas-

tic programming, scenario tree generation

Origin and destination (O&D) revenue man-
agement (RM), either leg-based or PNR based,
has become a standard in the airline industry.
This paper presents a new approach to O&D
RM which does not make any assumptions on
demand distributions or on the correlations of the
booking process. Protection levels are determined
for all origin–destination itineraries, fare classes,
points of sale and data collection points
(DCPs), and for a variety of demand patterns
over the complete booking period. This
approach to the seat inventory problem is mod-
elled as a multistage stochastic program, where
its stages correspond to the DCPs of the booking
horizon. The stochastic passenger demand pro-
cess is approximated by a scenario tree generated
from historical data by a recursive scenario
reduction procedure. The stochastic program
represents a specially structured large scale
linear program (LP) that may be solved by
standard LP software (eg CPLEX). Prelimin-
ary numerical experience is reported.

Page 265

Journal of Revenue and Pricing

Management, Vol. 3, No. 3, 2004,

pp. 265–276

# Henry Stewart Publications,

1476–6930

Journal of Revenue and Pricing Management Volume 3 Number 3



INTRODUCTION

Revenue management (RM) refers to stra-
tegies for controlling the sale of (perish-
able) products or services in order to
maximise revenue. It started in the early
1970s with the work of Littlewood (1972)
and was enforced after the deregulation of
US airline industry in 1979. For overviews,
refer to Weatherford (1998), McGill and
van Ryzin (1999), Pak and Piersma (2002),
Klein and Petrick (2003), Talluri and van
Ryzin (2004).

The EMSRa and EMSRb methods
(Belobaba, 1987, 1989) became most popu-
lar for single-leg problems. They are com-
monly used under the assumption that
demand for each fare class is independent
and normally distributed. Extension for
different types of distributions or depen-
dencies may be found in Curry (1990),
Wollmer (1992), Brumelle and McGill
(1991), Brumelle et al., (1990). In Glover et
al., (1982), the first network formulation of
the RM was given. Optimal booking
limits were applied to the network pro-
blem by Curry (1990). Smith and Penn
(1988) and Simpson (1989) proposed the
bid price concept for network revenue
management. An extensive study of bid
prices in comparison with other methodol-
ogies was done by Williamson (1992). The-
oretical properties of bid-price controls
were provided by Talluri and van Ryzin
(1999). In van Ryzin and McGill (2000), an
adaptive scheme was used for updating
protection levels based on frequencies of
certain fill events and for solving some
optimality conditions. The rate of occur-
ence of the fill events was determined
directly from historical booking records.
Neither assumptions about the distributions
nor uncensoring was requested. General
stochastic network models based on
Markov decision processes and several
types of approximations were developed
and discussed in van Ryzin and Talluri
(2003). Markov decision processes and

mathematical programming approaches
were combined in Cooper and Homem-
de-Mello (2003).

The present paper is based on a feasibil-
ity study which investigates a scenario
tree-based stochastic programming
approach to the O&D revenue manage-
ment problem. For this purpose, a sce-
nario tree consisting of a finite number of
scenarios approximates the stochastic
demand process. The approach has four
characteristics: whereas many other meth-
ods build parameterised models and esti-
mate the values of the parameters from
historical booking data, this study tries to
exploit historical booking progressions
themselves. It does not mean to use such
data exclusively. Other data, eg expert
forecasts or demand forecasts from alter-
native models, can be taken into account
in a straightforward way. Secondly, the
problem of optimising booking control
parameters is modelled as a linear pro-
gram. Unlike other revenue management
linear program models, it is neither the
result of a relaxed non-linear program,
nor does it employ expectation values or
other simple substitutes of the stochastic
demand process. Instead, this process is
modelled by a set of scenarios, which are
considered in the linear program simulta-
neously. Thirdly, the scenario tree model
does not make any assumptions on the
probability distribution of the stochastic
demand process, except that it was dis-
crete. Finally, the relation between the
number of scenarios (and thus the result-
ing computational complexity of the
linear program) and the accuracy with
which they model the stochastic process is
known and exploited for practical
computation. This work is a preliminary
study. Its first aim is to demonstrate the
viability of this approach; quantitative
evaluations and comparisons with other
methods will be the subject of future
work and publications.
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In the next section, the stochastic pro-
gramming model for O&D revenue man-
agement is established in scenario and node
formulation. Furthermore, the generation
of a booking and cancellation scenario tree
from individual scenarios is described. In
the final sections, preliminary numerical
experience is reported, and concluding
comments are given.

STOCHASTIC PROGRAMMING MODEL

Modelling

An O&D network is considered, consisting
of I origin–destination itineraries, J fare
classes, K points of sale, L legs with M(l)
compartments in each leg l = 1, . . . , L.
Let the booking horizon be subdivided
into T booking subintervals with data col-
lection points (dcps) t = 0, . . . , T. The
booking process is controlled over time by
decisions on protection levels Pi,j,k,t for
each fare class j [ {1, . . . , J}, itinerary
i [ {1, . . . , I}, point of sale k [ {1, . . . , K}
and at each dcp t = 0, . . . , T – 1. The
decisions at t are made for the next book-
ing interval (t, t + 1] based on the pre-
vious process of bookings and cancellations
up to t and recursively over time. Protec-
tion levels are upper bounds for the inven-
tory of booked, uncancelled seats.
It is assumed that the fares and the com-

partment capacities are given, ie, they are
deterministic input variables. The booking
demand and the cancellation processes are
regarded as a multivariate stochastic process
{xt}Tt=0 over time, where x0 represents a
known deterministic starting value. The
components of the random input vector xt
at t are the stochastic booking demands
di,j,k,t and stochastic cancellation rates ci,j,k,t.
Hence, xt is a 2IJK-dimensional random
vector whose components are statistically
dependent and, furthermore, the random
input vector xt depends on its history (x0,
x1, . . . , xt–1).

To state the stochastic programming
(SP) model, it is assumed that S scenarios
with probabilities ps>0, s=1, . . . , S, of
the booking demand and cancellations pro-
cess are given. These scenarios may be
obtained from stochastic demand models
and by relying on expert knowledge,
respectively.

Scenario-based SP model

To set up the SP model, some further
notation is needed. We denote the index
set of itineraries containing leg l (ie, the
incidence set) by I l ( {1, . . . , I}, the
number of compartments on leg l by M(l)
and the index set of fare classes of compart-
ment m on leg l by Jm(l) ( {1, . . . , J}.
Further input data are the fares fi,j,k,t and
the capacities Cl,m of compartments m [ {1,
. . . , M(l)} and legs l.
The stochastic input variables are the

booking demand dsi,j,k,t and and the cancel-
lation rates gsi,j,k,t. The bookings bsi,j,k,t and
the cumulative bookings Bsi,j,k,t represent
the stochastic state variables of the model
while the protection levels Psi,j,k,t are the
stochastic decisions. Here, the superscript s
always refers to scenario s. The expected
total revenue is considered the objective
function, where total refers to the whole
O&D network and booking horizon, all
fare classes and points of sale.
Summarising, our scenario-based sto-

chastic programming model consists in
maximising

XS
s¼1

�s
XT
t¼1

XI

i¼1

XJ

j¼1

XK
k¼1

fi;j;k;tðbsi;j;k;t � csi;j;k;tÞ

ð1Þ

subject to all protection levels Ps
i;j;k;t satisfy-

ing

ð1� �si;j;k;tÞBs
i;j;k;t � Ps

i;j;k;t�1 ð2Þ
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where Bs
i;j;k;t are the cumulative bookings,

ie,

Bs
i;j;k;0 :¼ �BB0

i;j;k;

Bs
i;j;k;t :¼ BS

i;j;k;t�1 þ bsi;j;k;t ð3Þ

with bsi;j;k;t satisfying the demand constraints

bsi;j;k;t � dsi;j;k;t ð4Þ

and the leg capacity limits

X
i2I l

X
j2J mðlÞ

XK
k¼1

Ps
i;j;k;T�1 � Cl;m ð5Þ

For some # 2 ð0:0; 0:5� the cancellations are
approximated by

�si;j;k;tB
s
i;j;k;t � �si;j;k;t�1B

s
i;j;k;t�1 � #

� csi;j;k;t < ð6Þ
�si;j;k;tB

s
i;j;k;t � �si;j;k;t�1B

s
i;j;k;t�1 þ #

Finally, the integrality and non-negativity
constraints

bsi;j;k;t; c
s
i;j;k;t;P

s
i;j;k;t 2 Z ð7Þ

bsi;j;k;t; c
s
i;j;k;t;P

s
i;j;k;t � 0 ð8Þ

and the non-anticipativity constraints have
to be satisfied, the latter meaning that

decisions at t only depend on the data
until t. (9)

Here, (1) corresponds to the total expected
revenue. Like the revenue values processed
in real revenue management systems, the
fares in the model are divided according to
booking period, itinerary (and thus origin,
destination, and flight period), booking
class, and point of sale. However, the objec-
tive function is simplified, as full refund of
cancelled tickets is assumed. This is justifi-
able, because it is not a mathematical pro-
blem to take cancellation fees and refunds
into account, but a practical one. In fact, it is
quite difficult to determine from an airline’s
database for what reason a booking was

cancelled: A ticket may have been given
back or the passenger may have been
rebooked to another flight. In order to
uncover cancellation fees or refunds cor-
rectly, the original tariff information
should be available. Even in passenger
name records, however, often only book-
ing class information is stored. Approxima-
tions could be received by analysis of
coupon information from check-in and
PNR data, but most airlines have not
established such process.

Equation (3) describes the update of the
cumulative bookings starting with the
initial value �BB0

i;j;k 2 Z. The constraint (5)
expresses that, for each leg, the correspond-
ing protection levels may not exceed the
physical capacities of the compartments on
the day of departure. The latter implies no-
show based overbooking is not part of the
model. This is another simplification,
owing to the study character of the work.
Since constraint (5) applies at time of depar-
ture only, overbooking is possible during
the entire booking period. Actually, it is
more demanding to model overbooking to
compensate cancellations than to model
overbooking to counteract no-shows.

While the protection levels, the number
of bookings and the number of cancella-
tions have to be non-negative integers by
nature, the constraint (9) expresses how the
information flow evolves over time. (9)
may be modelled by linear equations in
various ways, see Ruszczynski and Shapiro
(2003, Chapter 3.6) and Römisch and
Schultz (2001). Altogether, the model (1)–
(9) represents a large scale multistage sto-
chastic integer program.

Input scenario trees

The non-anticipativity constraint (9)
implies that the finitely many scenarios
f�stg

T
t¼0; s ¼ 1; . . . ;S, can be represented in

the form of a scenario tree. The scenario
tree is based on a finite set
N ¼ f0; 1; . . . ;Ng of nodes that are
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arranged at the stages t = 0, . . . , T . The
root node n = 0 is the only node at stage
t = 0. The number of nodes at stage t = 1
corresponds to the number of different rea-
lisations of �1. Each of these nodes is con-
nected with the root node by an arc. In
general, each node n 2 N ; n 6¼ 0 has a
unique predecessor node denoted by n– and
a set NþðnÞ of successor nodes. Each node
in NþðnÞ is connected with n by an arc.
The set {0, . . . , n–, n} of recursive prede-
cessors of n is denoted by path(n), which
refers to the path from the root to n. t(n)
denotes the number of elements in path(n)
minus 1 and, thus, refers to the stage to
which n is arranged, ie, the nodes in
N t :¼ fn 2 N : t ¼ tðnÞg correspond to
the different realisations of �t. Nodes n
belonging to set N T have the property
NþðnÞ 6¼ 1 and are called leaves. Hence, a
scenario corresponds to a path from the
root to some leaf, ie to path(n) for some
n 2 N T, and its probability is renamed by
pn. We also say that pn is the probability of
the leaf n. Clearly, we have
f�ngn2N T

¼ f�sgSs¼1. The probabilities of
nodes n 2= N T compute by the recursion
�n :¼

P
nþ2NþðnÞ �

nþ . Clearly, we have

that
P

n2N t
�n ¼ 1 and �tðnÞ ¼ f�ngn2N t

, for
each t = 0, 1, . . . , T.
The generation of scenario trees that

approximate the stochastic input process
f�tgTt¼0 is a challenging task when solving
multistage stochastic programs. In Dupa-
c̆ová et al. (2000), an overview of scenario
tree generation techniques is provided.
More recent contributions are based on the
moment-matching principle (Høyland and
Wallace, 2001), the use of distances of
probability distributions (Pflug, 2001) and
(Gröwe-Kuska et al., 2003), and Quasi-
Monte Carlo methods (Pennanen, 2004),
respectively.
Next, the scenario tree construction

approach presented in Gröwe-Kuska et al.
(2003) is briefly described. It assumes that
a finite number of individual scenarios
f�stg

T
t¼0 with probabilities ps > 0, s = 1,

. . . , S, and common root node, ie,
�10 ¼ . . . ¼ �S0 is given. These scenarios
may be obtained from simulations of a
parametric statistical model (eg based on
time series analysis) or from a non-
parametric model (eg by resampling
methods). This fan of individual scenarios
is modified by a procedure of recursive
bundling and deletion of similar scenarios,
respectively, leading to a tree structure.
Its methodology is based on the scenario
reduction techniques developed by Dupa-
c̆ová et al. (2003) and Heitsch and
Römisch (2003) and employs these techni-
ques backwards in time starting at t = T.
The bundling and deletion process relies
on computing and bounding the Kantoro-
vich distance of the original probability
distribution Dð�Þ given by the individual
scenarios and their weights and of the dis-
tributions of the approximate trees. If
f~���t g

T
t¼0 and q� � 0; � ¼ 1; . . . ;S; denote

the scenarios and weights of another dis-
crete probability distribution D(x~), the
Kantorovich distance of D(x) and D(x~) is
given by

Figure 1: Scenario tree with T = 4, N = 21 and

11 leaves

t ¼ 0 t ¼ 1 tðnÞ T
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�ðDð�Þ;Dð~��ÞÞ :¼

inf
� XS

s;�¼1

�s�
XT
��0

k�s� � ~���� k :

XS
�¼1

�s� ¼ ps;
XS
s¼1

�s� ¼ q�

�

where k � k is a norm in a Euclidean space,
whose dimensions correspond to the
number of components of �t for each t.
Hence, the distance �ðDð�Þ;Dð~��ÞÞ is de-
fined as the optimal value of a (linear)
transportation problem. Refer to Rachev
and Rüschendorf (1998, Chapter 2) for a
general introduction to mass transportation
problems and to the Kantorovich distance,
respectively.

Given tolerances " > 0 and
"t > 0; t ¼ 1; . . . ;T; such that

PT
t¼1 "t � ",

the algorithm for constructing scenario
trees consists of the following T steps:

Step 1: Delete scenarios from the origi-
nal probability distribution Dð�Þ by deter-
mining index sets IT and JT of remaining
and deleted scenarios such that IT| JT =
{1, . . . , S} and

X
�2JT

p�min
s2IT

XT
�¼0

k�s� � ��� k � "T ð10Þ

The left-hand side of (10) corresponds to
the best possible Kantorovich distance of
Dð�Þ to the set of all distributions with sce-
narios �s; s 2 IT . The optimal weights of
these scenarios are �T

s ¼ ps þ
P

�2JsT
p�,

s 2 IT , where JsT :¼ f� 2 JT : s ¼ sð�Þg
and sð�Þ minimises mins2IT

PT
�¼0 k�s� � ��� k

(see Dupac̆ová et al., 2003, Theorem 2)).
Thus, the new probability �T

s of scenario
�s; s 2 IT, is equal to the sum of its former
probability ps and of all probabilities of
deleted scenarios that are closest to it.

Step t: Consider the time intervals
between 0 and T – t + 1 and determine
index sets IT–t+1 and JT–t+1 such that
IT–t+1| JT–t+1 = IT–t+2 and

X
�2JT�tþ1

p� min
s2IT�tþ1

XT�tþ1

�¼0

k�s� � ��� k � "T�tþ1

Analogously to Step 1, the new weights of
the remaining scenarios �s; s 2 IT�tþ1, are
determined by

�T�tþ1
s :¼ �T�tþ2

s þ
X

�2JsT�tþ1

�T�tþ2
� ;

where JsT�tþ1 :¼ f� 2 JT�tþ1 : s ¼ ð�Þg and
sð�Þminimizesmins2IT�tþ1

PT�tþ1
�¼0 k�s����� k.

Result: After T steps of the algorithm a
chain of index sets is obtained

I0 � I1 � I2 � � � � � IT � f1; . . . ;Sg

where I0 is a singleton that corresponds to
the root t=0 and It is the index set of sce-
narios between t=0 and t=t. Branching
of scenario s 2 It at t appears if the branch-
ing set Jst is non-empty. Scenario s has a
branching degree r at t=t, ie r successors,
if jJst j ¼ r � 1. The final scenario tree con-
sists of scenarios ~��s; s 2 IT ; which coincide
at t with some of the original scenarios at t,
ie ~��st ¼ ��t for some � 2 It.

As a result of the tree construction we
obtain for the Kantorovich distance of the
probability distributions Dð�Þ and Dð~��Þ the
estimate

�ðDð�Þ;Dð~��ÞÞ �
XT
t¼1

"t � " ð11Þ

For a proof of the latter result, refer to the
forthcoming paper (Heitsch and Römisch,
2004). The Kantorovich distance was
selected by stability arguments for multi-
stage stochastic programs in the sense that
the optimal values of stochastic programs
obtained with the input distributions Dð�Þ
and Dð~��Þ are close if �ðDð�Þ;Dð~��ÞÞ is
small. It is worth noting that no assump-
tions on the original discrete probability
distribution Dð�Þ have to be imposed. The
estimate (11) is valid without any further
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conditions (eg on dependences). Solving
transportation problems for evaluating the
Kantorovich distance is not needed, too.
Of course, the final scenario tree depends

on the choice of " and on the strategy of
selecting "t for every t = T, . . . , 1. The
recursive strategy "T :¼ "ð1� qÞ, "t :¼
q"tþ1; t ¼ T � 1; . . . ; 1; reduces the number
of free parameters to " and q 2 ð0; 1Þ. For q
close to 1, only a few scenarios will be
reduced in Step 1, while a higher branch-
ing degree appears already at t = 1. If q is
small, the original scenario set will be
reduced considerably. The tree in Figure 3
is obtained with q = 0.95.
Figure 2 illustrates the construction pro-

cedure starting from a fan of individual
scenarios on a time horizon with T=4.
After three reduction and bundling steps
at t = 3, 2 and 1, the final result is
shown in (d). The final scenario tree exhi-
bits a possibly different branching struc-
ture at all stages, which is detected by the
algorithm.

SP model in node form

Using the description of scenario trees, the
SP model (1)–(9) may alternatively be
represented in node formulation. To this
end we introduce input, state and decision
variables at all nodes using superscript n =
0, . . . , N. Making use of a mapping that
assigns to each time-scenario pair (t, s) the
corresponding node n with t = t(n) and
with path(n) being a part of scenario s, the
booking demands dni;j;k, cancellation rates
�ni;j;k, bookings bni;j;k, booking inventories
Bn
i;j;k and protection levels Pn

i;j;k at all nodes
n 2 N and all triples (i,j,k) are obtained.
Then the node formulation of the SP
model consists in maximising

XN
n¼1

�n
XI

i¼1

XJ

j¼1

XK
k¼1

fi;j;k;tðnÞðbni;j;k � cni;j;kÞ ð12Þ

subject to all protection levels Pn
i;j;k satisfy-

ing

ð1� �ni;j;kÞBn
i;j;k � Pn�

i;j;k ð13Þ

 

Figure 2: Construction of a scenario tree

(a) Initial fan (b) 1st step

(c) 2nd step (d) 3rd step and final tree
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where Bn
i;j;k are the cumulative bookings, ie

B0
i;j;k :¼ �BB0

i;j;k

Bn
i;j;k :¼ Bn�

i;j;k þ bni;j;k ð14Þ

with bni;j;k satisfying the demand constraints

bni;j;k � dni;j;k ð15Þ

and for all n 2 N T�1 the leg capacity limits

X
i2I t

X
j2J mðlÞ

XK
k¼1

Pn
i;j;k � Cl;m ð16Þ

For some # 2 (0.0, 0.5] the cancellations
are approximated by

�ni;j;kB
n
i;j;k � �n�i;j;kB

n�
i;j;k � #

� cni;j;k < ð17Þ
�ni;j;kB

n
i;j;k � �n�i;j;kB

n�
i;j;k þ #

Finally, we have the non-negative integer
constraints

bni;j;k; c
n
i;j;k;P

n
i;j;k 2 Z ð18Þ

bni;j;k; c
n
i;j;k;P

n
i;j;k � 0 ð19Þ

while the nonanticipativity constraints are
satisfied by construction. Altogether, the
model (12)–(19) represents a large-scale
structured integer program which is of
smaller dimension compared to its scenario
formulation. More precisely, it contains
IJK+4IJK(N–1–S)+3IJKS variables and
3IJK(N–1) + (

PL
l¼1M(l))S constraints.

Since all variables are non-negative and
the bookings are bounded from above, the
objective function is also bounded from
above. Hence, the LP relaxation of the
integer program, ie when the constraint
(18) is ignored, is solvable. For its solution,
any standard LP solver may be used.

Owing to the distinction of itinerary,
booking class, and point of sale the protec-
tion levels ðPn

i;j;kÞn2N allow considerably
accurate control of booking requests.
Today’s inventory systems usually hold

and process protection levels (or booking
protects) on leg, booking class level or bid
prices on leg, compartment level. Thus,
processing of the protection levels in the
present approach requires seamless booking
control which is actually practised for par-
tial or complete flight networks at some
airlines. In the case of seamless control
booking requests are not responded to by
the computer reservation system (CRS)
but processed by the airline’s inventory
system or a separate ‘availability processor’
(AP). In the following, use of an AP is
assumed.

The protection levels as solutions of the
multistage stochastic programs form a
(multivariate) stochastic process over time
with the same structure as the input data.
This differs from methods which calculate
protection levels for the entire remaining
booking period, but is similar to dynamic
program approaches, which compute bid
price vectors for all dcps to come. For
practical operation, protection levels may
be operated as follows.

— The (deterministic) protection levels of
dcp t = 0 may be taken directly to the
AP. At dcps t ¼ t0; t0 2f1; . . . ;T� 1g,
the further process depends on the
actual booking inventory Bi;j;k;t0 :

— If there exists a node n such that t(n) =
t0 and Bi;j;k;t0 ¼ Bn

i;j;k, the protection
levels Pn

i;j;k can be uploaded to the AP
for controlling the booking process
until the next dcp.

— If Bi;j;k;t0 6¼ Bn
i;j;k for all nodes n with t(n)

= t0, the stochastic optimisation model
is restarted with a new input scenario
tree having its root node at t0.

— If, for any reason, such a re-optimisa-
tion is not possible, then information
on the probability distribution (means,
quantiles etc) of the relevant protection
levels (determined by the difference
between Bi;j;k;t0 and fBn

i;j;kgtðnÞ¼t0) could
be taken to compute a fallback solution.
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NUMERICAL RESULTS

In the preliminary numerical tests, the SP
model was set up and solved for a single
leg flight (namely, LH400, A340-300,
Tuesday as day of departure). Table 1
shows the dimensions of the corresponding
O&D RM problem. The passenger
demand was modelled starting from histor-
ical data of the corresponding flight as fol-
lows. First, the data were adjusted subject
to a suitable demand model (unconstrain-
ing). Next, a set of scenarios was drawn by
resampling techniques from the records
containing Tuesday as day of departure.
The average of three randomly drawn
samples out of this set was then taken as an
invidual scenario of the passenger demand
process. In this way, 300 scenarios were
generated and used as a starting point for
the tree generation. Using the tree con-
struction algorithm (see section ‘input sce-
nario trees’) a scenario tree consisting of
150 scenarios was generated, where 150
scenarios were deleted in Step 1. The
dimensions of the scenario tree and, thus,
of the SP model (12)–(19) are shown in
Table 2. The tree is illustrated in Figure 3.
It contains branches at all dcps and exhibits
branches of varying degree, starting with
many branches at the root node. Ignoring
the integrality constraints (18) the SP

model was solved by CPLEX 8.1. An opti-
mal solution was found by CPLEX 8.1 in
4.62 seconds on a Linux-PC equipped with
a 2 GHz Intel Celeron processor. Figure 4
shows the optimal protection levels at the
first stage, ie for the interval [0, 1), and the
corresponding fares. Figure 5 provides the
trees of optimal protection levels over the
whole booking horizon and the corre-
sponding demand scenario trees for selected
fare classes. Each picture also contains the
mean value and the 5 per cent and 95 per
cent quantile curves. All in all, the results
seem to be reasonable and raise the expec-
tation that moderately sized O&D network
problems may be solved in acceptable run-
ning times.

CONCLUSIONS

A stochastic programming approach to
O&D revenue management is proposed. It
is based on modelling scenario trees for
passenger demand and does not require any
assumption on the underlying demand
distributions or on the correlations of the
booking process. The RM problem is
modelled by a multistage stochastic pro-
gram in node form and solved by standard
LP software. Numerical experience for a
single-leg model indicates that the
approach bears potential for solving O&D
network models in reasonable time. Future
work will be directed to the following
issues:

Table 1: Dimensions

L I J K T M(1)

1 1 14 1 18 3

Table 2: SP model dimensions

S N No. of No. of
variables constraints

150 1159 62,762 48,786

 

Figure 3: Scenario tree
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Figure 4: Fares and optimal first stage protection levels

 

Figure 5: Cumulative passenger demand and protection level for selected fare classes
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— analysis of O&D data, the generation of
O&D demand scenarios and of demand
scenario trees

— study of structural properties of the
stochastic RM model and of the adapt-
ability of decomposition approaches

— numerical tests on entire networks
— comparison with other approaches
— completion of the model (no-shows,

denied boarding cost)
— study of modelling specific demand

patterns (seasonal demand, special
events).
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